Students will be able to:
1 Define Sine, Cosine and Tangent in terms of the opposite, adjacent and hypotenuse of a triangle.
2 Use the above trig functions to finds angles and right triangle side lengths.
3 Define a vector in a sentence.
4 Describe a vector's two main features.
5 Define a scalar in a sentence.
6 Give examples of vectors and scalars.
$7 \quad$ Be able to identify if two vectors are equal
8 Graphically show the result of multiplying a vector by a positive scalar.
9 Graphically show the result of multiplying a vector by a negative scalar.
10 Graphically add vectors.
11 Graphically subtract vectors.
12 Graphically add, subtract and multiply vectors by a scalar in one equation.
13 Given a graphical representation of a vector equation, come up with the formula.
14 Calculate the magnitude of any vector's horizontal and vertical components.
15 Draw a vector's horizontal and vertical components.
16 Use trig to calculate a vector's direction.
17 Calculate a vectors direction as a degree measurement combined with compass directions.
18 Calculate a vector's magnitude using trig or Pythagorean theorem.
19 Add and subtract vectors by their components.

													SECTION 1		
													SEC	CTIO	ON 2

$$
\begin{aligned}
& \vec{A}+\vec{B}=\overrightarrow{R_{1}} \\
& \vec{A}+4 \vec{C}=\overrightarrow{R_{2}} \\
& \vec{A}+2 \vec{B}+\frac{1}{2} \vec{C}=\overrightarrow{R_{3}}
\end{aligned}
$$

$\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{R}_{4}}$
$\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{R}_{5}}$
$\mathbf{2 C}-\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{R}_{\mathbf{6}}}$
$\mathbf{2 C}-\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{R}_{7}}$

For the vectors below, calculate the vector's magnitude, and direction.

VECTORS WORKSHEETS
pg 3 of 13
For each vector drawn below on a coordinate axis, label the shown θ with it proper compass headings, e.g. N of W, S, S of E, etc.

40

41

VECTORS WORKSHEETS
pg 4 of 13
For each vector drawn below, calculate its magnitude and direction. NOTE: For the vector's direction, there will be two possible correct answers for each problem. The two answers are complimentary to each other.

FIND THE RESULATANTS, ($\mathbf{R}_{\#}$):
$A+B=R_{1}, B+C=R_{2}, \quad E+D=R_{3}, \quad A-B=\mathbf{R}_{4}, \quad B-D=R_{5}, E-C=R_{6}$,
$A+B+D=\mathbf{R}_{\mathbf{7}}, \quad E+\mathbf{A}+\mathbf{C}=\mathbf{R}_{\mathbf{8}}, \quad \mathbf{A}+(-B)=\mathbf{R}_{\mathbf{9}}, \quad-\mathbf{B}+\mathbf{C}+(-\mathbf{D})=\mathbf{R}_{\mathbf{1 0}}$,
$E-A+C-D=R_{11}$,

							-	T		T	-		T							T						$\square \sim$
							A																			
							,																			
													-													

Adding by Vector Componants

Adding by Vector Componants

FIND THE RESULATANT'S LENGTH AND ACUTE ANGLE WITH THE HORIZONTAL FOR EACH $\mathbf{R}_{\#}$:
$A+B=R_{1}, B+C=R_{2}, \quad E+D=R_{3}, \quad A-B=R_{4}, \quad B-D=R_{5}, E-C=R_{6}$,
$A+B+D=\mathbf{R}_{\mathbf{7}}, \quad E+\mathbf{A}+\mathbf{C}=\mathbf{R}_{\mathbf{8}}, \quad \mathbf{A}+(-B)=\mathbf{R}_{\mathbf{9}}, \quad-\mathbf{B}+\mathbf{C}+(-\mathbf{D})=\mathbf{R}_{\mathbf{1 0}}$,
$E-A+C-D=R_{11}$,

Vector	Magnitude	Direction	OR Direction
R_{1}	$2 \sqrt{ } 17=8.25$	$18.43^{\circ} \mathrm{N}$ of E	$71.57^{\circ} \mathrm{E}$ of N
R_{2}	$2 \sqrt{ } 13=7.21$	$56.31{ }^{\circ} \mathrm{N}$ of W	$33.69^{\circ} \mathrm{W}$ of N
R_{3}	$\sqrt{ } 5=2.24$	$63.43^{\circ} \mathrm{S}$ of W	$26.57^{\circ} \mathrm{W}$ of S
R_{4}	$2 \sqrt{ } 41=12.81$	$38.66^{\circ} \mathrm{W}$ of S	$51.34^{\circ} \mathrm{S}$ of W
R_{5}	17	$28.07^{\circ} \mathrm{N}$ of E	$61.93^{\circ} \mathrm{E}$ of N
R_{6}	11	Due East	----
R_{7}	1	Due West	----
R_{8}	17	$14.04^{\circ} \mathrm{E}$ of S	$75.96{ }^{\circ} \mathrm{S}$ of E
R_{9}	$2 \sqrt{ } 41=12.81$	$38.66^{\circ} \mathrm{W}$ of S	$51.34{ }^{\circ} \mathrm{S}$ of W
R_{10}	$2 \sqrt{ } 13=7.21$	$56.31{ }^{\circ} \mathrm{W}$ of S	$33.69^{\circ} \mathrm{S}$ of W

VECTORS WORKSHEETS

pg 9 of 13
Find the missing variable

Find the angle θ

Find the missing variable

For the vectors below, calculate the vector's magnitude, and direction.

