

1. How many elements are listed in the periodic table? (the one Dr. Hart gave you...) 118
2. What is the atomic number of selenium? \qquad 34
3. What is the symbol for palladium? \qquad Pd
\qquad
4. What is the atomic mass of strontium? \qquad 87.62 amu or g \qquad
5. How are elements that are gases at room temperature designated in this periodic table?
\qquad their boxes contain a red balloon \qquad
6. How many columns of elements does the periodic table contain? \qquad 18
7. What is another name for a column of elements? \qquad group or family \qquad
8. What two group numbers can be used to designate elements in the second column of the periodic table? \qquad group 2A or group 2 \qquad
9. How many rows of elements does the periodic table contain? \qquad 7 \qquad
10. What is another name for a row of elements? \qquad period \qquad
11. Which period contains the least number of elements? \qquad period 1 \qquad
12. What element is found in period 4, group 7B? \qquad manganese \qquad
13. How are metals designated in this periodic table? __boxes are tinted blue \qquad
14. How are metalloids designated in this periodic table? \qquad boxes are tinted green \qquad
15. How are nonmetals designated in this periodic table? \qquad boxes are tinted yellow \qquad
16. What can be said about the electron configurations of all the elements in a group? _their valence electron configurations are identical \qquad

The s-, p-, d-, and f-Block Elements

1. What are the four sections, or blocks, of the periodic table? \qquad s-, p-, d-, f- blocks
2. What does each block represent? the energy sublevel being filled by valence electrons
3. What do elements in the s-block have in common? valence electrons only in the s orbitals
4. What is the valence electron configuration of each element in group 1A? \qquad s^{1} \qquad
5. What is the valence electron configuration of each element in group 2A? \qquad s^{2} \qquad
6. Why does the s-block span two groups of elements? the single s orbital can hold a maximum of two valence electrons
7. Why does the p-block span six groups of elements? The three p orbitals can each hold a maximum of two electrons, resulting in a maximum of six valence electrons, which corresponds to the six columns spanned by the p-block.
8. Why are there no p-block elements in period 1? The p sublevel does not exist for the first principal energy level.
9. What is the ending of the electron configuration of each element in group 4A? p^{2}
10. What is the electron configuration of neon? $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 p^{6}$
11. In what period does the first d-energy sublevel appear? Period 4
12. Why does the d-block span ten groups of elements? The five d orbitals can each hold a maximum of two electrons, resulting in a total of ten possible valence electrons.
13. What is the ending of the electron configuration of each element in group 3B? _d ${ }^{1}$ \qquad
14. What is the noble gas configuration of titanium? \qquad $[A r] 4 s^{2} 3 d^{2}$ \qquad
15. In what period does the first f-energy sublevel appear? \qquad period 6 \qquad
16. Determine the group, period, and block for the element having the electron configuration $[X e] 4 f^{14} 5 d^{10} 6 s^{2} 6 p^{3}$. a. group_5A or $15 _$b. period _6__ c. block _p__
