OTHZ

Integers, Fractions \& Order of Operations

In this unit I will learn...	Date:	I have finished this work!	I can do this on the test!
Operations with positive and negative numbers		\square	\square
The order of operations (BEDMAS)		\square	\square
The parts of a fraction		\square	\square
Converting between mixed \& improper fractions		\square	\square
How to make equivalent fractions		\square	\square
Adding \& subtracting fractions		\square	\square
Multiplying \& dividing fractions		\square	\square
Order of operations with fractions		\square	\square

Assessments	Date:	Out of:	My mark:
Assignment: Integers			
Quiz: Integers \& Fractions			
Unit Test			

Key Words

Term	In other words...	This looks like...
Sum		
Difference		
Product		
Quotient		
Order of operations		
Numerator		
Equivalent		
Denominator		

The Number Line

We can use the number line to illustrate the \qquad and \qquad of positive and negative numbers. Whole numbers that can be positive or negative are called \qquad .

Ex. $-5+10$

Ex. 3-(-4)

Operations with Integers - Addition \& Subtraction

When adding or subtracting integers follow these tips:

1. Watch your \qquad .
2. Subtracting a negative is the same as \qquad . Ex.
3. Adding a negative is the same as \qquad . Ex.

Practice - Addition

1. Use a number line to model each sum.
a) $-3+5$
b) $-4+2$
c) $5+(-4)$
d) $4+(-6)$
2. Use a number line to model each sum.
a) $-1+(-3)$
b) $-2+2$
c) $3+(-3)$
d) $0+(-5)$
3. Find each sum.
a) $5+(-7)$
b) $-3+6$
c) $-3+2$
d) $-5+(-2)$
4. Find each sum.
a) $-5+5$
b) $6+(-6)$
c) $0+(-3)$
d) $-8+0$
5. Find each sum.
a) $-6+(-4)$
b) $3+(-1)$
c) $4+(-5)$
d) $0+(-2)$
6. Find each sum.
a) $-2+6+(-3)$
b) $-5+(-4)+(-3)$
c) $3+(-8)+7$
d) $4+(-12)+3$
7. Find each sum.
a) $-3+2+(-4)+1$
b) $6+(-2)+(-5)+3$
c) $-8+4+(-5)+(-3)$
d) $5+(-7)+3+(-9)$
8. Find each sum.
a) $9+(-5)+(-1)+4$
b) $-2+6+(-3)+(-7)$
c) $6+(-8)+4+(-3)$
d) $-2+1+(-9)+8$
9. The temperature in Stratford starts at $-5^{\circ} \mathrm{C}$, rises $18^{\circ} \mathrm{C}$, and then falls $8^{\circ} \mathrm{C}$. What is the final temperature?
10. On Monday the price of a company's stock is $\$ 35$ per share. On Tuesday the price drops $\$ 4$, on Wednesday it rises $\$ 7$, on Thursday it drops $\$ 6$, and on Friday it rises $\$ 7$. What was the price of the stock per share at the end of the week?
11. Find each sum.
a) $-4+(-5)+3$
b) $6+(-3)+3$
c) $3+(-2)+(-4)$
d) $-5+4+(-3)$

Practice - Subtraction

1. Subtract.
a) 7-5
b) $6-8$
c) $4-(-3)$
d) $5-(-2)$
2. Subtract.
a) 4-4
b) $(-5)-(-5)$
c) $0-9$
d) $0-(-6)$
3. Subtract.
a) $0-4$
b) $0-(-8)$
c) $-8-2$
d) $-5-3$
4. Subtract.
a) $-3-(-8)$
b) $-4-(-2)$
c) $-6-(-6)$
d) $-7-0$
5. Copy each question and fill in the with the correct integer.
a) $-4-\square=-7$
b) $\square-5=4$
c) $0-\square=-7$
6. Copy each equation and fill in the with the correct integer.
a) \square $-(-3)=5$
b) $0-\square=3$
c) $6-\square=-2$
7. Evaluate.
a) $10-8-5$
b) $2-9-(-1)$
c) $-3-(-4)-11$
d) $-15-(-5)-(-7)$
8. Evaluate.
a) $16-12-5$
b) $5-12-(-4)$
c) $-4-(-2)-8$
d) $-18-(-3)-(-13)$
9. Which expressions have the same result?
a) $9-4$
b) $-5-(-2)$
c) $-8-(-3)$
d) $-2-(-7)$
e) $-8-(-5)$
f) $-9-(-4)$
10. The average low temperature in Tobermorey in October is $5^{\circ} \mathrm{C}$. In February it is $23^{\circ} \mathrm{C}$ lower. What is the average low temperature in Tobermorey in February?
11. The air temperature is $-8^{\circ} \mathrm{C}$. With the wind blowing at a speed of $18 \mathrm{~km} / \mathrm{h}$, this temperature feels like $-15^{\circ} \mathrm{C}$. How many degrees does the temperature change because of the wind chill?

