
Bangla-Wave: Improving Bangla Automatic Speech
Recognition Utilizing N-gram Language Models

Participants: Mohammed Rakib∗, Md. Ismail Hossain∗

Supervisors: Nabeel Mohammed∗, Fuad Rahman†
∗Apurba-NSU R&D Lab, Department of Electrical and Computer Engineering

North South University, Dhaka, Bangladesh
†Apurba Technologies

440 N. Wolfe Rd., Sunnyvale, CA 94085, USA
Email: ∗{mohammed.rakib, ismail.hossain2018, nabeel.mohammed}@northsouth.edu

†{fuad}@apurbatech.com

Abstract—Although over 300M around the world speak
Bangla, scant work has been done in improving Bangla voice-to-
text transcription due to Bangla being a low-resource language.
However, with the introduction of the Bengali Common Voice 9.0
speech dataset, Automatic Speech Recognition (ASR) models can
now be significantly improved. With 399hrs of speech recordings,
Bengali Common Voice is the largest and most diversified open-
source Bengali speech corpus in the world. In this paper,
we outperform the SOTA pretrained Bengali ASR models by
finetuning a pretrained wav2vec2 model on the common voice
dataset. We also demonstrate how to significantly improve the
performance of an ASR model by adding an n-gram language
model as a post-processor. Finally, we do some experiments and
hyperparameter tuning to generate a robust Bangla ASR model
that is better than the existing ASR models.

I. INTRODUCTION

Bengali is one of the world’s most diversified languages
with about 300 million native speakers worldwide. However,
documenting the Bengali language in any field is difficult even
though it is a widely spoken language. The key to effectively
documenting any task in this language lies in the capacity to
translate spoken language. Therefore, the technically proficient
and swift option is “speech to text” or creating an ASR model.
ASR modeling in Bangla has widespread implications. It can
be used to generate closed captions in videos which aids a
person with hearing loss to comprehend what is being said.
Instead of typing, those who have problems using their hands
can interact with computers using voice instructions leveraging
ASR models. Additionally, Bengali ASR can be applied in a
variety of fields where individuals use their hands to write this
complex language for documents, including the legal system,
business, education, and many others.

The acquisition of a sizable, readable, and diverse dataset
is one of the main constraints in ASR model training. Given
the unusual morphology and wide range of accents of the
Bengali language, a substantial corpus with proper annotations
is even more essential for large-scale deep learning models. A
comprehensive dataset for the Bengali language is the Bengali
Common Voice Speech Corpus [1]. A total of 399 hours
of transcribed audio recordings of spoken Bengali sentences

CTC Loss

Naive 
Decoder

Preprocessing
Audio Signal

&
Transcripts

Raw Audio
Signal

Speech 
Transcript

Feature Extractor Context Network

Wav2Vec2 XLS-R 
Model

Linear Layer

Context 
Representations Logits

Feature
Vectors

Predictions

Fine-tuning

Inference

Fig. 1. Here we can visualize the entire pipeline of our project. At first,
we preprocess the raw audio signals and speech transcripts. Next, a feature
extractor processes the signals to the Wav2Vec2 XLS-R model’s input format.
The model then takes these feature vectors as input and outputs a sequence of
contextual representations. These sequences are then fed as input to the linear
classification layer. While finetuning, the randomly initialized linear layer
along with the transformer layers get trained using Connectionist Temporal
Classification (CTC) loss. On the other hand, during inference, the linear layer
outputs logits which are then fed to a decoder. For naive CTC decoding,
there can be spelling mistakes since the ASR model only takes into account
the context of the acoustic input. However, when an n-gram language model
is combined, the performance improves significantly. This is shown by an
example where we see that the predictions from the language model exactly
match the ground truth speech transcript. On the other hand, the prediction
directly from the naive CTC decoder is slightly off as it predicted some
different characters.

from Bangladesh and India were acquired through community
outreach and collaborative initiatives.

