
This document is stored in Documents/4C/vectoralgebra.tex Compile it
with LaTex.

September 23, 2014
Hans P. Paar

VECTOR ALGEBRA

1 Introduction

Vector algebra is necessary in order to learn vector calculus. We are deal-
ing with vectors in three-dimensional space so they have three components.
The number of spatial variables that functions and vector components can
depend on is therefore also three.

I assume that the reader is familiar with vector addition and subtraction
as well as multiplication of a vector by a scalar from previous courses.

In this document we review the dot product or scalar product of two
vectors and the cross product or vector product of two vectors. These are
also familiar from previous courses but I want to introduce the notion of
a determinant borrowed from linear algebra, a branch of mathematics that
is not a prerequisite for understanding this document. I am unnecessarily
fancy in places but you might as well learn about the material in the manner
presented below at this time as you have to know it anyway sometime in
the future.

We shall use Carthesian coordinate systems which by definition have
three mutually perpendicular coordinate axes x, y, z with unit vectors ex,
ey, ez along its respective x, y, z axes directed in the positive directions.
We do not use the notation i, j,k for these.

2 The Scalar Product of Two Vectors

The scalar product of two vectors v = (vx, vy, vz) and w = (wx, wy, wz) is
written formally

v ·w =
(
vxex + vybey + vzez) · (wxex + wybey + wzez) (1)
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We want to work out the parentheses using the distributive law of multipli-
cation. We get nine terms, each of which involves the scalar product of two
unit vectors. We now define the scalar product of two unit vectors to be a
scalar given by

ei · ej = δij (2)

where δij is the Kronecker delta which is a scalar that is equal to 1 for i = j
and is equal to 0 otherwise. Thus the scalar product of a unit vector with
itself is a scalar of magnitude 1 and the scalar product of two different unit
vectors is a scalar of magnitude 0.

Working out the parentheses in (1) and using (2) we find that

v ·w =
(
vxwx + vywy + vzwz) (3)

It is seen that the scalar product of two arbitrary vectors is also a scalar.
The length-squared of a vector v is given by v · v as can be seen from (3).
Thus (2) shows that the unit vectors ei are indeed vectors of unit length.
We could have started with (3) as the definition of a scalar product of two
arbitrary vectors and work our way back to (2) using that ex = (1, 0, 0) and
so on.

The scalar product of two vectors v and w is sometimes defined as

v ·w = vw cosα (4)

where v and w are the magnitudes of v and w respectively and α the acute
angle between v and w. To show that the definition (4) is equivalent with
everything that preceeds it in this section we start with (3) and choose a
coordinate system with its x-axis along the vector v and the y-axis such that
the x, y plane contains the vector w. Reflect on why we are allowed to do
that without a loss of generality. Thus v = (vx, 0, 0) and w = (wx, wy, 0).
Using (3) we get v ·w = vxwx. But vx = v and wx = w cosα. Eliminating vx
and wx using the last two equations we see that (3) and (4) are equivalent.

You already knew everything in this section from previous courses. It
was merely an introduction to the next section on the vector product of two
vectors which contains some new information using determinants that are
usually first introduced in a course in linear algebra.

3 The Vector Product of Two Vectors

The vector product of two vectors v and w is written formally as

v ×w =
(
vxex + vyey + vzez)× (wxex + wyey + wzez) (5)
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We want to work out the parentheses using the distributive law of multipli-
cation. We get nine terms, each of which involves the vector product of two
unit vectors. We now define the vector product of of two unit vectors to be
a vector given by

ei × ej =

3∑
k=1

εijkek (6)

where εijk is the Levi-Civita symbol that is totally antisymmetric in the
indices ijk with ε123 = 1. Antisymmetric in the indices means that if two
neighboring indices are exchanged one obtains a minus sign. Thus ε213 =
−1 (one exchange to get 213→123) and ε312 = +1 (two exchanges to get
312→123). If two or more indices are equal the quantity is zero. This
can be seen by exchanging indices until two equal ones are next to each
other. Once two equal indices are next to each other their exchange will
introduce a minus sign but the quantity will not have changed. It is seen
that if one cyclically permutes the three indices that the value of εijk does
not change. In cyclic permutation one rotates the indices as if they are on
a circle so ijk→jki→kij→ijk. So for example ex × ex = 0, ex × ey = ez,
ex × ez = −ey, ...

Working out the parentheses in (5) and using (6) we find that

v ×w = (vywz − vzwy)ex − (vxwz − vzwx)ey + (vxwy − vywx)ez (7)

where we grouped terms according to ex, ey, and ez. It is seen that the
vector product of two arbitrary vectors is a vector.

