Year 11 General mathematics Worksheet

10 questions on Measurement and Geometry from the Maths B (General Maths) national curriculum for Year 11.

Remember you can connect to one of our awesome General mathematics tutors and they'll help you understand where you're going wrong. They're online 3pm-midnight AET, 6 days a week.

Homework help in a click: yourtutor.com.au

Questions

1. Which plane shape has perimeter 36 cm and area $64 \mathrm{~cm}^{2}$.

a)
b)

c)

d)

Answer: \qquad

Clara is driving due east on a straight, level road at 90 kph .

Paul is flying due north at a constant altitude of 2 km at 120 kph .

At 12 noon, Paul at P_{1} is directly above Clara at C_{1}.

At 12:15 pm, what is (i) the bearing and (ii) the angle of elevation of Paul's plane at P_{2} from Clara's car at C_{2} ?
(answers to the nearest degree)
a) (i) $\mathrm{N} 37^{\circ} \mathrm{W}$ (ii) 87°
b) (i) $\mathrm{N} 53^{\circ} \mathrm{W}$ (ii) 87°
c) (i) $\mathrm{N} 37^{\circ} \mathrm{W}$ (ii) 3°
d) i) $N 53^{\circ} \mathrm{W}$ (ii) 3°

Answer:
3. Which triangles have the same area?

a) Only $\triangle G H K$ and $\triangle L M N$ have the same area.
b) No two of the triangles have the same area.
c) Only $\triangle A B C$ and $\triangle D E F$ have the same area.
d) All four have the same area.

Answer: \qquad
4. Kumar is using a word processing program to prepare his homework assignment. He has already placed the text on a page.
Kumar now wants to paste in a graphic to fill the top right hand corner in a square that is 8 cm high and 8 cm wide.
The graphic is 5 cm high and 5.19 cm wide.

By what percentage should Kumar scale the graphic to fill the space on his page?
a) 154%
b) 15%
c) 65%
d) 160%

Answer: \qquad
5. Which two figures are not similar?

[^0]

Answer:

Using a ruler, measure the straight line distances between the four capital cities Adelaide, Brisbane, Melbourne and Sydney and the distance representing 500 km on the scale.

Calculate the actual distances in kilometres between the cities.
Which table shows these distances most accurately?

	metres	Adelaide	Brisbane	Melbourne
		1200		
	Melbourne	690	2400	
a)	Sydney	2200	1700	900
	centimetres	Adelaide	Brisbane	Melbourne
	Brisbane	13.5		
	Melbourne	5.8	11.8	
b)	Sydney	10.1	6	6.3

Answer: \qquad
7. The triangles $A B C$ and $A D E$ are similar.

The area of $\triangle A B C=75 \mathrm{~m}^{2}$.

What is the area of the quadrilateral $B C D E$?
a) $147 \mathrm{~m}^{2}$
b) $30 \mathrm{~m}^{2}$
c) $105 \mathrm{~m}^{2}$
d) $72 \mathrm{~m}^{2}$

Answer:

\qquad
8. A 220 g can of baked beans has a height, h, of 7.5 cm and a radius, r, of 3.0 cm.

Its surface area is $63 \pi \mathrm{~cm}^{2}$. Its volume is $67.5 \pi \mathrm{~cm}^{3}$.
Find (i) the exact surface area and (ii) the exact volume of a can that is one and a third times as high and one and a quarter times as wide as the 220 g can.

Hint: The formula for surface area is $A=2 \pi r^{2}+2 \pi r h$.
The formula for volume is $V=\pi r^{2} h$.
a) (i) $103.125 \mathrm{~cm}^{2}$
(ii) $140.625 \mathrm{~cm}^{3}$
b) (i) $140.625 \pi \mathrm{~cm}^{2}$
(ii) $103.25 \pi \mathrm{~cm}^{3}$
c) (i) $103.125 \pi \mathrm{~cm}^{2}$
(ii) $140.625 \pi \mathrm{~cm}^{3}$
d) (i) $283 \mathrm{~cm}^{2}$
(ii) $442 \mathrm{~cm}^{3}$

Answer: \qquad
9. A funnel made of very thin metal is an open truncated cone joined to a cylindrical pipe of diameter 1.0 cm .

