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This workbook covers a number of topics in Discrete Mathematics with particular emphasis on basic

concepts and their logic. It does not replace the textbook, and is not intended for independent

study. Instead it presents basic concepts, definitions, examples and exercises to be studied in class,

individually and in groups. It also contains a number of homework problems and larger individual

projects.

Many thanks to Eva Antonakos, Samuel Coskey, and Amir Togha who have reviewed the text

and suggested many improvements.
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1. Sets

A set is a collection of objects. Here are some examples: all students in your class; all letters

and symbols on this page; email addresses of all internet users; a set of points on a plane, the set of

prime numbers. Everywhere you look there is a set. A set can be given by listing all its elements

between curly brackets {. . . }. There can not be anything simpler, but since we will have to talk

about sets very precisely, we will have to learn how to use mathematical notation for sets. Think

of concrete three crayons on a desk, a red, a green, and a blue one. They form a set. To talk about

this set, instead of saying “the three crayons on the desk” you can give this set a name, say the set

C, and use this name instead. We can say let C = {red crayon, green crayon, blue crayon}. This

still does not look very mathematical. In mathematics we give objects shorter names, to be able to

write various formulas using those names. In our example let’s give each crayon a name, say r for

red, g for green, and b for blue, so that C = {r, g, b}. We call r, g, and b the elements or members

of C. We can use any letters, or combinations of letters to name sets and their elements, so we

could have used A = {a, b, c} or CR = {x, y, z}, but, in practice when we talk about concrete sets

and their objects, we try to use names that are suggestive.

In the example above we talked about a set of three concrete crayons, but whatever we said we

could have said of any three crayons anywhere. One can say: let C be the set of three crayons

{r, g, b}. We still talk about a set of three crayons, but not of any concrete ones.

Elements of sets do not have to be concrete objects. For example, the set of basic RGB colors is

{red, green, blue}, and the set of basic tastes is {sweet, salty, bitter, sour}.
In mathematics we are not interested in concrete sets, instead we study mathematical properties

of all sets. Mathematical notation is very helpful, but it can be confusing, and will take you a while

to get used to it. When I say “let A = {a, b, c, d}”, I could mean that A is the set of the four first

letters of the alphabet, but in mathematics we usually do not mean that. If it is not said specifically

that A is the set of letters, when we say that A is a {a, b, c, d} than we mean that A is any set

which has four elements a, b, c, and d. The letters a, b, c, d here are names of the four elements of

A, and we do not say anything more specific about them.

We use the symbol ∈ to express that an item is a member or an element of a set. For example,

if RGB is the set basic RGB colors we write red ∈ RGB, to express the fact that color red is a

member, or an element, of the set RGB. The fact that yellow is not an element of RGB can be

written as yellow /∈ RGB. Similarly, if B = {1, 4, 9, 16, 25}, the statements 16 ∈ B and 15 /∈ B

express the facts that 16 is an element of B and 15 is not.

We can describe a set by listing all its elements, or we can do it by stating precisely a condition

under which an object is included as a member of the set. For example, the set B = {1, 4, 16, 25}
can be also described by

B = {x|x is one of the first five square numbers}.

In other words, B is the set of elements x such that x is one of the first five square numbers. We

need such descriptions especially for sets which are large. For example, let

C = {x|x is one of the first thousand square numbers}.
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The list of all elements of C would be very long, and it would contain large numbers. For example,

the last number on the list would be 10002 = 1, 000, 000. The description of C is much more handy,

it is short and easy to understand.

The order in which one lists elements of a set does not matter. The set {a, b} is the same as

{b, a}. Also repetitions do not make sets larger. The set {a, a, b} is the same as {a, b}. Think of

the set of students in your class. The names can be listed in any order, the class stays the same.

If, by mistake, a name is listed twice, nothing has changed, the class is still the same.

(1) List all elements of the following sets.

(a) A = {x|x is a number of a line in the NYC subway system}.

(b) B = {x|x is a vowel}.

(c) C = {x|x is a solution of x2 = 1}.

(d) D = {x|x is a prime number less than 25}.

(e) E = {x|x is a prime number less than 28}.

(2) Using sets from the previous problem, say which of the following statements are true and

which are false.

(a) 9 ∈ A.

(b) b /∈ B.

(c) −1 /∈ C.

(d) 9 ∈ D.

(e) 11 /∈ E.
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(3) Give three different descriptions of the set {1, 2}.

A collection which has no elements (like a club with no members) is also considered a set,

and it is called the empty set. The symbol for the empty set is ∅. For example, the sets

• {x|x is a word rhyming with orange},
• {x|x is an even prime number greater than 2},
• {x|x 6= x},

are all empty (Well, one could have legitimate doubts about the first example. Do you see

why?)

(4) Give three other descriptions of empty sets.

If A is a set, and B is a collection of elements of the set A, then we call B a subset of A.

For example, if A = {1, 2, 3, 4}, then B = {1, 3} is a subset of A. If B is a subset of A, we

can express this by writing B ⊂ A. Each set is considered a subset of itself, and the empty

set is a subset of each set, so the statements A ⊂ A and ∅ ⊂ A are true for each set A. If

X = {1, 2}, then {∅, {1}, {2}, {1, 2}} is the set of all subsets of X . So, X has 4 subsets.

(5) List the sets of all subsets of the following sets.

(a) Y = {1, 2, 3}.

(b) Z = {1, 2, 3, 4}

(6) Count the number of subsets of the sets Y and Z in the previous problem. The answer is

8 and 16. How many subsets of Z do not contain 4? How many subsets of Z contain 4?

The answers are 8 and 8, but make sure that you do the count. Look at the two previous

questions and think about the following: if you know that Y has 8 subsets, can you convince

yourself that Z has 16 subsets without counting them?
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(7) How many subsets does the set U = {1, 2, 3, 4, 5} have? If you did the previous problem,

try to do this one without counting. The answer is 32.

The cardinality of a finite set is the number of its elements. The cardinality of the set A

is denoted by |A|. So, |∅| = 0, |{1}| = 1, |{1, 2}| = 2 and so on.

For a set A, P (A) denotes the set of all subsets of A. P (A) is often called the powerset

of A, and you will see shortly why.

(8) In the previous three exercises we have established that |P (X)| = 4, |P (Y )| = 8, |P (Z)| =
16, and |P (U)| = 32. Find |P ({1})|. Do you recognize a pattern?

We will finish this lesson by proving the following theorem:

Theorem:For each number n, if |A| = n, then |P (A)| = 2n.

In the previous exercises we verified that this statement is true for n=1,2,3,4,5. It is also

true for n = 0. Let us see why. The empty set has cardinality 0 and it has one subset,

namely itself. So, P (∅) = {∅}, and |{∅}| = 1. We also know that 20 = 1. Putting this all

together we get |P (∅)| = 20, as stated in the theorem. If you find this argument confusing,

discuss it with other students in the class and let your instructor know. It is worth going

over the details slowly making sure you understand what is going on.

We have not begun proving the theorem yet, but we will do it now. You have seen that the

theorem is true for n = 0, 1, 2, 3, 4, 5. This does not prove anything yet, but let us assume

that the pattern continues up to some number n. We will show that it must work for the

next number n+ 1 as well. If it bothers you that you do not know what n is, think of it as

a concrete number, like n = 100, so that n + 1 = 101. You will see that in what follows it

makes no difference which number n you choose. In other words, the argument works for

any number n whatsoever. Look at the sets A = {1, 2, . . . , n} and B = {1, 2, . . . , n, n + 1}.
Since the pattern works up to n, we know that A has 2n subsets. But how many subsets

does B have? We need to notice two things. The first is that if X is a subset of B and it

does not contain n+ 1, then it is a subset of A, so there are 2n such sets X . The second is

that if X is a subset of A then X together with n+1 is a subset of B which contains n+1,

and every subset of B which contains n + 1 looks that way i.e. it has the element n + 1

and all other elements come from A. It follows that B has 2n subsets which contain n + 1.

Every subset of B either contains n+ 1 (and there are 2n such subsets) or does not contain

n+1 (and there are also 2n subsets like that). In other words, since every subset of B either

contains n + 1 or does not, B has 2n + 2n = 2 · 2n = 2n+1 subsets. With this conclusion we
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have verified that B has 2n+1, so we see that the pattern works for n + 1, and the theorem

is proved.

How does the argument above prove our theorem? Look, we verified by hand that the

pattern works for up to n = 5, so the argument shows that it must work for n+ 1 = 6, now

we know that it works for n = 6, so it must work for n + 1 = 7, once we know it works for

7, we know it works for 8, and so on and on. The pattern can never break. Make sure that

you get it. Notice that it was not necessary to check, as we did, that the statement of the

theorem is true for n = 0, 1, 2, 3, 4, 5. It was enough to check that it is true for n = 0.

The proof we just studied follows a special, very powerful, and often used method of

proving statements in mathematics. You will see more proofs like that shortly.

(9) (a) How many subsets does the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} have? Compute the number by

hand. The answer is 1024.

(b) How many subsets does the set {0, 1, 2, . . . , 99} have? Find the answer using a calcula-

tor. If a computer is programmed to print all subsets of this set, and it takes one tenth

of a second to print one subset, how long will it take to get the whole printout?
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2. Relations

A relation is a way in which concepts, objects, or people are connected. We are all related to our

relatives; local weather is related to the geographic position and the time of year; your grades are

related to the amount of time and effort you devote to studying. In mathematics we have a very

general definition of a relation. Since, as we saw in the previous lesson, almost anything can be

a set, instead of considering different categories of objects and connections between them, we will

just study relations between elements of sets. Before we define what a relation is, we need one new

concept.

A set consisting of two different objects is called a pair. Recall, that the order in which sets are

listed does not matter. The set {a, b} is the same as {b, a}. For that reason, pairs are often called

unordered pairs. Also, since repetitions of elements do not make sets larger, {a, a} = {a}, so this

set is not really a pair. To define relations, we need the concept of an ordered pair. The ordered

pair elements a and b, is denoted by (a, b). This notation indicates that the order matters: pairs

(a, b) and (b, a) are different (assuming that the symbols a and b represent different elements).

If A and B are sets, then the set of all ordered pairs (a, b) such that a ∈ A and b ∈ B is denoted

A×B and it is called the Cartesian product of A and B to honor René Descartes (1596–1650), also

known as Renatus Cartesius—the great French philosopher and mathematician.

Using set notation we write

A×B = {(a, b)|a ∈ A and b ∈ B}.
Definition: A relation between elements of the sets A and B is any subset of A×B.

