VECTORS Objectives

Students will be able to:

- 1 Define Sine, Cosine and Tangent in terms of the opposite, adjacent and hypotenuse of a triangle.
- 2 Use the above trig functions to finds angles and right triangle side lengths.
- 3 Define a vector in a sentence.
- 4 Describe a vector's two main features.
- 5 Define a scalar in a sentence.
- 6 Give examples of vectors and scalars.
- 7 Be able to identify if two vectors are equal
- 8 Graphically show the result of multiplying a vector by a positive scalar.
- 9 Graphically show the result of multiplying a vector by a negative scalar.
- 10 Graphically add vectors.
- 11 Graphically subtract vectors.
- 12 Graphically add, subtract and multiply vectors by a scalar in one equation.
- 13 Given a graphical representation of a vector equation, come up with the formula.
- 14 Calculate the magnitude of any vector's horizontal and vertical components.
- 15 Draw a vector's horizontal and vertical components.
- 16 Use trig to calculate a vector's direction.
- 17 Calculate a vectors direction as a degree measurement combined with compass directions.
- 18 Calculate a vector's magnitude using trig or Pythagorean theorem.
- 19 Add and subtract vectors by their components.

pg 3 of 13

For each vector drawn below on a coordinate axis, label the shown with it proper compass headings, e.g. N of W, S, S of E, etc.

VECTORS WORKSHEETS pg 4 of 13 For each vector drawn below, calculate its magnitude and direction. NOTE: For the vector's direction, there will be two possible correct answers for each problem. The two answers are complimentary to each other.

VECTORS WORKSHEETS VECTORS - GRAPHICAL MEANS

 $\begin{array}{l} \mbox{FIND THE RESULATANTS, (R_{\#}):} \\ \mbox{A + B = R_1, B + C = R_2, E + D = R_3, A - B = R_4, B - D = R_5, E - C = R_6, } \\ \mbox{A + B + D = R_7, E + A + C = R_8, A + (-B) = R_9, -B + C + (-D) = R_{10}, } \\ \mbox{E - A + C - D = R_{11}, } \end{array}$

Adding by Vector Componants

pg 6 of 13

Basic Math by Vector Componants FIND THE RESULATANT'S LENGTH AND ACUTE ANGLE WITH THE HORIZONTAL FOR EACH **R**_#:

 $A + B = R_1, \ B + C = R_2, \ E + D = R_3, \ A - B = R_4, \ B - D = R_5, \ E - C = R_6,$ $A + B + D = R_7$, $E + A + C = R_8$, $A + (-B) = R_9$, $-B + C + (-D) = R_{10}$, $E - A + C - D = R_{11}$,

Ve	ector	Magnitude	Direction OR	Direction
	R ₁	2 17 =8.25	18.43° N of E	71.57° E of N
	R_2	2 13 = 7.21	56.31° N of W	33.69° W of N
	R ₃	5 = 2.24	63.43° S of W	26.57° W of S
	R ₄	2 41 = 12.81	38.66° W of S	51.34° S of W
	R ₅	17	28.07° N of E	61.93° E of N
	R ₆	11	Due East	
	R ₇	1	Due West	
	R ₈	17	14.04° E of S	75.96° S of E
	R ₉	2 41 = 12.81	38.66° W of S	51.34° S of W
	R ₁₀	2 13 = 7.21	56.31° W of S	33.69° S of W

Find the missing variable

Find the missing variable 33° A А