Creating high-quality voice recognition applications is ex-
ceedingly challenging due to Bengali’s wide variety of dialects
and diverse speech sources. Creating a corpus with every
dialect across all feasible areas is not practical. By learning
from unlabeled training data, wav2vec 2.0 [2] pushes the
boundaries and enables speech recognition systems to be
employed in a wide range of domains and dialects. Similar to
the Bidirectional Encoder Representations from Transformers
(BERT), Wave2vec 2.0 is taught by anticipating speech units
for masked audio segments. Speech audio differs greatly from
other audio in that it captures a variety of recording elements

ar
X

iv
:2

20
9.

12
65

0v
1 

 [
cs

.C
L

] 
 1

3 
Se

p 
20

22



without explicitly classifying them as words or other units.
This issue is addressed by Wav2vec 2.0, which trains high-
level contextualized representations using basic units that are
25ms long. Then these units are used to characterize various
spoken audio recordings. As a result, algorithms for voice
recognition can be developed that are more efficient than the
best semi-supervised methods.

Facebook AI released a multilingual version of Wav2Vec2
called XLS-R [3]. A model’s ability to learn speech represen-
tations that apply to several different languages is referred to as
cross-lingual speech representations, or XLS-R. In this paper,
we describe the implementation of ASR on the ”Bengali Com-
mon Voice Speech” dataset utilizing the Wav2Vec2 XLS-R
model. Fig-1 gives an overview of our project. We carried out
various types of preprocessing, finetuning, and post-processing
and ultimately outperformed the current SOTA ASR models
for Bangla. Concretely, our contributions are:

Contributions:
• We have finetuned a pretrained ASR model on the Com-

mon Voice Bengali dataset and have achieved significant
performance gains in transcribing audio signals.

• We have added an n-gram language model as a post-
processor to improve the accuracy of the transcriptions.

II. METHODOLOGY

Fig-2 depicts the system diagram of our project. At first,
we preprocess the Bengali common voice dataset. Next,
we selected the best available pretrained ASR model and
performed hyperparameter tuning on a small subset of the
common voice train set. After that, the pretrained model is
finetuned on the preprocessed dataset. Subsequently, an n-
gram language model [4] is added as a post-processor after
performing hyperparameter tuning on the parameters of the
language model. Lastly, we perform an evaluation on the
validation set and report the results.

A. Dataset

The Bengali Common Voice Speech Dataset [1] is the
largest and most diversified publicly available speech corpus
for Bengali. It consists of 399hrs of speech recordings of
which 57 hrs have been manually validated by one or more
users. There are a total of 231,120 audio samples contributed
by about 20k contributors of which 206950 samples are in the
train set, 7747 samples in the validation set, 7747 samples in
the test set, and the remaining dropped due to poor quality.
The corpus has 135,625 unique sentences with 7.12 words
on average for each sentence. The training data consists of
about 84% male samples and 16% female samples. According
to the authors of the dataset, it has more speaker, phoneme,
and environmental diversity compared to Open-SLR slr53
which is the largest open-source dataset after Bengali Common
Voice.

B. Preprocessing

Speeches recorded as raw audio are less suitable for imme-
diate use. The signals contain a lot of duplicate information,

combined with noise that can seriously hinder recognition
tasks. So we have to process the audio signal before feeding
them as inputs to a model. For this, we use a feature extractor
that will convert the speech signal to the model’s input
format and give a feature vector. Since ASR models transcribe
speech to text, we also use a tokenizer that will convert the
model’s output format to text by decoding the predicted output
classes to the output transcription. Since we will be using
Connectionist Temporal Classification (CTC) loss to finetune
our model, we categorized speech fragments into letters. We
take all the unique letters from the training data and use them
to create our vocabulary. To convert the string into a collection
of characters, a mapping function is created that concatenates
all transcriptions into a single lengthy transcription to give
the desired output. Concretely, the preprocessing steps are as
follows:

1) Transcript Normalization: We normalized punctuation
and characters that have multiple Unicode representa-
tions and also removed non-Bangla language characters
using a Bangla Unicode normalizer [5].

2) Filtration: The Bengali Common Voice dataset has
some metadata which includes ”upvotes” and ”down-
votes”. So, we removed samples with more downvotes
than upvotes. We also removed samples if they had an
audio duration greater than 20secs or less than 1sec.