Let us look at an example. Let A = {0, 1, 2, 3, 4, 5} and let B = {0, 1, 2, 3, 4}. The product A×B

can be illustrated on the picture below. All points of intersection of the thick lines correspond to

elements of A×B. The bullets represent the following relation

R = {(1, 3), (2, 0), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (5, 0)}.

0 1 2 3 4 5
0

1

2

3

4

•••

•

•

•

• • • A

B
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A relation can be given by listing of all related pairs, or can be given by a description. For

example,

{(x, y)|x ∈ A and y ∈ B and x > 2 and y ≤ 2}.
This relation is illustrated below.

0 1 2 3 4 5
0

1

2

3

4

•

•

•

•

•

•

•

•

• A

B

(1) For A = {0, 1, 2, 3} and B = {0, 1, 2} use the provided grids to illustrate the following

relations:

(a) R = {(x, y)|x = y}.

0 1 2 3 4
0

1

2

3

A

B

(b) R = {(x, y)|x ≤ y}.

0 1 2 3 4
0

1

2

3

A

B

(c) R = {(x, y)|y = x− 1 or y = x+ 1}.

0 1 2 3 4
0

1

2

3

A

B
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(2) If A = {0, 1, 2, 3} and B = {0, 1, 2}, what is |A × B|? Hint: You can just look at the

picture and count points.

Theorem: If |A| = m and |B| = n, then |A× B| = mn.

(3) The theorem above is not difficult to prove. A proof is any convincing explanation. Try to

write this proof using your own words. In your proof you can refer to illustrations; however,

direct checking that the statement of theorem is true for particular values of m and n, as

we did in Problem (2) for m = 4 and n = 3, is not a proof.

(4) How many relations are there between elements of A = {0, 1, 2, 3} and B = {0, 1, 2}? If

your weekend assignment was to make illustrations of all of them, would it be fair? Explain.
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3. Sets of numbers

When we talk abut sets and relations, we can give them any names we want, but some sets are

used so often, that it is good fix names for them. The most basic set is mathematics is the set of

natural or counting numbers. This is the set N = {0, 1, 2, 3, . . .}.1 Leopold Kronecker, a German

mathematician (1823 - 1891) once said “God created the natural numbers; everything else is man’s

handiwork.” We will see below what he could have meant. The set of integers Z is the set of natural

numbers together with their opposites. Using set notation we write

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

or

Z = N ∪ {−n| n ∈ N}.

In the last line the symbol ∪ denotes the union of two sets, one is N and the other is the set

consisting of negative whole numbers: {−n|n ∈ N} = {0,−1,−2,−3, . . . }.
The next important set is the set of fractions or rational numbers. This set is given the name Q.

In set notation

Q = {m
n
| m,∈ Z and n ∈ Z and n 6= 0}.

In other words, Q is the set of factions of the form m
n
where m and n can be any integers, with one

important exception: the denominator n can not be 0.

Is the number 2 in Q? What do you think? Technically it is not, but 2 is equal to 2
1
(or 4

2
or 100

50
),

so 2 is equal to a number which is in Q, and for this reason we consider 2 an element of Q. By the

same reason all integer numbers are in Q, and we can express this by saying that Z is a subset of

Q. Using symbols this is expressed by Z ⊆ Q.2

All finite decimal numbers are also elements of Q. The reason is that they all are equal to numbers

which are in Q. For example 0.001 = 1
1000

, and 3.1415 = 31415
10000

.

There are numbers you know which are not elements of Q. Examples include
√
2,
√
3, π, and

many other numbers. Later in the course we will see a proof which explains why
√
2 is not in Q.

(1) Assume that
√
5 is not equal to any fraction in Q. Use this information to argue that the

follwing numbers are also not equal to any number in Q:

(a) 3
√
5;

(b)
√
5 + 1;

(c) 1+
√
5

2
.

(2) Are there numbers a, b such that a ∈ Q, b /∈ Q, but (a + b) ∈ Q?

1Some text say that 0 is a natural number, some say it is not. It does not matter that much, it is only a convention.

We will keep 0 in N because it is convenient for applications we will discuss here.
2Sometimes the symbol ⊂ is used insetaed of ⊆, sometimes the notation A ⊂ B is used when A is a proper subset

of B, which means that A ⊆ B and A 6= B (this is similar to the use of ≤ and < when we compare numbers). We

will not use this last convention in this workbook.
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(3) Are there numbers a, b such that a /∈ Q, b /∈ Q, but (a + b) ∈ Q?

(4) Are there numbers a, b such that a ∈ Q, b /∈ Q, but ab ∈ Q?

(5) Are there numbers a, b such that a /∈ Q, b /∈ Q, but ab ∈ Q?

(6) * Is there a number a such that a /∈ Q, but a− 1

a
∈ Q?

(7) * Are there numbers a, b such that a /∈ Q, b /∈ Q, but ab ∈ Q.

All numbers in Q are called rational numbers. All numbers which are not in Q are

irrational numbers. All numbers, rational and irrational, are called real numbers. The set

of all real numbers is denoted by R.

(8) List all numbers from the exercises in this section which are in R but not in Q.
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4. Functions

A function is often given by a formula. For example, f(x) = 3x is a function. This function takes

a number and multiplies it by 3. The number a function is applied to is called the input or the

argument of the function. To each argument x the function associates a unique output, which is

also called the value of the function on x, and it is denoted by f(x) (this is read “f of x”). In our

example f(2) = 6, f(0) = 0, f(π) = 3π. As with sets and relations, names are not important, we

could have named our function H(z) = 3z or Mult(input) = 3× input and it still would be the same

function, and we would have H(2) = 6 and Mult(2) = 6.

You may recall that functions have domains. In precalculus it is assumed that, if not stated

otherwise, the domain of a function is the largest set of arguments (inputs), for which the values

of the function (outputs) can be computed. For example, the domain of f(x) = 3x is the set of

all real numbers R, since any real number can be multiplied by 3. The domain of the function

g(x) = 1
x
is the set of all real numbers except 0, since one cannot divide by zero, so g(0) = 1

0
is not

defined. Similarly, for the function h(x) =
√
x the domain is the set of nonnegative real numbers,

since negative numbers do not have square roots.

(1) Find domains of the following functions:

(a) f(x) = 1
x
+
√
x;

(b) f(x) = 1√
x
;

(c) f(x) =
√
1− x;

(d) f(x) = 1√
1−x

;

(e) f(x) = 1
1+ 1

x

.

Functions are very important in mathematics. They are often described as rules, or

procedures, or formulas, which assign values to objects in particular ways. The objects a

function is applied to do not have to be numbers, nor the values have to be numbers. For

example each of us has a name, so there is a function which to each individual person x

assigns a name N(x). For example N(the author of these notes)=Roman.

Now we will discuss functions in much greater detail. To describe a function we need a set

of objects for which the values will be assigned—this set is called the domain of a function,

and we need a set of values that the function will be assigning, and this set is called the

codomain of the function. We give functions names. If the name of a function is f , the

domain of f is a set D, and the codomain is a set C, then we express this information by
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writing f : D −→ C. If x is any element of the set D, then f(x) is an element of the set C

and is the value which the function f assigns to x.

In the next two exercises we have examples of mathematical functions which are very

different from the functions you have seen before, but the exercises are not hard. Work

them out carefully.

(2) The domain of the function C is the set of all subsets of the set {1, 2, 3}, for which we use the

notation P({1, 2, 3}). The codomain is the set {0, 1, 2, 3}. The function C : P({1, 2, 3}) −→
{0, 1, 2, 3} is defined by C(x) = |x|. Recall that |x| is the cardinality of the set x. Find

(a) C({1, 2, 3}) =
(b) C({2}) =
(c) C(∅) =

(3) The domain of the function f is the set X = {0, 1, 2, . . . , 50}. The codomain is the set of all

subsets of X . The function f : X −→ P(X) is defined by f(x) = the set of elements of X

which are smaller than x. Find

(a) f(3) =

(b) f(10) =

(c) f(0) =

(4) Give two other examples of functions, their domain and their codomains.

Now we will try to answer the following question: If A and B are finite sets, |A| = m,

B = n, how many different functions f : A −→ B are there? Think about it? If A and B

are small we can always try to list all possible functions. For example if |A| = 1 and |B| = 1,

there is only one function f : A −→ B. If A = {a} and B = {b}, then this only possibility

is f(a) = b.

(5) If |A| = 10 and |B| = 1, how many f : A −→ B are there?

(6) If |A| = m and |B| = 1, how many f : A −→ B are there?

Let |A| = 1 and |B| = 2. There are two functions f : A −→ B. If A = {a} and B = {b, c},
then one function is f(a) = b and the other g(a) = c.



WORKBOOK FOR CSI 30. DISCRETE MATHEMATICS I. 15

(7) If |A| = 1 and |B| = 5, how many f : A −→ B are there? List them all.

(8) If |A| = 1 and |B| = n, how many f : A −→ B are there?

If A = {a, b} and B = {0, 1}, then there are four functions f : A −→ B. You can see all

possible functions below. Each column represents one function.

a 7→ 0 a 7→ 1 a 7→ 0 a 7→ 1

b 7→ 0 b 7→ 1 b 7→ 1 b 7→ 0

(9) Make a list of all functions f : {a, b, c} −→ {0, 1}. There should be eight of them.

(10) Make a list of all functions f : {a, b} −→ {0, 1, 2}. There should be nine of them.

Now we will finish this lesson with a proof the following theorem.

Theorem: For all finite sets A and B such that |A| = m, and |B| = n, the number

of all different functions f : A −→ B is nm.

Proof: We will fix the number n and we will try to see what happens for different values of m.

Look again at Exercise (5). The correct answer is n. This is the number of all functions f : A −→ B,

if |A| = 1, and |B| = n. This exercise is a special case of our theorem for m = 1. Let’s see what

happens when m = 2. Let A = {a, b}. There are n ways to assign the value of a function to a.

Once we know what the value on a, there are still n ways assign the the value to b. Each choice of

the value on a can be combined with each choice of the value on b. Altogether there are n×n ways

to assign this the values to a and b, so there are n× n = n2 functions from A to B.

Now we know the theorem gives the correct value if m = 2. What if m = 3? Let A = {a, b, c}.
We already checked that there are n2 many ways to assign values to a and b. Once we know the

values of the function at a and b, the value at c can still be assigned in n many ways. Altogether

there are n2 × n = n3 ways of assigning the values to a, b, and c, so there are that many functions.
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Now write your own argument for m = 4.

