Vector Algebra - Part I

Vector It is a quantity which has both magnitude and direction.

Position Vector

For a point P(x, y, z) in 3-D coordinate system, \overline{OP} or \overline{r} is the position vector with origin O as initial point.

Magnitude of $\overline{OP} = |\overline{OP}| = \sqrt{x^2 + y^2 + z^2}$

Direction Cosines and Direction Ratios

- 1 Position vector \overline{OP} makes angle α, β and γ with x, y and z axes.
- 2 $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are the direction cosine of vector \overline{OP} and denoted by I, m and n.
- 3 Direction cosines are unique for a given line
- 4 Number proportional to direction cosines are called as direction ratios, denoted by a, b and c. ↑ Z

5 We also have $l^2 + m^2 + n^2 = 1$.

Types Of Vectors

- 1 Zero Vector Vector with zero magnitude, denoted as ō
- 2 Unit Vector Whose magnitude is 1 unit. Unit vector along ā is denoted as â
- 3 Cointial Vectors Two or more vectors with same initial point
- 4 Collinear Vectors Two or more vectors lying on the same or parallel lines.
- 5 Equal Vectors Two or more vectors with same magnitude and direction.
- 6 Negative Vectors Vector with same magnitude but opposite direction as that of the given vector.

Addition Of Vectors

Triangle Law Of Addition

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

i.e $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = 0$
 $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$
 $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AA}$

Parallelogram Law Of Addition

$$\overline{OA} + \overline{OB} = \overline{OC}$$

i.e $\overline{a} + \overline{b} = \overline{c}$

Properties Of Vector Addition

 $\bar{a} + \bar{b} = \bar{b} + \bar{a}$; commutative property $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$; Associative property

Vector Algebra - Part II

Multiplication Of Scalar and Vector

- 1 Multiplication of scalar λ with vector \bar{a} is $\lambda \bar{a}$.
- 2 $\lambda \bar{a}$ is collinear to vector \bar{a} .
- 3 Direction of $\lambda \bar{a}$ depends upon λ .
 - (a) If λ is positive its direction is same as that of \bar{a} .
 - **b** If λ is negative its direction is opposite to that of \bar{a} .
- 4 Magnitude of $\lambda \bar{a} = |\lambda \bar{a}|$ = $|\lambda||\bar{a}|$

Components Of Vectors

For position vector OP of a point P(x, y, z), We have $\overline{OP} = x\overline{i} + y\overline{j} + z\overline{k}$

Where \bar{i} , \bar{j} and \bar{k} are unit vectors along x, y and z - axes , and

 $x\bar{i}$, $y\bar{j}$ and $z\bar{k}$ are the components of vector OP along x, y and z - axes.

Vector Joining Two Points

$$p_{1}(x_{1}, x_{1}, z_{1}) \quad p_{2}(x_{2}, x_{2}, z_{2})$$

$$\overline{p_{1}p_{2}} = (x_{2} - x_{1})\overline{i} + (y_{2} - y_{1})\overline{j} + (z_{2} - z_{1})\overline{k}$$

$$|\overline{p_{1}p_{2}}| = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}}$$

Section Formula

Internal Division

$$\bar{r} = \frac{m\bar{b} + n\bar{a}}{m + n}$$

External Division

$$\bar{r} = \frac{m\bar{b} - n\bar{a}}{m - n}$$

\vec{b}

à

Q

Midpoint Formula

$$\bar{r} = \frac{\bar{a} + \bar{b}}{2}$$

Vector Algebra - Part III

Scalar Product

For vectors \overline{a} and \overline{b} . It is denoted as $\overline{a}.\overline{b} = |\overline{a}| |\overline{b}| \cos \theta$ Where θ is angle between \overline{a} and \overline{b} , $0 \le \theta \le \pi$

Properties Of Scalar Product

- 1 ā.b is a scalar quantity.
- $\bar{a}.\bar{b} = \bar{0} \Leftrightarrow \bar{a} \perp \bar{b}$
- $\mathbf{3} \ \bar{\mathbf{a}}.\bar{\mathbf{b}} = |\bar{\mathbf{a}}| |\bar{\mathbf{b}}| \Leftrightarrow \theta = \mathbf{0}^{0}$
- $\overline{\mathbf{a}.\mathbf{b}} = -|\mathbf{a}||\mathbf{b}| \Leftrightarrow \theta = 180^{\circ}$
- **5** $\bar{i}.\bar{i} = \bar{j}.\bar{j} = \bar{k}.\bar{k} = 1$
- $\overline{i.\overline{j}} = \overline{j.\overline{k}} = \overline{k.\overline{i}} = 0$
- $7 \cos \theta = \frac{\bar{a}.\bar{b}}{|\bar{a}|\,|\bar{b}|}$

- 8 $\bar{a}.\bar{b} = \bar{b}.\bar{a}$
- **9** $\bar{a}.(\bar{b} + \bar{c}) = \bar{a}.\bar{b} + \bar{a}.\bar{c}$
- 10 if $\bar{a} = a_1 \bar{i} + a_2 \bar{j} + a_3 \bar{k}$ and $\bar{b} = b_1 \bar{i} + b_2 \bar{j} + \bar{b}_3 k$ then $\bar{a}.\bar{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
- 11 $(\lambda \bar{a}).\bar{b} = \lambda(\bar{a}.\bar{b})$ = $\bar{a}.(\lambda.\bar{b})$

Vector Product

For vectors \bar{a} and \bar{b} it is defined as $\bar{a} \times \bar{b} = |\bar{a}| |\bar{b}| \sin \theta \hat{n}$

Where θ is an angle between \bar{a} and \bar{b} , $0 \le \theta \le \pi$ and \hat{n} is the unit vector perpendicular to both \bar{a} and \bar{b} such that \bar{a} , \bar{b} and \hat{n} form a right handed system

Properties Of Vector Product

- 1 ā x b̄ is a vector.
- $\bar{a} \times \bar{b} = 0 \Leftrightarrow \bar{a} \parallel \bar{b}$
- 3 $\bar{i}x\bar{i}=\bar{j}x\bar{j}=\bar{k}x\bar{k}=0$
- 4 $i \times j = j \times \bar{k} = i, \bar{k} \times i = j$

5 $\sin \theta = \frac{|\bar{a} \times \bar{b}|}{|\bar{a}| |\bar{b}|}$

- $\mathbf{6} \ \mathbf{\bar{a}} \times \mathbf{\bar{b}} = -\mathbf{\bar{b}} \times \mathbf{\bar{a}}$
- $\bar{a} \times (\bar{b} + \bar{c}) = \bar{a} \times \bar{b} + \bar{a} \times \bar{c}$
- 8 $\lambda(\bar{a} \times \bar{b}) = (\lambda \bar{a}) \times \bar{b} = \bar{a} \times (\lambda \bar{b})$
- 9 if $\bar{a} = a_1 \bar{i} + a_2 \bar{i} + a_3 \bar{k}$ and $\bar{b} = b_1 \bar{i} + b_2 \bar{j} + b_3 \bar{k}$ then

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$