The magnitude of the vector product of two vectors v and w is sometimes
defined as

|v ×w| = vw sinα (8)

where α is the acute angle between v and w and its direction is perpendicular
to the plane of v and w. Of the two possible directions one chooses the
one obtained with the right-hand rule rotating the first vector v over the
acute angle α toward the second vector w. To show that this definition is
equivalent to everything that preceeds it in this setion we start with (7) and
choose the same coordinate system relative to v and w as in Sec. 2 below
(4). Using (7) we get v × w = vxwyez. But vx = v and wy = w sinα.
Eliminating vx and wy using the last two equations we see that (7) and (8)
give the same result for |v ×w| and that the direction agrees as well.

3



Equation (7) is not easy to remember. It can also be written as

v ×w =

∣∣∣∣∣∣
ex ey ez
vx vy vz
wx wy wz

∣∣∣∣∣∣ (9)

The form of the determinant is easier to remember. Put the unit vectors
in the top row and the components of the first vector in the product in
the second row and he components of the second vector in the third row.
The order of the first and second vector matters as will be clear from the
discussion but also from a property of determinants.

4 Determinants

An n× n determinant is written as∣∣∣∣∣∣
a11 a12 a13 .
a21 a22 . .
a31 a32 . .

∣∣∣∣∣∣ (10)

The aij are called elements and i = [1, n] and j = [1, n]. The first index
labels the row and the second index labels the column in which an element
resides. We will only need 2× 2 and 3× 3 determinants.

The value of a 2× 2 determinant is defined as∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 (11)

We will not need this but this equation can also be written as∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ =

2∑
i,j=1

εija1ia2j (12)

This relation is useful for the study of properties of determinants.
The value of a 3 × 3 determinant is defined the sum of three 2 × 2

determinants with prefactors as shown∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣(13)
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Note the minus sign and that the prefactors a1j all come from the first
row. The 2× 2 determinant multiplying each prefactor a1j are obtained by
eliminating the first row and the j-th column from the 3 × 3 determinant.
Evaluating the 2× 2 determinants and substituting them (13) we obtain

a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31) (14)

Apply these rules to (9) and verify that you obtain (7).
We will not need this but (14) can also be written as∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
3∑

i,j,k=1

εijka1ia2ja3k (15)

Note that if v and w are exchanged in (9) we get a minus sign. Appar-
ently the determinant in (9) changes sign if row 2 and row 3 are exchanged.
You can check this using (15). You will learn in Linear Algebra several other
properties of determinants that will be proven using (15). We shall not need
these other properties here. The generalisation from 3× 3 determinants to
n × n determinants is straightforward using (15). We will not need such
determinants here.

As a sanity check we calculate ex × ez using (9)

ex × ez =

∣∣∣∣∣∣
ex ey ez
1 0 0
0 0 1

∣∣∣∣∣∣ = −ey (16)

as expected. It agrees with the alternative definition (8) and below it in
magnitude and direction.

5 Applications

We will need an expression for u · (v ×w). Using (1) and (9) we get (write
out the missing steps)

(uxex + uyey + uzez) ·

∣∣∣∣∣∣
ex ey ez
vx vy vz
wx wy wz

∣∣∣∣∣∣ = ux

∣∣∣∣ vy vz
wy wz

∣∣∣∣+ · · · (17)

But the right-hand side equals∣∣∣∣∣∣
ux uy uz
vx vy vz
wx wy wz

∣∣∣∣∣∣ (18)
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So we have

u · (v ×w) =

∣∣∣∣∣∣
ux uy uz
vx vy vz
wx wy wz

∣∣∣∣∣∣ (19)

We will also need an expression for u× (v×w). There is an elegant way
to work this out which is a little beyond the scope of this document and
a straightforward way which we will use. Using (9) we find in an obvious
notation

u× (v ×w) =

∣∣∣∣∣∣
ex ey ez
ux uy uz

(v ×w)x (v ×w)y (v ×w)z

∣∣∣∣∣∣ (20)

The x-component is uy(v×w)z−uz(v×w)y or uy(vxwy−vywx)+uz(vxwz−
vzwx). Watch the signs, there are two minus signs that cancel! We sort the
terms proportional to vx and wx to obtain vx(uywy+uzwz)−wx(uyvy+uzvz).
The terms between parentheses look almost like the scalar product of u and
w in the first term and u and v in the second term. Both terms are missing
vxuxwx. We can add these in both terms because they cancel owing to the
minus sign between the two terms. Doing this we get vx(uxwx + uywy +
uzwz) − wx(uxvx + uyvy + uzvz) = vx(u ·w) − wx(u · v). This calculation
can be repeated for the y- and z-components of u × (v ×w). Multiplying
the x-component by ex, the y-component by ey, and the z-component by
ez and summing the three relations we get

u× (v ×w) = (u ·w)v − (u · v)w (21)
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