If we verify that our theorem is correct up to some number m, then we can check that it is correct

for the next number m+1 the same way as we did for m = 1, 2, 3, and 4. We do not need to know

what the number m actually is, the argument is the same regardless. Think of a set A which has

m+ 1 elements. Since the theorem is already verified for m, we know we can assign values to the

first m elements of A in nm many ways. There is one element left out, and we can assign the values

to it in n many ways. Altogether there are nm×n = nm+1 ways of assigning the values to a, b, and

c, so the theorem is verified for the number m+ 1.

Are you convinced? Could there possibly be numbers m and n for which the theorem is false?

4.1. Functions as relations. We examined various examples of functions, but we have to say

what is a function. Here is a precise mathematical definition.

Definition: A function with domain A and codomain B is any relation R ⊆ A×B such that for

each a ∈ A there is exactly one b ∈ B such that (a, b) ∈ R.

So functions are special relations. If a relation R satisfies the condition in the above definition,

then we can see it as a function fR : A −→ B, such that for each a ∈ A, fR(a) is the unique b ∈ B

such that (a, b) ∈ R.

Let f : R −→ R be given by f(x) = 3x. To see that f satisfies the conditions in the definition

above, we can represent f as {(x, y)|x ∈ R and y ∈ R and y = 3x}. We could also simply write

f = {(x, 3x)|x ∈ R}. Notice that in precalculus we would call f the graph of the function f(x). In

this course we will not distinguish between functions and they graphs.

Recall that Z is the set of integers. It contains all natural numbers and their negative opposites.

(1) Which of the following relations R ⊆ Z× Z are functions?

(a) (m,n) ∈ R if and only if m− n = 2.

(b) (m,n) ∈ R if and only if m− n = 2 or n−m = 2.

(c) (m,n) ∈ R if n divides m.

(d) (m,n) ∈ R if n is the largest prime factor of m.

(e) (m,n) ∈ R if m is the largest prime factor of n.

(2) Let A = {0, 1, 2, 3}, and B = {a, b, c}.
(a) How many relations R ⊆ A× B are functions?

(b) How many relations ⊆ A× B are not functions?

(c) * How many functions f : A −→ B are onto?
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5. Functions with special properties

Each function operates on elements of its domain, but it also operates on subsets of the domain.

If f : A −→ B is a function then for every subset C ⊆ A the function determines the image of C.

The image of C under f is the set

f(C) = {f(x)|x ∈ C}.

In other words the image of C is the set of all values of f on inputs from the set C. We need

examples.

Let f : R −→ R be given by f(x) = 3x. Then the image of the interval [0, 1], f([0, 1]), is the

interval [0, 3], the image of (−2, 2) is (−6, 6), and the image of the half-line (0,∞) is (0,∞).

Let g : R×R −→ R be the projection onto the first coordinate, i.e. g(x, y) = x. Then the image

of the circle given by the equation x2 + y2 = 1 is the interval [−1, 1], and the image of the graph of

the the function y = ln x is the half-line (0,∞).

Let A = {a, b, c} and B = {0, 1, 2}. There are 33 = 27 functions f : A −→ B. Here are eight of

them:

f1 f2 f3 f4 f5 f6 f7 f8

a 7→ 0 a 7→ 1 a 7→ 2 a 7→ 1 a 7→ 0 a 7→ 0 a 7→ 0 a 7→ 1

b 7→ 0 b 7→ 1 b 7→ 1 b 7→ 2 b 7→ 0 b 7→ 1 b 7→ 1 b 7→ 0

c 7→ 0 c 7→ 0 c 7→ 0 c 7→ 2 c 7→ 1 c 7→ 2 c 7→ 1 c 7→ 1

Check that f1(A) = {0}, f2(A) = {0, 1}, and f3(A) = {0, 1, 2}. For C = {a, c}, f4(C) = {1, 2}
and f8(C) = {1}. Complete the list of images of A and C below:

f1(A) = f2(A) = f3(A) = f4(A) = f5(A) = f6(A) = f7(A) = f8(A) =

f1(C) = f2(C) = f3(C) = f4(C) = f5(C) = f6(C) = f7(C) = f8(C) =

If f : A −→ B is a function than f(A) is also called the range of f . In other words:

The range of a function is the image of its domain.

Look at the first line in the table above. It is a list of ranges of the eight functions. What

distinguishes f3 and f6 from all other functions?

The answer is: the range f3 and f6 is the whole codomain B. Functions with this property are

called onto. In other words:

A function is onto if its range equals its codomain.

There is another property which distinguishes f3 and f6. Look at their ranges in the table above.

No element of the range is listed twice. For every input in the domain A there is only one output

in the codomain B. Check that no other function on the list has that property. Functions like f3

and f6 are called one-to-one. In other words:
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A function f : A −→ B is one-to-one if every value in the range of f is obtained for only one

input in the domain of the function.

(1) Let A = {a, b, c, d} and B = {0, 1, 2}. Give examples of two functions f : A −→ B which

are onto and of two functions which are not onto.

(2) For sets A and B in the previous problem, could there be a function f : A −→ B which is

one-to-one?

(3) Let A = {a, b, c} and B = {0, 1, 2, 3}. Give examples of two functions f : A −→ B which

are one-to-one and two functions which are not one-to-one.

(4) For sets A and B in the previous problem, could there be a function f : A −→ B which is

onto?

Make sure you completed all exercises above before you try the following problems.

(5) Let A and B be finite sets. The following conditions are equivalent:

• There is a one-to-one function f : A −→ B.

• |A| ≤ |B|.
Can you explain why?

(6) Let A and B be finite sets. The following conditions are equivalent:

• There is a function f : A −→ B which is onto.

• |A| ≥ |B|.
Can you explain why?

(7) For any two finite sets A and B the following conditions are equivalent:

• There is a function f : A −→ B which is one-to-one and onto.

• |A| = |B|.
Can you explain why?
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Things get a bit more interesting for functions with infinite domains and codomains.

Recall that

• N = {0, 1, 2, . . .} is the set of natural numbers.

• Z is the set of integers.

• Q is the set of all rational numbers. It is the set of all fractions with integer numerators

and denominators (but the denominator cannot be 0).

• R is the set of all real numbers.

For each function f below decide whether f is onto and whether it is one-to-one.

(8) f : N −→ N, f(x) = x+ 1.

(9) f : Z −→ Z, f(x) = x+ 1.

(10) f : Z −→ Z, f(x) = 2x.

(11) f : Q −→ Q, f(x) = 2x.

(12) f : Q −→ Q, f(x) = x2.

(13) f : Q+ −→ Q+, f(x) = x2. Here Q+ is the set of positive fractions.

(14) f : R −→ R, f(x) = x2

(15) f : R+ −→ R+, f(x) = x2. Here R+ is the set of positive real numbers.

(16) Let A = {x|x ∈ R and x 6= 1}, and let f : A −→ R be the function given by f(x) =
x

x− 1
.

(a) What would be wrong if we wrote: f : R −→ R?

(b) Solve the equation
x

x− 1
= 2. What is f(2)?

(c) Let r be a real number. Solve the equation
x

x− 1
= r.

(d) Try to solve the equation
x

x− 1
= 1. What is the problem?

(e) What is the range of f?

(f) Is f one-to-one?

(g) If f onto?
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6. Recursive functions

In this lesson we will examine a very important type of functions whose domain is the set of

natural numbers N. A function with domain N, whose codomain can be any set A, can be given

by a formula or a description, like any other function. Here are two examples of such functions:

f : N −→ N given by f(n) = n2, and g : N −→ P(N) given by g(n) = {m|m ≥ n}. There is nothing
special here, but there is another way of defining functions on N that uses the fact that every

natural number can be reached starting from 0 by successive addition of 1. For example, to get to

5, add 1 to 0 five times. This allows to define functions by a sort of “step-by-step” procedure. In

mathematics it is called recursive computation. Consider for the example the function f : N −→ N

given by f(n) = 2n. So f(0) = 20 = 1, f(1) = 21 = 2, f(2) = 22 = 4, and so on. How does one

compute f(10)?

(1) For f : N −→ N defined by f(n) = 2n, find f(10).

f(3) = f(4) = f(5) = f(6) =

f(7) = f(8) = f(9) = f(10) =

The answer is 1024, but make sure that you compute it yourself. How did you do it? Do

you think there is a simpler (or shorter) way to do it?

What you did to compute f(10) is the previous exercise is a special case of a general

procedure for step-by-step (recursive) computations. In the first step we are given the

initial value of the function, f(0). In our example f(0) = 1. Then we are given a recipe

that given that you know the value f(n), tells you how to find the next value f(n + 1).

In our example the recipe is simply f(n + 1) = 2f(n). In other words, to get the next

value, double the previous one. Since f(0) = 1, then f(1) = 2f(0) = 2 × 1 = 2. Next,

f(2) = 2f(1) = 2× 2 = 4. Next f(3) = 2f(2) = 2 × 4 = 8. And so on. Do you see what is

happening?

(2) Let f : N −→ N be defined by f(0) = 0, and f(n + 1) = f(n) + 2n + 1. Find f(10). Be

careful. To compute the next value f(n + 1) you have to use the previous value f(n), but

also the number n itself. For example f(1) = f(0) + 2× 0 + 1 = 1.

f(1) = f(2) = f(3) = f(4) = f(5) =

f(6) = f(7) = f(8) = f(9) = f(10) =

Can you think of a formula defining f?
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(3) Let f : N −→ N be defined by f(0) = 1, and f(n+ 1) = (n + 1)f(n). Find f(7).

f(2) = f(3) = f(4) =

f(5) = f(6) = f(7) =

This function f defined in this exercise has a name: f(n) is called n factorial. The symbol

for n factorial is n!. Use a calculator to find f(11) = 11!.

(4) Let f : N −→ N be defined by giving two initial values F (0) = 1, and F (1) = 1, then each

next value is computed by adding two previous ones: F (n+2) = F (n+1)+F (n). Compute:

F (1) = 1 F (2) = F (3) = F (4) = F (5) =

F (6) = F (7) = F (8) = F (9) = F (10) =

The infinite series numbers F (0), F (1), F (2), ..., F (n), ... has a name. It is the Fibonacci

sequence. Google the Fibonacci sequence to learn more about it. There is much to learn.

(5) For the Fibonacci sequence compute the following quotients (use a calculator):

F (3)/F (2) = F (4)/F (3) = F (5)/F (4) =

fF (6)/F (5) = F (7)/F (6) = F (8)/F (7) =

(6) Use a calculator to compute the value of the expression
1 +
√
5

2

(7) Use the quadratic formula to solve the equation x2 = x+ 1.