Name:

Sฟも

PRACTICE WITM INTEEGER OPERATIONS
 simplify each expression．

 Oit Wiol be

$(-4) \div 2=$
$(-5) \cdot(-8)=$

$$
(-4)+(-16)=
$$

 $(-24) \div(-3)=$
$9+(-12)=$ EEOMMPDCR－TB $15 \cdot(-3)=$

Operations with Integers - Multiplication \& Division

We can multiply or divide integers
 by following these two steps:
I. Multiply or divide the numbers, ignoring the \qquad .
Q. Decide whether the answer is positive or negative by looking at the signs used.
a. An \qquad number of negative signs will cancel out, leaving a positive.
b. An \qquad number of negative signs will leave one behind, making a negative.

$$
\text { Ex. }(-4)(2)(-5)
$$

$$
\text { Ex. } \quad 24 \div(-6)
$$

Practice - Multiply \& Divide

1. Find each product.
a) 5×7
b) $4 \times(-3)$
c) $(-3) \times 6$
d) $(-2) \times(-8)$
2. Find each product.
a) $0(9)$
b) $(-4)(7)$
c) $6(-7)$
d) $(-6)(-8)$
3. Find each quotient.
a) $18 \div 6$
b) $12 \div(-3)$
c) $(-16) \div 2$
d) $(-15) \div(-5)$
4. Find each quotient.
a) $\frac{0}{-4}$
b) $\frac{35}{-7}$
c) $\frac{-24}{6}$
d) $\frac{-28}{-4}$
5. Multiply.
a) $(-3) \times(-5) \times(-4)$
b) $(-6) \times 2 \times(-4)$
c) $4 \times(-3) \times(-2)$
6. List all integers that divide evenly into each.
a) 18
b) -15
7. List all integers that divide evenly into each.
a) 24
b) -30
8. Write a multiplication expression and a division expression that would have each result.
a) -8
b) -15
9. Determine how each multiplication or division pattern is formed. Then, write the next two numbers.
a) $1,4,16, \ldots$
b) $-400,-200,-100, \ldots$

Operations with Integers - The Order of Operations

 with more than one \qquadWhen simplifying an \qquad
we follow a specific order for our work.
Remember...

Practice - Order of Operations

1. Evaluate.
a) $3^{2}+2(3+1)^{2}$
b) $2^{3}-3(4-2)^{2}$
c) $5+4(9-3 \times 2)$
d) $7-3\left(8-2^{2} \times 1\right)$
2. Evaluate.
a) $5+3 \times\left(2^{4}-2^{3}\right)$
b) $9-2^{2} \times 3(4-6)$
c) $5\left(4^{2}-3^{2}\right)+8$
d) $6\left[11-(3+1)^{2}+3\right]$
3. Evaluate.
a) $(15+3) \div\left(10-2^{3}\right)$
b) $4 \times 3\left(24 \div 2^{2}\right)+5$
c) $\left(5^{2}-3^{2}\right) \div 4+8 \times 2$
d) $6\left[4^{3} \div(3+1)^{2}-3\right]$
4. Evaluate.
a) $5-2 \times 3.1+4.2$
b) $\left(2.5+3^{2}\right)-1.6$
c) $0.2(11-7)+(0.4)^{2}$
d) $2(0.7+0.2)^{2}+4.6$
5. Evaluate.
a) $3.2+0.5 \times 3-4$
b) $\left(2^{2}+4.3\right)-1.2 \times 2$
c) $(0.5)^{2}+0.4(9-5)$
d) $8.2+2(1+2)^{2}$
6. Insert brackets to make each equation true.
a) $16 \div 4-5 \times 2^{2}=-4$
b) $16 \div 4-5 \times 2^{2}=-16$
c) $16 \div 4-5 \times 2^{2}=-64$
7. Copy each equation and use the symbols ,,$+- \times, \div$, and () to make it true.
a) $4 \square 2 \square 3=-2$
b) $20 \square 5 \square 9=-5$
c) $-12 \square 3 \square-6=2$
d) $10 \square 3 \square-2=-14$