The surface area, $A \mathrm{~cm}^{2}$ of the funnel, can be calculated from:
$A=\frac{2 \pi}{3}\left(7.5^{2}-0.75^{2}\right)+5 \pi$
The total capacity, Ccm^{3}, of the funnel, is given by:
$C=\frac{\pi}{27}\left[5^{2} \times 50-0.5^{2} \times 5\right]+\pi \times 0.5^{2} \times 5$

How many millilitres (to one tenth of 1 mL) of petrol would be in the funnel when it is filled to the brim?
a) $149.2 \pi \mathrm{~cm}^{2}$
b) 145.6 mL
c) 149.2 mL
d) $132.3 \mathrm{~cm}^{3}$

Answer: \qquad
10. Jasper measures angles and distances on a map before sailing from Pleasant Harbour to Windy Island.
He notes that on his map Windy Island is 200 km from Pleasant Harbour on a true bearing of $028^{\circ} \mathrm{T}$.
Jasper sails from Pleasant Harbour keeping on a compass bearing of $\mathrm{N} 28^{\circ} \mathrm{E}$.

If the variation is $8^{\circ} \mathrm{W}$, how far is Jasper from Windy Island after he has sailed 200 km ?
a) $400 \sin 4^{\circ} \mathrm{km}=27.90 \mathrm{~km}$
b) $200 \sin 28^{\circ} \mathrm{km}=93.90 \mathrm{~km}$
c) $400 \cos 14^{\circ} \mathrm{km}=388.12 \mathrm{~km}$
d) $200 \sin 8^{\circ} \mathrm{km}=27.83 \mathrm{~km}$
(Answer to the nearest 10 metres).

Answer:

The Answers.
Hey! No peeking until you've finished...

Question 1

Answer: d)

The square and the triangle both have a perimeter of 32 cm . These two shapes can be eliminated.
The area of a trapezium is half the perpendicular height times the sum of the parallel sides.
The hexagon can be divided into two congruent trapeziums but the heights are irrational numbers. Eliminate the hexagon.

The area of the isosceles trapezium $=8 \times(2+14) \div 2 \mathrm{~cm}=64 \mathrm{~cm}$ and its perimeter is $(2+14+10+10) \mathrm{cm}=36 \mathrm{~cm}$.

Question 2

Answer: c) (i) N37º W (ii) 3°

The diagrams are not drawn to scale. Triangle $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{X}$ is on the ground.
$\mathrm{C}_{1} \mathrm{X}$ lies under $\mathrm{P}_{1} \mathrm{P}_{2}$, the flight path of the airplane.
$\mathrm{C}_{1} \mathrm{C}_{2}$ is the car route along the road.
(i) $\tan \alpha^{\circ}=30 / 22.5$
$\alpha^{\circ}=53^{\circ}$, to the nearest degree.

The bearing of X from C_{2} is $\mathrm{N} 37^{\circ} \mathrm{W}$
$\mathrm{C}_{2} \mathrm{X}$ by Pythagoras $=\mathrm{V}\left(30^{2}+22.5^{2}\right)=37.5 \mathrm{~km}$.
(ii) Triangle $\mathrm{C}_{2} \mathrm{XP}_{2}$ is in a vertical plane.
$\tan \beta^{\circ}=2 / 37.5$
The angle of elevation of P_{2} from C_{2} is β° and equals 3°, to the nearest degree.

Question 3

Answer: c) Only $\triangle A B C$ and $\triangle D E F$ have the same area.
Use Heron's formula for triangles ABC and GHK.
Use one half the product of the sides times the sine of the included angle for triangle DEF.
Use area $=$ half base \times height for triangle LMN.