(8) Let f : N −→ Q be defined by f(0) = 1, and f(n + 1) = 1 + 1
f(n)

. Find f(8). Do not use a

calculator! Write your answers as improper fractions.

f(1) = 2 f(2) = 1+ 1
2
= 3

2
f(3) = f(4) =

f(6) = f(7) = f(8) = f(9) =

What is f computing?
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(9) This exercise is a bit different. Instead of dealing with one function we will deal infinitely

many. Each function will have a different initial value, but the computing procedure will be

the same for all of them. The initial value f(0) can be any natural number. Once the initial

value is given we compute according to the rule:

f(n + 1) =







f(n)/2 if f(n) is even ,

3f(n) + 1 if f(n) is odd.

In each instance below f(0) is given, compute other values of f until you reach 1. The

first two examples are worked out.

• f(0) = 2, f(1) = 1, STOP

• f(0) = 3, f(1) = 10, f(2) = 5, f(3) = 16, f(4) = 8, f(5) = 4, f(6) = 2, f(7) = 1,

STOP

• f(0) = 4,

• f(0) = 5,

• f(0) = 6,

• f(0) = 7,

(10) As in the previous exercise, we define functions g : N −→ N, by first fixing an initial value

g(0), and then applying the following recursive definition:

g(n+ 1) =















3k if g(n) = 2k,

3k + 1 if g(n) = 4k + 1,

3k − 1 if g(n) = 4k − 1.

Compute the first six values of g, when g(0) = 1, and when g(0) = 2.

Programming project 1: Write a program for a graphing calculator or a computer to

compute the first hundred values of the function g in the previous exercise for ten different

initial values of g(0). Include g(0) = 44. Try to see patterns.
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Programming project 2: Write a program for a graphing calculator or a computer

to compute the values of the function g : N −→ N. For an initial value g(0) take any

nonzero number divisible by 3. To compute g(n + 1) given g(n), add the cubes of the

digits of g(n). For example if g(0) = 15, then g(1) = 13 + 53 = 1 + 125 = 126, and

g(2) = 13 + 23 + 63 = 1 + 8 + 216 = 225. Use your program to study the patterns of the

function g for several different initial values of g(0).

(11) (The Ackermann function) The function A : N×N −→ N is defined by the following recursive

rule:

A(m,n) =















n+ 1 if m = 0,

A(m− 1, 1) if m > 0 and n = 0,

A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

Compute all values of A(i, j) for i, j < 4 (Hint: be patient). Do not compute A(4, 2)!

A(4, 2) = 265536 − 3, this number has 19,729 decimal digits. Read about the Ackermann

function in Wikipedia.

6.1. Is my program correct? In Exercise (2) we saw that the recursive function defined there

computes consecutive square numbers: f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 9 and so on. Does

it mean that for all natural numbers n, f(n) = n2? In other words, can one use this function f

to write a computer program to computer squares? Numerical evidence given by computations is

not enough to get that concusion. The pattern could break, but we will prove that it can’t. If

everything works fine for all numbers 0,1,2,... up to some natural number n, then in particular

f(n) = n2. Let’s examine the value of the function at the next input n + 1. According to the

definition of f (see Exercise (2)), f(n + 1) = f(n) + 2n + 1. But we know that f(n) = n2. So,

f(n+ 1) = n2 + 2n + 1, and as you can easily check, this last expression is equivalent to (n + 1)2.

This tells us that f(n+1) = (n+1)2, in other words, the next value is the next square. The pattern

never breaks.

Use a similar argument to prove that the function defined in Exercise (3) is indeed n!.

Here is an example showing what can go wrong if just use numerical evidence. Consider f :

N −→ N defined by f(n) = n2 − n+ 41.

• f(0) = 41

• f(1) = 41

• f(2) = 43

• f(3) = 47

• f(4) = 53

Is there anything special about the values of f? You can check that they are all prime. So is

f(5) = 61, and f(6) = 71. Compute a few more values. You will see that the answers are all prime

numbers (to check that you may use the table of prime numbers is Lesson 13). In fact, all numbers

f(n) for n < 41 are prime. Can one conclude that all values of f are prime? No. Consider f(41).
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You do not need to compute the value. One can see without computing that f(41) is not prime.

Can you see why?
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7. Cantor Pairing Function and coding

Recall that N2 = N × N is the set of all ordered pairs of natural numbers. Pairs of numbers

can be coded by single numbers in many ways by coding functions with domain N2 and codomain

N. If F : N2 −→ N is a coding function, then the value F (a, b) is the F -code of (a, b). For

example, let F (x, y) = 2x3y. Then the F -code of the pair (0, 0) is 2030 = 1, the code of (2, 3) is

2233 = 4 × 27 = 101. There is an important requirement: each pair must have exactly one code.

This means that the coding function must be one to one. Our function satisfies that requirement.

The Fundamental Theorem of Arithmetic says that every natural number can be decomposed into

a product of prime numbers in only one way. This means that if 2a3b = 2c3d, for some numbers

a, b, c, and d, then a = c and b = d. For the coding to be effective, we must have a decoding

procedure. For example, what is the pair whose F -code is 72? To find out we need to factor 72.

We quickly verify that 72 = 2332, so 72 codes the pair (3, 2). But there is a problem with finding

the pair coded by 71. The problem is that 71 is not divisible neither by 2 nor by 3, so it cannot

be written in the form 2x3y. The function F is not onto. It is a minor problem. The real practical

problem with such coding is that F -codes are huge. For example the F -code of the pair (20, 30) is

231,812,806,400,000,000,000,000,000,000.

In this lesson we will work with a better coding function. We will call it C. So C : N2 −→ N.

The function is given by the formula

C(x, y) =
1

2
(x+ y + 1)(x+ y) + y.

For example C(1, 3) = 1
2
(1 + 3 + 1)(1 + 3) + 3 = 13 and C(3, 1) = (3 + 1 + 1)(3 + 1) + 1 = 11. So

the C-code of (1,3) is 13, and the C-code of (3,1) is 11.

We use the name C to honor the inventor of this coding the German mathematician Georg Cantor

(1845 - 1918).

(1) Compute

• C(0, 0) =

• C(0, 1) =

• C(1, 0) =

• C(1, 1) =

• C(1, 2) =

• C(2, 1) =

• C(2, 2) =

As you see, all values of C in the exercise are different. In fact, they are always different

on different inputs. Cantor Pairing Function C is one-to-one. Coding pairs with C is nice

and easy. Decoding is much harder (for a human, for a computer it is a piece of cake). For

decoding we will need two very useful functions.

Floor : R −→ Z and Ceiling : R −→ Z.

Floor(x) is the largest integer which is smaller than or equal to x

Ceiling(x) is the smallest integer which is larger than or equal to x.

For example Floor(
√
2) = 1, Ceiling(

√
2) = 2, Floor(−

√
2) = −2, and Ceiling(−

√
2) = −1.
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(2) Find

(a) Floor(π) =

(b) Ceiling(2π) =

(c) Floor(−π) =
(d) Floor(5) =

Decoding C-codes is not done by a formula. We need an algorithm. To find the pair (x, y)

whose C-code is z:

• First compute w = Floor[1
2
(
√
8z + 1− 1)].

• Then compute t = 1
2
(w2 + w).

• Finally, y = z − t, and x = w − y.

(3) Use the algorithm above to find pairs coded by the following C-codes:

• C-code 0.

• C-code 1.

• C-code 2.

• C-code 3.

• C-code 4.

• C-code 5.

• C-code 6.

Once we know how to code pairs, we also know how to code triples. For example, let

T : N3 −→ N be given by T (x, y, z) = C(C(x, y), z). What does this mean? To find the

code of the triple (x, y, z), first find the C-code t of the pair (x, y), and then find the code

for the pair (t, z). For example, for the triple (0, 1, 2), we first find C(0, 1) = 2, and then

C(2, 2) = 12. So the T -code of (0, 1, 2) is T (0, 1, 2) = 12.

(4) Compute

• T (0, 0, 0) =

• T (1, 0, 0) =

• T (0, 1, 0) =

• T (0, 0, 1) =

• T (1, 1, 0) =

• T (1, 0, 1) =

• T (0, 1, 1) =

• T (1, 1, 1) =
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(5) * Find the four triples whose T -codes are 0, 1, 2, and 3.

(6) The function Q : N4 −→ N given by Q(x, y, z, t) = C(C(x, y), C(z, t)) can be used to code

quadruples. We can use this coding to code four letter words. If the letter A is coded by 1,

and the letter B is coded by 2, find the codes of the words BABA and ABBA.

(7) The function Q′ : N4 −→ N given by Q(x, y, z, t) = C(T (x, y, z), t) can also be used to code

quadruples. We can use this coding to code four letter words. If the letter A is coded by 1,

and the letter B is coded by 2, find the codes of the words BABA and ABBA.

(8) Define a coding function D : N10 −→ N.
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8. Introduction to proofs I

Some statements in mathematics require proofs. The statement “There are infinitely many prime

numbers,” is true not because it is a fact of life that can be seen directly just by thinking about

the meaning of the words. We know that there are infinitely many prime numbers because there

is a proof of it. A proof is an argument that allows one to derive a consequence either form basic

principles, or form previously proved statements. To derive, means to present a series of logical

arguments that allow one to see the reason for this or that to be true. In the next three lessons we

will analyze different types of proofs to become more familiar with the concept. We will start with

examples from geometry.

What is the area of the rectangle whose dimensions are 3cm by 2cm?

2

3

The answer is 6. Why? Do we need a proof ? How can we be sure that this is correct. One can

say: the area of a 3 by 2 rectangle is 6, because to find the area of a rectangle one multiplies its

width by its length. But this is neither the proof nor an explanation. Why to compute the area of

a rectangle does one multiply its width by its length? Let’s be clear about it. We do not mean that

every time one computes the area of a rectangle one has to prove something. Not at all, we just

use the formula. However, when one learns a principle or a formula for the first time, one should

always ask: Why is this so? What are the reasons? Look at the rectangle again:

2

3

What is the area of each small square marked by the dashed lines? The area of each small square

is 1cm2. It is not because it can be computed, but because this is how areas are measured. One

first establishes the the unit of the measure: a shape that is considered to be of size 1. Then to

compute the area of a given figure, one checks how many units the other figure contains. Just by

counting the unit squares one can see that in our rectangle there are 6 unit squares, so the area

is 6cm2. No need to multiply anything. So why do we multiply? We can block the little squares

inside the rectangle either in three vertical block with two squares in each. Then the area can be

computed as 3×2 = 2+2+2 = 6. We can block them into two horizontal blocks with three squares

in each. Then the area can be computed as 2× 3 = 3 + 3 = 6. Multiplication is repeated addition.