A fraction represents \qquad
In a proper fraction, \qquad $<$ < $<$ \longrightarrow. -.

In an improper fraction, \qquad
(Shade/color below to show the fraction $\frac{4}{7}$.)

-SDMPGDFYONGO
To simplify a fraction, divide the \qquad and (Shade/color to show that the simplest form is equivalent to the original.)

- E®UDVABENロ

(Go back to the top and draw a dividing line
on the grid for $\frac{4}{7}$ to show an equivalent fraction. Write the fraction here:

For each fraction, write the
simplest form plus one additional equivalent fraction.

Operations with Fractions - Adding \& Subtracting Fractions

Adding or subtracting fractions requires that we have \qquad

Choosing a Common Denominator

ป. Examine the denominators you are working with.
What \qquad do they have?
Q. Choose the smallest number that uses these factors. This will be a number that all denominators could divide evenly into.

3。Make \qquad using this new denominator.

Once you have common denominators, add or subtract the \qquad
Ex. $\frac{3}{5}+\frac{4}{7}=$

Ex. $\frac{2}{3}-\frac{1}{15}$

Ex. $-3 \frac{2}{5}+\frac{1}{3}$

Practice - Adding \& Subtracting Fractions

Always leave answers in lowest terms.

1. Find each sum or difference. Express your answers in lowest terms.
a) $\frac{3}{7}+\frac{4}{7}$
b) $\frac{5}{6}+\frac{4}{6}$
c) $\frac{4}{5}-\frac{1}{5}$
d) $\frac{7}{8}-\frac{5}{8}$
2. Find each sum.
a) $\frac{5}{8}+\frac{1}{4}$
b) $\frac{7}{12}+\frac{5}{6}$
c) $\frac{5}{14}+\frac{3}{7}$
3. Find each sum.
a) $\frac{3}{4}+\frac{5}{6}$
b) $\frac{3}{4}+\frac{2}{5}$
c) $\frac{2}{3}+\frac{2}{7}$
4. Find each difference.
a) $\frac{5}{6}-\frac{2}{3}$
b) $\frac{5}{14}-\frac{1}{7}$
c) $\frac{7}{10}-\frac{2}{5}$
5. Find each difference.
a) $\frac{5}{6}-\frac{2}{5}$
b) $\frac{5}{7}-\frac{1}{3}$
c) $\frac{7}{9}-\frac{1}{4}$
6. Find each difference.
a) $4 \frac{3}{5}-2 \frac{2}{3}$
b) $5 \frac{1}{4}-3 \frac{1}{6}$
c) $2 \frac{2}{7}-1 \frac{4}{5}$
7. During one week, Diwani studied for $3 \frac{1}{2} \mathrm{~h}$ on Monday, $2 \frac{1}{4} \mathrm{~h}$ on Tuesday, and $2 \frac{5}{6} \mathrm{~h}$ on Wednesday.
a) Find the total number of hours that Diwani studied for this week.
b) For how much longer did she study on Monday than on Wednesday?
c) For how much longer did she study on Wednesday than on Tuesday?

Operations with Fractions - Multiplying

When multiplying fractions we do not need \qquad -.

We multiply the numerators together and the denominators together.
Ex. $\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)$
NOTE: Answers are written in lowest terms

Hint: We can \qquad before we multiply to get to lowest terms in our answer.

Ex. $\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)$

Operations with Fractions - Dividing

When dividing fractions we can simplify if we see the question as \qquad $-$

We do this by making two changes:

1. Change the \qquad (from division to multiplication)
2. At the same time change the fraction you are dividing by two its \qquad .