Question 4

Answer: a) 154\%
The width which is 5.19 cm has to be enlarged to 8 cm .
$8 \div 5.19=1.541425819 \ldots=154.1425819 \ldots \%$
The width, 5.19 cm , and height, 5 cm , of the graphic must be increased by 154% to $7.9926 \mathrm{~cm} \times 7.7 \mathrm{~cm}$.

Question 5

Answer: d) The hexagons
All squares are similar. Corresponding angles are equal and all pairs of corresponding sides are in proportion.
All circles are similar. The circumferences are in the same ratio as their radii. In the two rectangles shown, all angles are right angles. The corresponding sides are in the ratio 2:1. The difference in orientation does not matter. The two hexagons are not similar. Even if corresponding sides are in proportion the corresponding pairs of angles are not equal.

Question 6

	kilometres	Adelaide	Brisbane	Melbourne
	Brisbane	1607		
	Melbourne	690	1405	
Answer: c)	Sydney	1202	714	750

Divide the distances between cities by the length of the 500 km scale. Then multiply by 500.
For example: If the distance between Adelaide and Brisbane on the computer screen is 10.5 cm and the length of the scale is 3.2 cm , then the calculated distance from Adelaide to Brisbane will be approximately $500 \times 10.5 \div 3.2 \mathrm{~km}$.

Question 7

Answer: d) 72 m²
Area of quadrilateral $B C D E=$ Area of triangle $A D E-$ Area of triangle $A B C$.
Triangles ADE and ABC are equiangular and therefore similar.
Areas of similar triangles are proportional to the squares of the sides.
Area of triangle $A D E$: Area of triangle $A B C=11.76^{2}: 8.4^{2}$.
Therefore the area of triangle ADE $=\left(11.76^{2} \div 8.4^{2}\right) \times 75 \mathrm{~m}^{2}$. Area of quadrilateral $\mathrm{BCDE}=\left(11.76^{2} \div 8.4^{2}\right) \times 75-75 \mathrm{~m}^{2}$
$=72 \mathrm{~m}^{2}$.

Question 8

Answer: c) (i) $103.125 \pi \mathrm{~cm}^{2}$, (ii) $140.625 \pi \mathrm{~cm}^{3}$.
New radius $=$ one and a quarter $\times r \mathrm{~cm}=5 \times 3 \div 4 \mathrm{~cm}=3.75 \mathrm{~cm}$.
New height $=$ one and a third $\times h \mathrm{~cm}=7.5 \times 4 \div 3 \mathrm{~cm}=10 \mathrm{~cm}$.
(i) New surface area $=2 \pi \times 3.75^{2}+2 \pi \times 3.75 \times 10 \mathrm{~cm}^{2}=103.125 \pi \mathrm{~cm}^{2}$.
(ii) New volume $=\pi \times 3.75^{2} \times 10 \mathrm{~cm}^{3}=140.625 \pi \mathrm{~cm}^{3}$.

Question 9

Answer: c) 149.2 mL
By calculator, $C=149.225651$.

The quantity of petrol in the funnel $=149.2 \mathrm{~mL}$ to the nearest tenth of a millilitre.

Question 10

Answer: a) $400 \sin 4^{\circ} \mathrm{km}=27.90 \mathrm{~km}$
Jasper's map tells him the true bearing of Windy Island is $28^{\circ} \mathrm{E}$ of True North. Jasper's magnetic compass is directing him 8° west of Windy Island.
The triangle with vertices Pleasant Harbour, Windy Island and Jasper's boat is isosceles with equal sides 200 km and angles of $8^{\circ}, 86^{\circ}$ and 86°.

If the distance from Jasper's boat to Windy Island is $2 w \mathrm{~km}$ then $w=200 \sin 4^{\circ}$ and $2 w=400 \sin 4^{\circ}=27.9025895 \ldots$
To the nearest ten metres Jasper is 27.90 metres from Windy Island.

[^0]: a)
 $3.4 \mathrm{~mm} \times 2.4 \mathrm{~mm}$