We multiply so save time. For small rectangles it is not a bit deal, but if we needed to count all

little squares in a 128 by 256 rectangle, it would take us a long time. By multiplication we get the

area immediately: 128× 256 = 32, 768.
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What is the area of the rectangle below?

1
2

5

Okay, counting squares works fine for computing areas of rectangles. How about more complicated

figures? The area of a rectangle whose base is b and height is h is given by A = 1
2
bh (see the picture).

How do we know that?

b

h

Look at the picture below. Can you think of an argument to show that the formula is correct?

b

h

Now, we seem to be convinced, that the formula is correct, but will the argument above work for

the triangle on the picture below? Yes? No? Why?

h

b
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9. Introduction to proofs II

In the previous lesson we discussed areas. Let us see now how what we have learned can help in

proving facts about numbers. Here is a very basic fact from algebra:

The square of a sum formula

For all numbers a and b

(a + b)2 = a2 + 2ab+ b2

To prove it look at the picture below:

a b

• The length of the side of the whole square above is (a+ b). What is its area?

• The dashed lines cut the square into four pieces. What is the total area of those pieces?

• Compare the answers to both questions above. What can you conclude?

• Are you convinced that the formula for the square of a sum is valid for ALL numbers? Yes?

No? Why?

There is another useful formula

The square of a difference formula

For all numbers a and b

(a− b)2 = a2 − 2ab+ b2

We will also prove it using a picture. To do this we need to make an assumption: we will assume

that a ≥ b. Then we can draw the picture below, where the length of the side of the whole square

is a.
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ba-b

Now (a− b)2 is the area of the larger square at the bottom left corner. This square can be obtained

by removing two rectangles outlined by the dotted lines. The area of each rectangle is ab, so it looks

that (a− b)2 should be a2 − 2ab, but this is wrong. Notice that the rectangles we remove overlap.

So when we subtract their areas from a2, the area over which they overlap is subtracted twice. The

area of overlap is exactly b2, so since this b2 was subtracted twice, to get the correct answer answer,

one b2 has to be put back. Now we should be able to see that

(a− b)2 = a2 − 2ab+ b2.

Are you convinced? If you are not, concentrate on the part of the argument which is not clear to

you and discuss it with your classmates. If you are convinced try answering the following questions:

• To show that the formula is correct we made an assumption that a ≥ b. What does the

picture look like when a = b? Is the formula still correct?

• What if a is not greater than or equal b? Is the formula still correct? Analyze the problem

using examples. Try a = 3 and b = 7.

In the proofs above we could see a geometric reason for an algebraic statement to be true. Of

course, there are also proofs which use only algebra. For the formulas we considered above they are

quite easy. We will show that the formula for the square of a sum is correct using algebra. Below

you will see the steps of the proof. Your task is to say why those steps are correct. Let us start

with (a+ b)2.

• Step 1: (a+ b)2 = (a+ b)(a + b). Why?

• Step 2: (a+ b)(a + b) = a(a + b) + b(a + b). Why?

• Step 3: a(a+ b) + b(a+ b) = a2 + ab+ ba + b2. Why?

• Step 4: a2 + ab+ ba + b2 = a2 + 2ab+ b2. Why?

Notice that the last step finishes the proof. Which of the proofs seems easier, geometric or algebraic?

We could give a similar proof for the square of a difference formula, but will will do something

else. Once we proved that (a + b)2 = a2 + 2ab + b2 for all numbers a, b and c, we can argue as

follows:

• Step 1: (a− b)2 = (a+ (−b))2. Why?

• Step 2: (a+ (−b))2 = a2 + 2a(−b) + (−b)2. Why?
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• Step 3: a2 + 2a(−b) + (−b)2 = a2 − 2ab+ b2. Why?

Make sure you know the answers to all three questions above. This example shows one interesting

feature of mathematical proofs. When asked to prove a mathematical statement one does not have

to start from scratch every time a new problem is given. Instead, one can use what has already

been proved before.

In this lesson we will analyze one more proof. First let us do some calculations:

• 1 = 1

• 1 + 3 = 4

• 1 + 3 + 5 = 9

• 1 + 3 + 5 + 7 =

• 1 + 3 + 5 + 7 + 9 =

• follow the pattern ...

• ...

On the left hand side of the = sign above we have sums of numbers. Can you describe what sums

are they? Write two more sums like that and compute the answer. What do we see on the right

hand side? What are those numbers? Let us formulate this as a theorem:

Theorem The sum of consecutive odd numbers (starting with 1) is always a square.

Is the theorem true? How can we check it? What does “always” mean? Look at the pictures:

Try to see how they relate to our three first calculations, starting from 1=1. Can you draw

another picture for the next calculation? And one more? Are you convinced?

We will write an algebraic proof now, but to even begin we need a more algebraic formulation

of the theorem. If the sum of the consecutive odd numbers is a square, then it is a square of what

number? Let us see. It will help to write all odd numbers as the range of a function f : N −→ N.

The function is given by f(n) = 2n + 1. So, f(0) = 1, f(1) = 2× 1 + 1 = 3, f(2) = 2× 2 + 1 = 5,

and so on. So the set of all odd numbers can be presented this way: {2n+ 1|n ∈ N}. You can see
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that this is helpful if you try to answer the question: If the sum of consecutive odd numbers is a

square, the square of which number is it? Let us look at examples.

• If n = 0, then 2n+1 = 1, and 1 = 12. It is hard to see what is happening yet. Let’s try the

next three numbers.

• If n = 1, then 2n+ 1 = 3 and 1 + 3 = 4 = 22.

• If n = 2, then 2n+ 1 = 5 and 1 + 3 + 5 = 9 = 32.

• If n = 3, then 2n+ 1 = 7 and 1 + 3 + 5 + 7 = 16 = 42.

How does the square at the end of each line above compare to the value of n in this line? Observe

that in each line at the end we are squaring the number n+1. Is it always like this? Try n = 4. In

fact, it is always like that and you can see it looking again at our geometric proof above. We will

prove it again, this time using algebra. The theorem to prove is:

Theorem For every natural number n,

1 + 3 + · · · (2n+ 1) = (n + 1)2

By direct calculations we checked that the theorem is true for n = 0, 1, 2, 3 and 4. Suppose

that we keep checking like that and we verify that everything is fine up to some natural number

n. In other words, we are considering some number n, which we do not know, but we do know

that 1 + 3 + · · · (2n + 1) = (n + 1)2. Let’s see what happens with the next number n + 1. The

sum of consecutive n + 1 odd numbers is the sum of the n consecutive odd numbers, which is

1 + 3 + · · · (2n + 1), plus the next odd number which is 2(n + 1) + 1. Stop here for a while and

check if you understand what is happening. Okay? Let’s move on. So our sum can be written as

[1 + 3 + · · · (2n+ 1)] + (2(n+ 1) + 1).

Since we assumed that the theorem has been verified for the first n numbers, we can replace the

expression in the square brackets by (n+ 1)2. No we apply algebra:

[1 + 3 + · · · (2n+ 1)] + (2(n+ 1) + 1) = (n+ 1)2 + 2n+ 3 = [n2 + 2n+ 1] + 2n+ 3 = n2 + 4n+ 4.

To verify the theorem we need to check that this expression represents the same number as the

expression on the other side of the equation in our theorem when n is replaced by n + 1. Let’s

check. Replacing n by n+1 on the right hand sides gives us ((n+1)+1)2 = (n+2)2 = n2+4n+4.

Have we seen this before? What can we conclude?

Your answer to the last question above should be “we have proved the theorem.” Now, com-

pare the two proofs, the geometric and the algebraic? Which seems easier? Which gives more

information?
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10.
√
2 is irrational—geometric proof

What is
√
2? There are at least two possible answers.

•
√
2 is the positive real number r such that r2 = 2.

•
√
2 is the length of the diagonal of the unit square.

The two statements above are different, but one can prove that they are equivalent. This is a

consequence of the Pythagorean Theorem. The picture below shows a right triangle. Find r.

1

1
r

To learn more about
√
2 we will take a closer look at the square whose side is the same as the

diagonal of the unit square, as on the picture below. The dashed line shows the unit square which

we will use for comparison.

1

1
√
2

What is the area of the larger square? The answer is 2. So the larger square is twice larger than

the smaller one. Now r =
√
2 is the ratio of the length of the diagonal of the unit square to the

length of its side. So r =
√
2
1
. You can see from the picture that r is a number between 1 and 2,

so it is not a whole number, but we can ask if one could measure the side of the unit square, and

its diagonal using the same smaller units. In other words, can we divide the side of the unit square

into some number m of equal smaller segments, and have some exact number n of segments of the

same length on the diagonal? If we had numbers like that, that would mean that
√
2 = r = n

m
is a

rational number. We will show that it is impossible.

Now we will analyze what happens if there is a common measure for the side of the square and

its diagonal. That would mean that there is an m by m square and a larger n by n square such

that the area of the larger square is twice the area of the smaller. In other words, 2m2 = n2. We

can choose the smallest m such that 2m2 is a square. Let’s see what this m could be.

• Could m = 1? No, 2× 12 = 2 is not a square.
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• Could m = 2? No, 2× 22 = 8 is not a square.

• Could m = 3? No, 2× 32 = 18 is not a square.

• Could m = 4? No, 2× 42 = 32 is not a square.

Check two more numbers m. It seems hard to get a square by doubling a square. Could this

ever happen? Suppose we checked all numbers smaller than some m, and all their doubles are not

squares. Could 2m2 be a square? Suppose it is the square of some number n, so 2m2 = n2. This is

illustrated on the picture below.

m2

+

m2

=

n2

Now we will rearrange the squares a bit. We will put the smaller squares into the the larger one.

See the illustration below. Notice that the areas marked by C and D are squares. Do you see why?

C

C

D

We are close to a conclusion. There are two things to observe concerning the two identical smaller

squares C and the larger square D.

• The area of D is twice the area of C. This may not be that easy to see at first. Try to find

reasons why this should be true. Use the information about the areas of squares from the

previous picture.

• The length of each side of C is n−m, so it is a natural number, and the area of C is (n−m)2.

Connecting two facts verified above we see that twice (n − m)2 is a square. But n − m must be

smaller than m (do you see why?), and we verified doubling squares of numbers smaller than m we

cannot get a square. From all of it we conclude that 2m2 cannot be a square either.
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11.
√
2 is irrational—algebraic proof

The conclusion from the discussion in the previous lesson is that
√
2 is irrational. It is a beautiful

argument due to the American mathematician Stanley Tennenbaum (1927-2005). This argument

can be generalized to give proofs that
√
3,
√
5, and some other square roots cannot be rational, but

the arguments are getting more and more complicated. A much more general fact is true.

Theorem: If p is not a perfect square, the
√
p is irrational.

To see what arguments are used we will prove one more time that
√
2 using algebra. This will be

done in a series of exercises.

(1) Look at these calculations:

2× 2 = 4, 2× 6 = 12, 4× 6 = 24, 10× 32 = 320,...

3× 3 = 9, 3× 5 = 15, 5× 7 = 21, 11× 13 = 143,...

What do the numbers in the first row above have in common? What do the numbers in

the second row have in common? What is the pattern here? What do these calculations

suggest?

(2) Prove that the product of two even numbers is even.

(3) Prove that the product of two odd numbers is odd.

(4) Prove that the square of a number is even if and only if the number is even.

(5) Prove that the square a number is odd if and only if the number is odd. You can write an

independent proof, but you can also use the fact proved in the previous exercise. See how

it can be done.
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Now we are ready to begin the algebraic proof that
√
2 is irrational. In the previous lesson we

saw that it is enough to show that twice a square is never a square. We will prove it again, this time

using algebra. Suppose, to the contrary, that there is an m such that 2m2 is a square. Then, there

is the smallest natural number m such that 2m2 is a square (why?). So let us take this smallest m,

and let n2 = 2m2. We will now analyze the following arguments:

• Since 2m2 = n2, n2 is an even number.

• It follows that n is an even number, Why?

• Since n is even it can be written as 2k for some number k. So, n2 = (2k)2 = 4k2.

• Now we have 2m2 = 4k2, and this implies that m2 = 2k2.

• Look, something is wrong here. We assumed that m was the smallest number such that

twice m2 is also a square. But now we see that twice k2 is a square, and k is certainly

smaller than m (why?). So our assumption must have been wrong, twice m2 could not have

been a square to begin with.

The last sentence above finishes the prove. Are you convinced? A proof of this kind is called a

proof by contradiction. We assume the opposite of what we are trying to prove and we derive a

contradiction from it. This proves that the opposite is impossible, so the statement we are proving

must be true. Many facts in mathematics are proved by this method. We will see more examples

soon.

Project 1: Prove that
√
3 is irrational.

Project 2: Think of real life situations when you are trying to prove something to someone.

Have you ever used a proof by contradiction? Even if not, try to describe one or two.
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12. Friends and strangers. Introduction to graph theory

When two people meet, one of the following can happen: either they know each other, if this

happens we will call them friends, or they do not, so they are strangers. This simple fact of life does

not seem to have much to do with mathematics. Still, let us think of the following mathematical

representation of this situation. Think of a collection of points on a plane, each representing a

person. We will call these points vertices. Suppose that there is a line connecting two vertices

in each case when the people represented by the vertices know each other. We will call these lines

edges. Now think of the set of all people. The corresponding set of vertices together with the edges

we just described is an example of a graph. Graphs are very useful in analyzing many practical and

theoretical problems. You will learn much more abut graphs in Discrete Mathematics II (CSI35).

In this section we will just use them to analyze the proof of a particular theorem about graphs.

There is a slightly different way to represent the friendship relation. We will consider a graph

with vertices representing all people, but now we will assume that there is an edge connecting any

two distinct vertices. A graph in which any two distinct vertices are connected with an edge is

called full. The edges of our graph are colored in the following way. If two people know each other,

the edge connecting the vertices representing them is red, otherwise it is blue. The choice of colors

is not important. It only matters that we can differentiate between two kinds of edges. The simple

statement from the beginning of this section can be rephrased as follows: in the graph we just

described, every edge is either red or blue.

We will call a graph in which each edge has one of two given colors a two-colored graph.

Now, let’s think of three randomly selected individuals and the corresponding colored friendship

graph on three vertices. The vertices together with their edges they form a triangle. The triangle

can be all red or all blue or it can have vertices of different colors—two red and one blue or one red

and two blue. So we see that there are four different two-colored graphs on three vertices.

(1) Consider the full graph with three vertices {v1, v2, v3}. If every edge is colored either red or

blue, in how many ways can this be done? (Hint: Use the theorem from Lesson 4) Compare

your answer with the last remark before this problem? Why is the answer not four?

(2) Consider the full two-colored graph with n vertices (n > 1) {v1, v2, . . . , vn}. If every edge is

colored either red or blue, in how many ways can this be done? Use a calculator to get the

answer for n = 6 and n = 43.

We will consider triangles formed by any three distinct vertices of the friendship graph.

If all three edges of such a triangle are red, or they are all blue, then the triangle is called

monochromatic.

(3) Find a two-coloring of the full graph with four vertices without a monochromatic triangle.
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(4) Find a two-coloring of the full graph with five vertices without a monochromatic triangle.

(5) Play a few rounds of the following game. The game has two players. To begin the game

draw six vertices on a plane. Players take turns drawing edges. One draws red edges and

the other blue. The first player to draw a monochromatic triangle loses.

Has anyone won the game? Better not, because no one can win for a simple reason: any

two-coloring coloring of the full graph with six vertices contains a monochromatic triangle.

In particular, it follows that in every party of six people there are always either three mutual

friends, or three mutual strangers. This is a theorem. How can such a theorem be proved?

One way would be to check all possible two-colorings of the full graph on six vertices, and

to verify that in each case one can find a monochromatic triangle.

(6) Estimate the time a computer would need to verify the theorem about the two-colored full

graphs with six vertices. Of course, the answer can very depending on how fast the computer

is and how well the software used for the task is written. Make your own assumptions about

that.

Here is an illustration of the full graph with six vertices:

b1

b 2

b 3
b
4

b5

b6

Instead of using software, we will provide a proof. Here it goes.

The Proof: Think of a full two-colored graph with six vertices. Chose one vertex v0 and

consider the five edges connecting it to the other five vertices. At least three of those edges

must be of the same color (Why? This should be clear. For an exercise, write a sentence

or two with an explanation.) Choose three of those edges with of the same color, assume it

is blue. Let v1, v2 and v3 be the vertices at the other end of the blue edges. Now, if there

is a blue edge between any two of these vertices, then, together with v0 they form a blue

triangle, so the graph has a monochromatic blue triangle. If not, than all edges between

v1, v2 ad v3 are red, so the graph has a monochromatic red triangle. This concludes the
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proof. Are you convinced? In any case one should appreciate the simplicity of the argument

compared to the arduous task of direct checking using software.

The problem of finding monochromatic triangles in graphs can be generalized in many

ways. One can look for other geometric shapes colored with one color. One can increase the

number of colors. This all leads to interesting questions and answers. Details can become

quite complicaed.

A monochromatic square is a full graph on four vertices in which all edges have the

same color.

(7) Find a two-coloring of the full graph on six vertices that does not have a monochromatic

square.

One of the important theorems of graph theory states that for every number m, there is

a number n, such that for every two-coloring of the full graph on n vertices, there are m

vertices such that all edges between them have the same color. Let us denote the smallest

such number n by R(m). In this way we have defined a function R : N −→ N. What kind

of function is it? We have just verified that R(3) = 6. What about R(4)? The answer is 18,

but it is much more difficult to prove. Even more surprisingly, no one knows the exact value

of R(5). It is known that R(5) must be between 43 and 48. To understand better why it is

so hard to compute this number do the last exercise of this section.

(8) Estimate the time a computer would need to check that there is a monochromatic pentagon

in every two-colored full graph on 43 vertices.
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13. Fundamental Theorem of Arithmetic

Recall that a natural number is prime if it has no divisors other than 1 and itself. Here is the

list of the first 1000 prime numbers:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157

163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331

337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509

521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709

719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919

929 937 941 947 953 967 971 977 983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093

1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277

1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447

1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601

1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777

1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973

1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131

2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311

2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477

2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687

2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843

2851 2857 2861 2879 2887 2897 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041

3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253

3257 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433 3449

3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571 3581 3583 3593 3607 3613

3617 3623 3631 3637 3643 3659 3671 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797

3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001

4003 4007 4013 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139 4153 4157 4159 4177

4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337 4339 4349 4357 4363 4373

4391 4397 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583

4591 4597 4603 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733 4751 4759 4783 4787

4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973

4987 4993 4999 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087 5099 5101 5107 5113 5119 5147 5153 5167 5171

5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399

5407 5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569

5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701 5711 5717 5737 5741 5743 5749 5779

5783 5791 5801 5807 5813 5821 5827 5839 5843 5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939 5953

5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131 6133 6143 6151 6163 6173

6197 6199 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353

6359 6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473 6481 6491 6521 6529 6547 6551 6553 6563 6569 6571

6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781

6791 6793 6803 6823 6827 6829 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959 6961 6967 6971

6977 6983 6991 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193

7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297 7307 7309 7321 7331 7333 7349 7351 7369 7393 7411 7417 7433
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7451 7457 7459 7477 7481 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561 7573 7577 7583 7589 7591

7603 7607 7621 7639 7643 7649 7669 7673 7681 7687 7691 7699 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 7817

7823 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 . . .

The list of prime numbers never ends. For every number there is a prime number greater than

it. This was proved long time ago ago by Euclid. He was a Greek mathematician who lived around

300BC. In the next lesson we will study his proof, but first we will spend some time discussing what

is so special about prime numbers.

Numbers which are not prime are composite. There is an abundance of them and they can be

categorized:

• Multiples of 2: 2, 4, 6, 8, 10, 12,...

• Multiples of 3: 3, 6, 9, 12, 15, 18,...

• Multiples of 5: 5, 10, 15, 20, 25, 30, 35,...

• Multiplies of 7: 7, 14, 21, 28, 35, 42, 49,...

• Multiples of 11: 11, 22, 33, 44, 55, 66, 77,...

Notice that we regard each number as a multiple of itself.

Every number is a multiple of a prime number. Do you see why? Could you explain? It follows

that every number is either prime or can be written as a product of prime numbers.

(1) Write the following numbers as products of prime numbers.

(a) 27

(b) 52

(c) 125

(d) 143

(e) 1024

Notice one interesting thing. Each number above is decomposed into the product of prime

numbers in only one way (if you write the primes in the increasing order). In fact this is

always so. This property is called The Fundamental Theorem of Arithmetic. It says:

Fundamental Theorem of Arithmetic: Every natural number is either prime or can

be written as the product of prime numbers in a unique way.

In this lesson we will prove the Fundamental Theorem of Arithmetic. We already know

one part of it, it is called the existence part: if a number is not prime, then there exists

a decomposition of it into the product of prime numbers. Curiously, the uniqueness part,

which says that the decomposition is unique, is much harder to prove. It is the most difficult

argument we will look at this semester.

In preparation for the proof we will first discuss greatest common divisors and the notion

of coprime pairs of numbers. The greatest common divisor of numbers a and b, denoted

gcd(a, b) is the greatest number d which divides both a and b. For example gcd(8, 12) = 4,

and gcd(20, 35) = 5. If the numbers a and b are prime then the only common divisor of a

and b is 1, so gcd(a, b) = 1. We can also have gcd(a, b) = 1 for numbers a, b which are not
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prime, for example gcd(25, 36) = 1 and gcd(6, 35) = 1. If gcd(a, b) = 1, then we say that a

and b are coprime.

(2) Find all coprime pairs of numbers in the list of multiples of primes on the previous page.

Now we need another theorem due to the French mathematician Étienne Bézout (1730-

1783).

Theorem: If a and b are coprime numbers, then there are integers m and n such that

ma + nb = 1.

(3) Try to find m and n as in Bézout’s theorem for three pairs of coprime numbers you found

in Exercise (2).

(4) There are no integers m and n such that m× 2 + n× 4 = 1. Can you prove it?

Proof of Bézout’s Theorem

We assume that a and b are coprime numbers. Consider the set

D = {ma+ nb|m,n ∈ Z and ma + nb > 0}.

The set D consists of positive natural numbers, so it has a least element. Let’s call this

least element d. So d is the smallest positive number which can be written as ma + nb

for some integer m and n. Applying division with remainder, we get the quotient q and a

reminder r such that a = qd+r and r < d. Now we will use simple algebra. Since a = qd+r,

we see that

• r = a− gd. Then, since d = ma + nb we get
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• r = a − q(ma + nb). Then, by applying the distributive law and collecting terms in a

different way we get

• r = a− qma− qnb = a(1− qm) + b(−qn).
The last line above is telling us something. Let m′ = (1− qm) and n′ = −qn. Both m′ and

n′ are integers, so if r = m′a + n′b ≥ 0 , then r is an element of our set D. But r < d, and

d is the smallest element of D. It follows that r = 0.

Now, since r = 0, we see that a = qd, which means that d is a divisor of a. Exactly the

same argument, starting with dividing d into b instead of a, shows that d is a divisor of b. So

d is a common divisor of a and b. Since a and b are coprime, d = 1. This finishes the proof

of Bézout’s Theorem. Notice one thing. The proof is telling us that there must be numbers

m and n as required in the theorem, but is not telling us how to find them. Finding m and

n is more complicated matter.

Now we will use Bézout’s Theorem to prove a very important property of prime numbers.

Theorem: A prime number p divides the product ab if and only if p divides a or p divides

b.

It is clear that if p divides either a or b then p divides the product ab, and no special

assumption on p is needed to prove that. Let us assume now that p divides ab, and suppose

that p does not divide a. Since p is prime, it follows that gcd(p, a) = 1. Then, by Bézout’s

theorem, there are m and n such that

mp + na = 1.

Multiplying both sides by b we get

mpb+ nab = b.

Now, since p divides ab, ab = pc for some number c. So finally we get

mpb+ npc = p(mp+ nc) = b.

This means that p divides b, which finishes the proof.

At last we are ready for the

Proof of the Fundamental Theorem of Arithmetic

If there is a number s which can be written as the product of primes numbers in two

different ways, then there is a smallest such number. So let s be the smallest number such

that s = p1p2 . . . pm = q1q2 . . . qn. By the previous theorem, p1 must divide one of the

numbers q1, q2, ..., qn. Since p1 is prime, it must be equal to the prime qi it divides. Remove

p1 from the first product, and qi = p1 from the second product. What remains is a number

s′ which is smaller than s and it can be written as a product of primes in two different

ways. This is a contradictions since we assumed that s was the smallest such number. This

concludes the proof of the Fundamental Theorem of Arithmetic.
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14. Euclid’s Theorem and open problems in number theory

Using facts about prime numbers we learned in the previous lesson we will now prove the famous

Euclid’s theorem.

Euclid’s Theorem

There are infinitely many prime numbers.

Proof: We will show that for every prime number there is a prime number greater than it. Suppose

that 2, 3, 5, ..., p is the list of consecutive prime number up to some prime number p. Let d be the

number 2×3×5×· · ·×p+1. As we have seen in the previous lesson either d is prime, and this case

we already have what we wanted to prove. If d is not prime, then it is divisible by a prime number

q. We will show that q must be larger than p. Suppose not. To simplify notation, let us assume

that p divides d. So d = pc for some number c. Now we have d = pc = 2× 3× 5× · · · × p+ 1, and

then pc− 2× 3× 5× · · · × p = 1. Let c′ be the product of all prime numbers smaller than p. Then

pc− pc′ = p(c− c′) = 1. This can only happen if p = 1, which gives us contradiction and finishes

the proof.

The proof of Euclid’s theorem is telling us that for every prime number p there is a prime number

q which is bigger than p, but is not telling us how to find this number q. Mathematicians and

computer scientists use sophisticated methods and a lot of computing power to find large prime

numbers. Currently the largest known prime number is 243112609 − 1. It was found in 2008. It has

12978189 digits.

(1) In the last lines of argument above we have have assumed that d is divisible by p. How

should the argument be changed if d is divisible by a prime number smaller than p?

We know much about prime numbers, but there is even more we do not know. By doing

simple computations one can verify that even numbers greater than 2 can be written a the

sum of two prime numbers. For example 4=2+2, 6=3+3, 8=3+5 etc. We do not know of a

single even number that cannot be written this way.

(2) Verify that every even number up to 100 can be written as a sum of two prime numbers.
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The statement that every even number greater than 2 can be written as the sum of

two prime numbers is known as Goldbach’s Conjecture. Conjecture is a statement that is

believed to be true, but has not yet been proven. Goldbach’s conjecture has been verified

by a computer for all even numbers n ≤ 4× 1018.

Another well known conjecture about prime numbers is known as the Twin Primes Con-

jecture. Is says that there are infinitely many pairs of prime numbers which differ by 2. For

example 3,5 and 11,13 are examples of such pairs.

(3) How many twin prime pairs are there among the first 1000 prime numbers?

No one knows how to prove or to refute the Twin Primes conjecture. The largest known

twin primes, 3756801695685× 2666669 ± 1, were found in 2011. The numbers have 200,700

decimal digits.
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15. The infinite binary tree

This lesson will be about one very important mathematical object: the binary tree. Here it is.

Below you see the first four levels of the tree. It starts at the level 0, which is called the root of

the tree. The tree grows up from the root. The splitting points are called nodes. Each node at the

lower level splits into two nodes at the level one above.

Challenge: With a sharp pencil draw as many additional level as you can. Count the number

of nodes at each level. How many nodes are there at level 10? How many would be at level 100?

root, level 0

level 1

level 2

level 3
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Now you need to imagine the full infinite binary tree with all its levels present.

(1) Prove that each level n of the full binary tree has 2n nodes.

An infinite set is called countable if it is the range of a function whose domain is the set

of natural numbers N. For example, the set of even numbers is countable. The set of even

numbers is the range of the function f : N −→ N, given by f(n) = 2n

(2) Show that the following sets are countable:

(a) Odd numbers.

(b) Square numbers.

(c) Prime numbers.

(d) Integer numbers Z.

Recall that Cantor pairing function is a one to one and onto function C : N −→ N× N. It

follows that the Cartesian product N× N is countable.

(3) Use Cantor pairing function to prove that the set of positive rational numbers Q+ is count-

able.

(4) Prove that if the set A and B are countable, then so is their union A ∪B.

(5) Prove that the set of rational numbers Q is countable.
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There are infinite sets which are not countable. We call them uncountable. The simplest

example of such a set is the set of all branches of the full binary tree. What is a branch of

the full binary tree? Think of it as an infinite path that starts at the root of the tree (level

0), and then moves all the way up the tree. As a warm-up for the the proof of the theorem

below, count the number of finite paths that start at the root, and terminate at level 3. How

many such paths terminate at level 10?

Theorem The set of branches of the full binary tree is uncountable.

Proof: Let B be the set of all branches of the full binary tree, and let f : N −→ B be a

function. We will see that the range of f can not be all of B, in other words, f can not be

onto. To see this we will examine f and we will produce a branch b that is not in the range

of f . First we look at f(0). It is a branch which starts at the root and either goes to the

right or to the left. If f(0) goes to the right we decide that b will go to the left. If f(0) goes

to the left, we will tell b to go to the right. Then we take the branch f(1) an we see what

it does at level 1. If f(1) already disagrees with b as we defined it so far, we can extend b

to level 2 any way we want, however if f(1) agrees with b at level 1, and it goes to the left

to level 2, we tell b to go to the right, and if f(1) goes to the right, b will go to the left. Do

you see what is happening? We define our branch b step-by-step. At the step n we look at

the branch f(n). If b disagrees with f(n) already, good, we extend b to the next level either

by going to the left or to the right. However, if f(n) is the same as b, we can extend it,

as we described above, so it disagrees with f(n) at the next level. Proceeding like this (to

infinity!), we will define a complete infinite branch b which disagrees with all branches f(n)

for all numbers n in N, which shows that b is not in the range of f .

Project: Only a slightly more difficult argument shows that the set of real numbers

R is uncountable. This means that in a sense there are more real numbers than rational

numbers. There are different levels of infinity. Find more information about it on internet

and present your findings in class.
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16. Formal Logic

In this last lesson we will make an overview of the course, but we will do it a bit differently. We

will make a summary of the most important concepts we have studied, but we will talk about them

in a more formal way, using symbols of mathematical logic. All mathematical statements in this

workbook can be written in a formal language in which one can use:

• Names of functions and relations: R, f , g, ∈, <, ≤, =, +, ×,... .
• Variables: x, y, z, ..., X,Y,Z, ... .

• Brackets: (, ), [, ], ...

• Logical connectives: ∧ (and), ∨ (or), ¬ (not), −→ (if then), ←→ (if and only if).

• Quantifiers: ∃ (there exist), ∀ (for all).

We will examine examples of formal statements below. Formal statements are difficult to read.

They are listed as exercises. For each formula, read it and try co convince yourself that is expresses

what it is supposed to express. These exercises are not easy.

16.1. Sets, relations, and functions. In the formulas below X , Y , Z represent arbitrary sets.

(1) X is nonempty:

∃x(x ∈ X).

(2) X is a subset of Y :

∀x(x ∈ X −→ x ∈ Y ).

(3) X is the intersection of Y and Z:

∀x[x ∈ X ←→ (x ∈ Y ∧ x ∈ Z)].

(4) X is the union of Y and Z:

∀x[x ∈ X ←→ (x ∈ Y ∨ x ∈ Z)].

(5) X has two or more elements:

∃x∃y(x ∈ X ∧ y ∈ X ∧ ¬(x = y)).

(6) X has exactly two elements:

∃x∃y[(x ∈ X ∧ y ∈ X ∧ ¬(x = y)) ∧ ∀z(z ∈ X −→ (z = x ∨ z = y)].

(7) R is a relation with domain A and codomain B:

∀z[z ∈ R −→ ∃x∃y(x ∈ A ∧ y ∈ B ∧ z = (x, y))].

(8) The relation R with the domain A is a function:

[∀x(x ∈ A −→ ∃y(x, y) ∈ R) ∧ ∀x∀y∀z[(x, y) ∈ R ∧ (x, z) ∈ R −→ y = z].

(9) The function f : A −→ B is onto:

∀y[y ∈ B −→ ∃x(x ∈ A ∧ f(x) = y)].

(10) The function f : A −→ B is one to one:

∀x∀y∀z[(f(x) = z ∧ f(y) = z) −→ x = y].
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(11) The set Y is the range of a function f :

∀y[y ∈ Y −→ ∃x[x ∈ X ∧ f(x) = y].

16.2. Natural numbers and their properties. In all examples below the quntifiers range over

the natural numbers: ∃x means “there exists a natural number x,” and ∀x means “for all natural

numbers x.”

(1) x is even:

∃y(x = 2y).

(2) x is odd:

∃y(x = 2y + 1).

(3) x divides y:

∃z(y = xz).

(4) x is prime:

¬(x = 1) ∧ ∀y∀z[x = yz −→ (y = x) ∨ (z = x)].

When formal expressions become to long to read comfortably, it is convenient to use

abbreviations. In the formulas below we will use the following abbreviations: P (x) stands

for “x is prime” and E(x) stands for “x is even.”

(5) There are infinitely many primes:

∀x∃y[y > x ∧ P (y)].

(6) Goldbach’s Conjecture:

∀x[(x > 2 ∧ E(x)) −→ ∃y∃z(P (y) ∧ P (z) ∧ x = y + z.]

(7) Twin Primes Conjecture:

∀x∃y[y > x ∧ P (y) ∧ P (y + 2)].

16.3. Formal rules. There are many advantages of formal notation. One is that formulas can

be transformed mechanically using logical rules in a way that preserves their validity. Here are

examples of useful rules from logic. The notation p ≡ q indicates that the statements p and q

are logically equivalent. In the rules below, p and q represent arbitrary statements which can be

assigned a truth value. This means that p and q can be either true or false.

• ¬¬p ≡ p.

• (p −→ q) ≡ (¬p ∨ q).

• (p −→ q) ≡ (¬q −→ ¬p).
• (p←→ q) ≡ [(p −→ q) ∧ (q −→ p)].

• De Morgan’s Law for conjunction: ¬(p ∧ q) ≡ (¬p ∨ ¬q).
• De Morgan’s Law for disjunction: ¬(p ∨ q) ≡ (¬p ∧ ¬q).
• De Morgan’s Law for the existential quantifier: ¬(∃xA(x)) ≡ ∀x¬A(x).
• De Morgan’s Law for the universal quantifier: ¬(∀xA(x)) ≡ ∃x¬A(x).
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Let P (x) be the formal expression representing that x is a prime number. Using the formal rules

above on can show that ¬P (x) is equivalent to

(x = 1) ∨ ∃y∃z[x = yz ∧ y 6= x ∧ z 6= z].

(1) Use formal rules above and the formal statement of the fact that the function f : A −→ B

is onto, to write and simplify as much as possible the statement “the function f : A −→ B

is not onto.”

(2) Use formal rules above and the formal statement of the fact that the function f : A −→ B is

one to one, to write and simplify as much as possible the statement “the function f : A −→ B

is not one to one.”

(3) Write a formal negation of Goldbach’s Conjecture and simplify it as much as possible.

(4) Write a formal negation of the Twin Primes Conjecture and simplify it as much as possible.
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17. The Principle of Mathematical Induction

In this lesson we will examine in detail a special proof method involving statements about natural

numbers. When we talk about such statements in general, we refer to them as expressions of the

form A(n), where A stands for some property and n denotes an arbitrary natural number. For

example A(n) can say

1 + 2 + · · ·+ n =
(n + 1)n

2
.

A statement A(n) can be true for some values of n, and false for some other values. We are

particularly interested in statements that are true for all values of n. The fact that A(n) is true

for all natural numbers n can be formally written as ∀nA(n), where the quantifier ∀n refers to all

natural numbers n. How can we prove that ∀nA(n) is true? We may check directly that A(0)

holds, and A(1) holds, and A(2) holds and so on. Still, no matter how many instances we check,

we cannot be sure that A(n) holds for all numbers n. How can one prove anything about infinitely

many numbers? One way is to prove that A(n) is true by an argument that does not depend on

the actual value of n. Algebraic proofs are often like that. In such such proofs it usually does not

matter that we deal with natural numbers, we could as well talk about properties of real numbers

A(r) and consider universal statements of the form ∀rA(r), where the universal quantifier ranges

over all real numbers. However, there is another proof method that applies only to natural numbers.

It uses the fact that every natural number can be reached from 0 by successive addition of 1.

In the case of our A(n) above, it is easy to check that A(1) is true.3 Now suppose that we know

that A(n) is true for some number n. We will show that from this we can deduce that A(n + 1)

also holds. Look, A(n) says:

1 + 2 + · · ·+ n =
(n + 1)n

2
.

To see what A(n+ 1) says, replace n by n + 1 everywhere in the statement above. We get

1 + 2 + · · ·+ (n+ 1) =
((n+ 1) + 1)(n+ 1)

2
. (1)

The expression on left hand side of the equation above can be rewritten as 1+2+ · · ·+n+(n+1).

Since we already know that A(n) holds, this expression can be further rewritten as (n+1)n
2

+(n+1).

We simplify this expression as follows

(n+ 1)n

2
+ (n+ 1) =

(n + 1)n

2
+

2(n+ 1)

2
=

n2 + 3n + 2

2
(2)

Now let’s look at the right hand side of the equation (1) above. By expanding the numerator,

we see that this expression can be written as n2+3n+2
2

, and this is exactly what we obtained in (2).

Assuming that A(n) holds, we were able to prove that A(n + 1) holds as well. This completes the

proof that A(n) is true for all natural numbers n. Are you convinced? Here is how one can argue:

If there were an n such that ¬A(n), then there would be the smallest such n. Since we checked that

A(1) holds, this smallest n cannot be equal to 1. So we can subtract 1 from it. But since n is the

smallest such that ¬A(n) holds, A(n − 1) must be true, but then by adding 1 to n − 1 and using

the argument we described above, we see that A(n) must hold after all. This is a contradiction,

and it shows that there cannot be any n for which we have ¬A(n), and this implies that ∀nA(n) is
a true statement.

3Notice that A(0) would also be true, if we just erased the first 1 in the statement of A(0).
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The Principle of Mathematical Induction can be written using logical symbols. Let A(n) be any

statement in which n represents a natural number n. Then the principle for A(n) can be written

as:

[A(0) ∧ ∀n(A(n) −→ A(n + 1))] −→ ∀nA(n).
(1) Prove the Principle of Mathematical Induction.
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(2) Use the Principle of Mathematical Induction to prove that for all natural numbers n

1 + 3 + 5 + · · ·+ (2n + 1) = (n + 1)2

(3) Use the Principle of Mathematical Induction to prove that for all natural numbers n > 0,

the decimal expansion of the number 5n ends with a 5.
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(4) Use the Principle of Mathematical Induction to prove that for all natural numbers n > 0

and all numbers d = 2, 3, . . . , 9 the decimal expansion of the number dn does not end with

a 0.

(5) (For those who know differential calculus) Use the Principle of Mathematical Induction to

prove that for all natural numbers n the derivation of the function y = xn is the function

y = nxn−1. Hint: Use the product rule fact that the derivative of a constant function is 0.
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(6) Use the Principle of Mathematical induction to prove that the full graph on n vertices has

exactly n(n−1)
2

edges.

Sometimes the statement A(n) may not be true for initial values of n. Sometimes A(n)

may not even make sense for some n. Consider, for example, the statement A(n) that says

1 + 1
n
= n+1

n
. This statement is true for all n > 0 (and one does not need the Principle

of Mathematical Induction to prove it), but A(n) is meaningless for n = 0. In this case

the statement ∀n A(n) is not true in the domain of all natural numbers, but the statement

∀n[n > 0 −→ A(n)] is. To deal with cases when A(n) does not hold for some initial values

of n, we use the following form of the Principle:

Let b be a natural number. Then

[A(b) ∧ ∀n(A(n) −→ A(n + 1))] −→ ∀n[n ≥ b −→ A(n)].

(7) Use the Principle of Mathematical Induction to prove that for all natural numbers n > 4,

n2 < 2n.



WORKBOOK FOR CSI 30. DISCRETE MATHEMATICS I. 58

(8) Use the Principle of Mathematical Induction to prove that for all natural numbers n > 3,

2n < n!.

(9) Use the Principle of Mathematical Induction to prove that for all natural numbers n

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ ¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn.

(10) Use rules of logic to write the statement ¬{[A(0) ∧ ∀n(A(n) −→ A(n + 1))] −→ ∀nA(n)}.
in such a way that the negation sign ¬ is only directly in front of A.
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18. Epilogue

Much can be said about the imprtance of mathematics in sciences and in computer science in

particular, but instead, here is a quote an email from a former BCC student:

I am currently working in Investment Management IT on the Straight-Through Pro-

cessing team (trade settlement automation). The company is great and things have

been ok. Really interested in getting back to Math though. I do not think I under-

stood or gave it the chance it deserved (I was not abstract enough in my thinking,

too concrete). I am currently torn between applied and pure math but I am leaning

more towards applied math because I like to see things in use. Software is great, but

I feel incomplete without the core mathematical understanding.