Then we can multiply like before.
Ex. $\frac{3}{4} \div \frac{5}{6}$

Ex. $\frac{-3}{5} \div \frac{3}{8}$

Ex. $\left(1 \frac{2}{6}\right)\left(\frac{5}{2}\right)$

Ex. $4 \frac{1}{4} \div\left(2 \frac{6}{7}\right)$

Mulkticileicine \{TRGcれొOగS

Show the cancellations that allow the problem to be rewritten as follows:

Finish it up. What if you had not cancelled?

converted from improper fractions to mixed numbers if necessary.

CHInceuins

To "cancel," divide a number within a and a number by their
within a \qquad (greatest common factor)

Sometimes, multiplication can be represented by the word " \qquad ." Color the models using two colors to represent each problem.

GOగGe[Pそう

Rewrite as a problem with

Two copies OF a model for $3 / 4$

Write as a multiplication
problem, then solve.

Wh (dfois i/

The model represents $1 / 2 \times 1 / 4$

MulFiciogiln M MIE

first, then

$22 \frac{2}{3} \cdot 1 \frac{3}{7}$


```
3
```


$\frac{5}{8} \cdot \frac{3}{4}$

> Put whole numbers over
> Simplify and/or cancel
$\frac{2}{15} \cdot \frac{9}{14} \cdot \frac{5}{7}$

$4 \frac{6}{7} \cdot 1 \frac{1}{2}$

TアPy 8 ft

- Rewrite mixed numbers as
\qquad
then convert back when you have an answer if needed.

Complete each problem, showing all work.

1. $\frac{5}{8} \cdot \frac{2}{3}$
2. $\frac{3}{5} \cdot \frac{15}{24}$
3. $\frac{4}{12} \cdot \frac{1}{8} \cdot \frac{9}{10}$
4. $2 \frac{2}{7} \cdot \frac{1}{4}$
5. $6 \cdot \frac{8}{9}$
6. $1 \frac{25}{48} \cdot \frac{36}{50}$

Name:

Remember that division is represented by determining how many \qquad a number can be divided up into. Divide up and color or shade the models to represent each problem.

Conceppts

Rewrite as a multiplication

W:haf-is

 problem using areciprocal, then solve.

Convert the mixed
number into an improper fraction, write as a multiplication problem using a reciprocal, then solve.

How many groups of $\frac{1}{6}$ are in $\frac{1}{2}$?

How many groups of $\frac{1}{8}$ are in $1 \frac{1}{2}$?

anSw erf
 All answers must be in

from improper fractions to mixed numbers if necessary.

Show all work. Write each answer in standard form.

FMGMMRE-T

EKMMM PRe-2

FEMOMTRDE-3

Practice - Multiplying and Dividing Fractions

Always leave answers in lowest terms.

1. Multiply.
a) $\frac{2}{7} \times \frac{3}{5}$
b) $\frac{4}{7} \times \frac{7}{9}$
c) $\frac{3}{8} \times \frac{4}{5}$
d) $\frac{2}{3} \times \frac{7}{10}$
2. Multiply.
a) $\frac{3}{4} \times 1 \frac{2}{3}$
b) $2 \frac{3}{5} \times \frac{1}{6}$
c) $5 \frac{1}{7} \times 2 \frac{1}{6}$
d) $3 \frac{4}{5} \times 4 \frac{1}{2}$
3. Divide.
a) $\frac{5}{8} \div \frac{5}{6}$
b) $\frac{6}{7} \div \frac{4}{5}$
c) $\frac{3}{14} \div \frac{7}{10}$
d) $\frac{3}{4} \div \frac{5}{18}$
4. Divide.
a) $1 \frac{2}{3} \div \frac{3}{4}$
b) $\frac{5}{8} \div 2 \frac{1}{2}$
c) $1 \frac{5}{9} \div 4 \frac{2}{3}$
d) $3 \frac{2}{7} \div 4 \frac{1}{3}$
5. A bowl filled with lollipops is $\frac{3}{4}$ full. $\frac{2}{3}$ of these lollipops are green. What fraction of the full bowl are the green lollipops?
6. A box of blueberries is $\frac{2}{5}$ full. Janet and her friends had each eaten $\frac{1}{10}$ of a box of blueberries. How many people ate blueberries?

