\qquad
\qquad

Worksheet 3: Trigonometry

1. Convert 30° to radians.
2. Convert $\frac{\pi}{2}$ radians to degrees.
3. Which of the following angles correspond to the same point on the unit circle? $\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4},-\frac{7 \pi}{4}$
4. What is the angle in the range $[\pi, 2 \pi]$ that is coterminal with the angle $-\frac{\pi}{6}$?
5. What is the angle in the range $[-\pi, 0]$ that is coterminal with the angle $\frac{5 \pi}{3}$?
6. Draw the unit circle. Label the angles $0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{3 \pi}{4}, \pi, \frac{7 \pi}{6}, \frac{7 \pi}{4}, 2 \pi,-\frac{\pi}{4}$, and $-\frac{5 \pi}{3}$, and label the coordinates of the points on the unit circle that correspond to those angles.
7. What is the angle in the range $[0,2 \pi)$ that is coterminal with the angle $\frac{65 \pi}{6}$?
8. What is the angle in the range $[0,2 \pi)$ that is coterminal with the angle $\frac{14 \pi}{5}$?
9. The reference angle for an angle θ is the angle in $\left[0, \frac{\pi}{2}\right]$ that is formed between the terminal side of θ in standard position and the x-axis. For example, the reference angle for $\frac{2 \pi}{3}$ is $\frac{\pi}{3}$. What is the reference angle for the angle $\frac{7 \pi}{4}$?
10. What is the reference angle for the angle $\frac{5 \pi}{6}$?
11. What is the reference angle for the angle $\frac{17 \pi}{5}$?
12. Evaluate $\sin \left(30^{\circ}\right)$.
13. Evaluate $\csc \left(\frac{5 \pi}{6}\right)$.
14. If $t=\frac{20 \pi}{3}$, evaluate $\sin (t), \csc (t)$, and $\cot (t)$.
15. If $\cot (t)=1$ and t is in the interval $[\pi, 2 \pi]$, evaluate $\sin (t)$.
16. If $\cos (t)=-\frac{1}{2}$ and t is in the interval $[\pi, 2 \pi]$, evaluate $\tan (t)$.
17. Given that $\cos (\theta)=\frac{2}{7}$ and θ is in quadrant IV, evaluate $\sin (\theta)$.
18. Given that $\tan (\theta)=-\frac{3}{5}$ and θ is in quadrant II, evaluate $\csc (\theta)$.
19. Use the triangle at right to answer the following questions:
(a) If $\alpha=\frac{\pi}{4}$ and $B C=8$, what is $A B$?

(b) If $\beta=\frac{\pi}{6}$ and $B C=20$, what is $A C$?
(c) If $A B=5$ and $B C=10$, what is α ?
20. List all solutions to the equation $\sin (t)=\frac{\sqrt{2}}{2}$ in the interval $[-\pi, \pi]$.
21. List all solutions to the equation $\sin (t)=1$ in the interval $[0,2 \pi]$.
22. List all solutions to the equation $\cos (t)=0.5$ in the interval $[0,2 \pi]$.
23. List all solutions to the equation $\tan (t)=-1$ in the interval $[0,2 \pi]$.
24. List all solutions to the equation $\sin (t)=0$ in the interval $[0,2 \pi]$.
25. List all solutions to the equation $\csc (t)=2$ in the interval $[0,2 \pi]$.
26. Sketch the graphs of $y=\sin (x), y=\cos (x)$, and $y=\tan (x)$. Indicate 4 critical points on each.

27. Sketch the graph of $f(x)=-3 \sin (x)$. Label the coordinates of at least 8 points on the graph.

28. Sketch the graph of $g(x)=\cos \left(x-\frac{\pi}{2}\right)$. Label the coordinates of at least 8 points on the graph. Can you find another function with the same graph? If so, which function is it?

29. Sketch the graph of $f(x)=2 \sin (4 x)$. Label the coordinates of at least 8 points on the graph.

30. Where does $y=\csc (x)$ have vertical asymptotes? Sketch a graph to justify your answer. Label the coordinates of at least 6 points on the graph.

31. Sketch a graph of $y=2 \sec (2 x)$.

32. Write an equation for the function whose graph is shown below.