3) Define Token Class: We ensured that all the missing
Bengali vocabs and necessary punctuations from the
Common Voice dataset were added as a token class.

4) Feature Extraction: We have applied z-score normal-
ization (making mean zero and standard deviation one)
to the audio signals. Besides, we have resampled audio
signals to 16kHz and lastly converted them to a one-
dimensional array. In this way, the raw audio signals
are processed to the model’s input format by our feature
extractor.

C. Pretrained Model

To select the best pretrained model for finetuning, we
looked up various state-of-the-art models and selected the best
one. Evaluating various pretrained models, we saw that the
Wav2Vec2 XLS-R model by arijit [6] had the best performance
on the validation set of the Bengali Common Voice dataset.
The 300M parameter model was first pretrained by Facebook
AI on 436k hours of unlabeled speech in 128 languages. The
speech datasets include VoxPopuli [7], MLS CommonVoice
[8], BABEL [9], and [10]. This pretrained model was then
trained on 196k utterances of labeled Bengali speech data
by OpenSLR slr53. We have selected this model to train on
Bengali Common Voice 9.0.

D. Fine Tuning

Before beginning finetuning, we first did hyperparameter
tuning on a small subset of the train set to find the optimal
parameter values for training the Wav2Vec2 XLS-R model.
We found the optimal learning rate to be 3e−4. The wav2vec2
XLS-R model contains a stack of CNN layers at the beginning



Fig. 2. System Diagram of Bengali ASR model.

which is used to extract contextually independent yet acous-
tically significant characteristics from the raw speech signal.
According to the research by the authors of [3], this portion
of the model has already received enough training during
pretraining and no longer requires fine-tuning. As a result, we
have frozen these layers and have not calculated or updated
the gradients for these parameter values. Finally, we started
finetuning and trained the model for 15 epochs on the 200k
training samples of the common voice dataset and selected the
model with the lowest loss on the validation set.

E. Post-Processing & Language model

To improve the performance of our finetuned wav2vec2
model, we added an N-gram language model as a post-
processor. An N-gram language model is a probabilistic model
developed using a large body of text that can predict the
most probable next word given a sequence of N-1 words
[4]. So, a 3-gram/trigram language model predicts the next
word in the sequence by taking into context the previous
two words. ASR models like wav2vec2 output predictions are
solely based on the acoustic input which may contain noise.
As a result, the output often contains spelling mistakes as
it cannot differentiate homophones. To reduce this problem,
n-gram language models are used as they work as spelling
correctors. The output logits from the ASR model are fed
as input to the language model which then outputs the most
probable word based on the previous N-1 words.

To improve the performance of n-gram language models,
we have used modified Kneser-Ney smoothing [11]. Moreover,
we have also tuned the hyperparameters (alpha and beta) of
the language model to improve performance. We found the
optimal value of alpha to be 0.7 and beta to be 0.5. Alpha is
the weightage of the language model whereas beta is a penalty
term for sequence length. Large alpha values will give more
importance to the language model and less importance to the
acoustic model. On the other hand, negative beta values will

penalize long sequences and make the decoder prefer shorter
predictions whereas positive beta values will make the decoder
prefer longer candidates.

F. Evaluation Metrics

1) Levenshtein Mean Distance: The Levenshtein distance
[12] is a similarity measure between sentences. The distance
between two sentences is There are three methods for editing
that can be used. These are:- Insertion, Deletion, and Substi-
tution. The Levenshtein mean distance is simply calculating
the total distance for n sentences and then dividing by n.

2) Word Error Rate (WER): Word error rate is a common
and important metric used to measure the performance of
ASR models. WER is calculated based on a measurement
called Levenshtein distance [12]. Levenshtein distance is the
minimum number of single-character edits (insertion, deletion,
and substitution) required to change one sentence into another.
So WER is defined as the Levenshtein distance between the
predicted sentence and reference, divided by the number of
words in the reference sentence.

3) Character Error Rate (CER): The character error rate
is also calculated based on Levenshtein distance. It is defined
as the Levenshtein distance between the predicted sentence
and reference divided by the total number of characters in the
reference sentence.