B
3
(D)
\square
A
8

Practice - Order of Operations

a) $-\frac{5}{2}+\left(\frac{18}{5}\right)$
b) $4-2[5-2(3-7)]$
c) $4-3(-1)^{2}$
d) $\frac{5}{9} \div\left(\frac{3}{2}\right)\left(\frac{9}{3}\right)$
e) $\frac{4-(-2)(-3)}{(-2)^{2}}$
f) $\frac{9}{2}\left(\frac{2}{3}\right)^{2}$
g) $\frac{66}{6}+\left(-\frac{21}{7}\right)$
h) $15 \div\left(\frac{3}{5}\right)$

Key Words

Unit 1 - Integers \& Fractions

N	D	A	Q	I	0	G	0	S	H	C	R	N	F	H	E	W	V	Y	C
W	0	S	S	R	R	R	V	D	Y	N	0	0	F	N	V	M	I	C	A
U	G	I	D	Z	K	E	Q	W	0	I	T	C	T	U	Y	E	S	J	V
R	B	E	T	A	X	G	C	I	S	0	A	B	F	M	A	J	S	J	T
P	R	V	I	A	0	X	T	I	P	H	N	T	N	E	I	T	0	U	Q
0	R	N	N	J	C	C	V	E	P	Z	I	0	0	R	X	P	E	T	0
C	M	0	R	M	A	I	R	Q	H	R	M	A	G	A	W	I	D	H	K
Y	M	R	D	R	D	A	L	M	Q	E	0	K	G	T	U	N	Q	L	E
V	B	U	T	U	T	U	N	P	A	F	N	C	P	0	N	T	U	N	D
W	Z	B	S	I	C	C	B	J	I	Y	E	F	A	R	0	E	E	T	T
F	U	A	0	X	Y	T	R	Q	P	T	D	K	S	L	I	G	P	M	T
S	C	N	I	M	P	R	0	P	E	R	L	J	H	U	T	E	S	Z	T
D	E	X	I	M	U	Y	A	R	N	B	G	U	C	Y	I	R	I	M	K
D	I	F	F	E	R	E	N	C	E	0	G	U	M	H	D	W	Q	0	E
P	F	T	A	C	A	0	H	N	H	0	I	F	B	V	D	N	S	W	X
D	R	Y	Z	F	R	M	B	D	R	J	B	T	L	D	A	Y	0	S	M
Z	S	R	K	Z	0	S	X	U	I	J	K	C	C	E	J	V	U	H	P
M	Z	X	S	P	N	V	0	Q	Y	C	E	N	I	A	C	Y	E	Q	0
Y	M	D	B	P	F	H	X	0	K	S	T	W	B	K	R	E	I	S	I
V	F	U	E	I	A	U	H	C	S	V	Z	R	C	P	E	F	A	M	H

ADDITION
DIVISION
INTEGER
NUMERATOR
PRODUCT
SUBTRACTION

DENOMINATOR
FRACTION
MIXED
OPERATION
QUOTIENT
SUM

DIFFERENCE
IMPROPER
MULTIPLICATION
ORDER
RECIPROCAL

Goal Setting

Unit: Integers, Fractions \& Order of Operations

Name:

\qquad

Unit Learning Targets

Learning Target	Simple Mistakes?	More Practice?
Perform operations with positive and negative numbers (addition, subtraction, multiplication, division)		
Follow the order of operations (BEDMAS) showing all my work		
Know the parts of a fraction		
Convert between mixed \& improper fractions		
Make equivalent fractions		
Add \& subtract fractions showing all my work		
Multiply \& divide fractions showing all my work		
Follow the order of operations with fractions showing all my work		

Next Steps

Choose one of the four responses for each question below.

Am I ready?	Strongly Agree	Kind of Agree	Kind of Disagree	Strongly Disagree
I am ready to take the test today!				
I would like some more practice				
I would like some one-on-one time to ask questions.				

Take a look at the comments made on the front and form written responses to the ideas below. My Strengths (Targets I got right):

My Areas for Growth:

My Learning Goal:

Strategies or activities I can do to address my goal:

