Instructions This part consists of 12 multiple-choice questions
 Each question is worth 1 mark
 Fill in only ONE CIRCLE for each question
 Calculators are NOT allowed

Time allowed: 15 minutes
Total marks $=12$

1 A triangle is said to satisfy the rule $c^{2}=a^{2}+b^{2}$ for which special triangle?
(A) acute angled
(B) right angled
(C) obtuse angled
(D) none of these

2 The longest side of a right angled triangle is called the
(A) shortest side
(B) middle side
(C) hypotenuse
(D) none of these

3 Given that $c^{2}=a^{2}+b^{2}$ and $a=8, b=15$, what is the value of c ?
(A) 17
(B) 23
(C) 289
(D) 529

4 Pythagoras' theorem can be applied to
(A) acute angled triangles
(B) obtuse angled triangles
(C) right angled triangles
(D) any triangle

5 The hypotenuse of a right angled triangle is 17 cm . If one side is 15 cm , the third side is
(A) 14 cm
(B) 12 cm
(C) 10 cm
(D) 8 cm

6 If two sides of a right angled triangle are 2.4 m and 1 m then the hypotenuse is
(A) 2.4 m
(B) 2.6 m
(C) 3.4 m
(D) 3.8 m

7 The Pythagorean result for a triangle ABC right angled at C is
(A) $a^{2}=b^{2}+c^{2}$
(B) $b^{2}=a^{2}+c^{2}$
(C) $c^{2}=a^{2}+b^{2}$
(D) none of these

8 The hypotenuse of a right angled triangle is opposite to the
(A) acute angle
(B) right angle
(C) obtuse angle
(D) none of these

9 If two shorter sides of a right angled triangle are 7 m and 8 m , then the hypotenuse is
(A) $\sqrt{65}$
(B) $\sqrt{85}$
(C) $\sqrt{113}$
(D) $\sqrt{193}$

10 In a triangle ABC right angled at C , the hypotenuse is named as
(A) a
(B) b
(C) c
(D) none of these

11 If two sides of a right angled triangle are 6 cm and 8 cm , then the hypotenuse is
(A) 10 cm
(B) 9.4 cm
(C) 12 cm
(D) 14 cm

12 If $n^{2}=2304$ then n equals
(A) 38
(B) 42
(C) 48
(D) 52

Pythagoras' theorem

Topic Test

PART B
Instructions This part consists of 15 questions
Each question is worth 1 mark
Write answers in the answers-only column
Time allowed: 20 minutes
Total marks $=15$

Questions

1 If $n^{2}=3844$ then find the value of n
2 Is $\{6,8,10\}$ a Pythagorean triad?
3 Prove that $\triangle \mathrm{PQR}$ is a right angled triangle.

Find the length of the unknown side in the following triangles correct to two decimal places.
4

5

6

8

9

10
7

11

13

14

12

15

Answers only	Marks
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	1
11	1
12	1
13	1
14	1
15	1

Total marks achieved for PART B