III. RESULTS

Table-I shows the performance comparison of various mod-
els. ”arijit-pretrained” is the current existing SOTA model and
it has a WER of 31% and CER of 9.8% in the validation
set of the common voice dataset. However, if we change
the default post-processing language model with a 6-gram
language model (trained on the transcripts of common voice
dataset), then the WER reduces to 24% and the CER reduces
to 8.16% which is depicted in the table as ”arijit-pretrained-
6gram”. Next, finetuning the pretrained model on the common



TABLE I
PERFORMANCE OF MODELS

Model Name LM Post Processor Transcripts CER (%) WER (%)

arijit-pretrained 5gram lm model
30M sentences

from AI4Bharat
IndicCorp dataset

9.88 31

arijit-pretrained-6gram 6gram lm model 100k sentences
from Common Voice

Train and Val sets

8.16 24
arijit-finetuned-6gram 1.46 4.42

arijit-finetuned-6gram-tuned 6gram lm model
(tuned hyperparameters) 1.43 4.24

arijit-finetuned-15gram-tuned 15gram lm model
(tuned hyperparameters) 1.43 4.21

arijit-finetuned-30M-5gram-tuned 5gram lm model
(tuned hyperparameters)

100k sentences from
Common Voice + 30M

sentences from AI4Bharat
IndicCorp dataset

1.54 4.66

voice train set and then using the same 6-gram language model
gives WER of 4.42% which is a 20% improvement in per-
formance (”arijit-finetuned-6gram”). The CER also reduces to
1.46% which is a significant decrease from the previous value
of 8.16%. Furthermore, if we finetune the hyperparameters
”alpha” and ”beta” of the language model, the WER goes
down to 4.24% and the CER becomes 1.43% (”arijit-finetuned-
6gram-tuned”). Apart from that, adding a 15-gram language
model as a post-processor to the finetuned arijit model results
in a WER of 4.21% which is a slight improvement while the
CER remains the same (”arijit-finetuned-15gram-tuned”).

Lastly, to create a generalized model, we added a 5-gram
language model with the finetuned arijit model labeled as
”arijit-finetuned-30M-5gram-tuned” in Table-I. The language
model has been trained on the transcripts of common voice and
30M randomly-selected transcripts of the AI4Bharat IndicCorp
[13] dataset. As a result, this model will give the best result
on any random dataset not biased towards the common voice
dataset. However, the generalized model has a WER of 4.66%
and a CER of 1.54% on the validation set of the common
voice dataset which is not far off the best model we trained.

IV. DISCUSSION

A. Creating higher order n-gram language models

We have tried out various order n-gram language models to
assess performance gains. All the language models created for
this experiment were trained on the transcripts of the common
voice train and validations set. We have noticed significant
performance gains up to an order of 6 (6-gram). However,
after that, the rate of improvement significantly decreases. This
might be since there are 7.12 words on average per sentence
in the common voice corpus and so 7-gram or higher grams
cannot drastically improve the performance.

B. Large size of n-gram language models

The size of n-gram language models increases exponentially
with the order (gram) of the model we select and so selecting

the optimal order is crucial. For the generalized model (”arijit-
finetuned-30M-5gram-tuned”) in Table-I, we have trained a
5-gram language model on 30.1M sentences. Such a huge
transcript generates a language model with a size of 3.5GB
for 5-gram. However, the size of the language model increases
by more than 20 times if we create a 6-gram language
model with the same transcripts with no major improvement
in performance. Moreover, the inference time also increases
significantly. So, it is pivotal to generate a language model
with an optimal order value that balances the performance
gain, size, and inference time of the model.

V. CONCLUSION

In this paper, we successfully finetune a SOTA pretrained
ASR model on Bangla common voice speech dataset to
develop a robust ASR model. To improve performance, we
have used an n-gram language model as a post-processor, did
hyperparameter tuning on both the language model and the
ASR model, and also performed the required preprocessing to
ensure a generalized model is generated. In the end, we have
a model that has a WER of 4.66% and a CER of 1.54% on
the validation set of common voice and a Levenshtein mean
distance score of 1.65 on the private test set of ”DL Sprint -
BUET CSE Fest 2022” Kaggle competition.

ACKNOWLEDGMENT

The authors would like to thank NSU-Apurba R&D lab and
all affiliated members for their supervision and allocation of
resources to train the models.

REFERENCES

[1] S. Alam, A. Sushmit, Z. Abdullah, S. Nakkhatra, M. N. Ansary, S. M.
Hossen, S. M. Mehnaz, T. Reasat, and A. I. Humayun, “Bengali
common voice speech dataset for automatic speech recognition,” 2022.
[Online]. Available: https://arxiv.org/abs/2206.14053

[2] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representations,”
2020. [Online]. Available: https://arxiv.org/abs/2006.11477

https://arxiv.org/abs/2206.14053
https://arxiv.org/abs/2006.11477


[3] A. Conneau, A. Baevski, R. Collobert, A. Mohamed, and
M. Auli, “Unsupervised cross-lingual representation learning for
speech recognition,” CoRR, vol. abs/2006.13979, 2020. [Online].
Available: https://arxiv.org/abs/2006.13979

[4] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai,
“Class-based n-gram models of natural language,” Comput. Linguist.,
vol. 18, no. 4, p. 467–479, dec 1992.

[5] S. Alam, T. Reasat, A. S. Sushmit, S. M. Siddique, F. Rahman,
M. Hasan, and A. I. Humayun, “A large multi-target dataset of com-
mon bengali handwritten graphemes,” in International Conference on
Document Analysis and Recognition. Springer, 2021, pp. 383–398.

[6] A. x, “Arijitx/wav2vec2-large-xlsr-bengali · hugging
face,” 2020. [Online]. Available: https://huggingface.co/arijitx/
wav2vec2-large-xlsr-bengali

[7] C. Wang, M. Riviere, A. Lee, A. Wu, C. Talnikar, D. Haziza,
M. Williamson, J. Pino, and E. Dupoux, “VoxPopuli: A large-scale
multilingual speech corpus for representation learning, semi-supervised
learning and interpretation,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, Aug. 2021, pp. 993–1003. [Online].
Available: https://aclanthology.org/2021.acl-long.80

[8] V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert, “Mls:
A large-scale multilingual dataset for speech research,” ArXiv, vol.
abs/2012.03411, 2020.

[9] A. R. Punnakkal, A. Chandrasekaran, N. Athanasiou, A. Quiros-
Ramirez, and M. J. Black, “BABEL: Bodies, action and behavior with
english labels,” in Proceedings IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), Jun. 2021, pp. 722–731.

[10] J. Valk and T. Alumäe, “VoxLingua107: a dataset for spoken language
recognition,” in Proc. IEEE SLT Workshop, 2021.

[11] S. F. Chen and J. Goodman, “An empirical study of smoothing
techniques for language modeling,” Computer Speech & Language,
vol. 13, no. 4, pp. 359–394, 1999. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0885230899901286

[12] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb.
1966.

[13] D. Kakwani, A. Kunchukuttan, S. Golla, G. N.C., A. Bhattacharyya,
M. M. Khapra, and P. Kumar, “IndicNLPSuite: Monolingual Corpora,
Evaluation Benchmarks and Pre-trained Multilingual Language Models
for Indian Languages,” in Findings of EMNLP, 2020.

https://arxiv.org/abs/2006.13979
https://huggingface.co/arijitx/wav2vec2-large-xlsr-bengali
https://huggingface.co/arijitx/wav2vec2-large-xlsr-bengali
https://aclanthology.org/2021.acl-long.80
https://www.sciencedirect.com/science/article/pii/S0885230899901286
https://www.sciencedirect.com/science/article/pii/S0885230899901286

	I Introduction
	II Methodology
	II-A Dataset
	II-B Preprocessing
	II-C Pretrained Model
	II-D Fine Tuning
	II-E Post-Processing & Language model
	II-F Evaluation Metrics
	II-F1 Levenshtein Mean Distance
	II-F2 Word Error Rate (WER)
	II-F3 Character Error Rate (CER)


	III Results
	IV Discussion
	IV-A Creating higher order n-gram language models
	IV-B Large size of n-gram language models

	V Conclusion
	References

