
A ProblemText in Advanced Calculus

John M. Erdman

Portland State University

Version July 1, 2014

E-mail address: erdman@pdx.edu

.



ii

To Argentina







Contents

PREFACE xi

FOR STUDENTS: HOW TO USE THIS PROBLEMTEXT xv

Chapter 1. INTERVALS 1
1.1. DISTANCE AND NEIGHBORHOODS 1
1.2. INTERIOR OF A SET 2

Chapter 2. TOPOLOGY OF THE REAL LINE 5
2.1. OPEN SUBSETS OF R 5
2.2. CLOSED SUBSETS OF R 7

Chapter 3. CONTINUOUS FUNCTIONS FROM R TO R 9
3.1. CONTINUITY—AS A LOCAL PROPERTY 9
3.2. CONTINUITY—AS A GLOBAL PROPERTY 10
3.3. FUNCTIONS DEFINED ON SUBSETS OF R 13

Chapter 4. SEQUENCES OF REAL NUMBERS 17
4.1. CONVERGENCE OF SEQUENCES 17
4.2. ALGEBRAIC COMBINATIONS OF SEQUENCES 19
4.3. SUFFICIENT CONDITION FOR CONVERGENCE 20
4.4. SUBSEQUENCES 23

Chapter 5. CONNECTEDNESS AND THE INTERMEDIATE VALUE THEOREM 27
5.1. CONNECTED SUBSETS OF R 27
5.2. CONTINUOUS IMAGES OF CONNECTED SETS 29
5.3. HOMEOMORPHISMS 30

Chapter 6. COMPACTNESS AND THE EXTREME VALUE THEOREM 33
6.1. COMPACTNESS 33
6.2. EXAMPLES OF COMPACT SUBSETS OF R 34
6.3. THE EXTREME VALUE THEOREM 36

Chapter 7. LIMITS OF REAL VALUED FUNCTIONS 39
7.1. DEFINITION 39
7.2. CONTINUITY AND LIMITS 40

Chapter 8. DIFFERENTIATION OF REAL VALUED FUNCTIONS 43
8.1. THE FAMILIES O AND o 43
8.2. TANGENCY 45
8.3. LINEAR APPROXIMATION 46
8.4. DIFFERENTIABILITY 47

Chapter 9. METRIC SPACES 51
9.1. DEFINITIONS 51
9.2. EXAMPLES 52

v



vi CONTENTS

9.3. STRONGLY EQUIVALENT METRICS 55

Chapter 10. INTERIORS, CLOSURES, AND BOUNDARIES 57
10.1. DEFINITIONS AND EXAMPLES 57
10.2. INTERIOR POINTS 58
10.3. ACCUMULATION POINTS AND CLOSURES 58

Chapter 11. THE TOPOLOGY OF METRIC SPACES 61
11.1. OPEN AND CLOSED SETS 61
11.2. THE RELATIVE TOPOLOGY 63

Chapter 12. SEQUENCES IN METRIC SPACES 65
12.1. CONVERGENCE OF SEQUENCES 65
12.2. SEQUENTIAL CHARACTERIZATIONS OF TOPOLOGICAL PROPERTIES 65
12.3. PRODUCTS OF METRIC SPACES 66

Chapter 13. UNIFORM CONVERGENCE 69
13.1. THE UNIFORM METRIC ON THE SPACE OF BOUNDED FUNCTIONS 69
13.2. POINTWISE CONVERGENCE 70

Chapter 14. MORE ON CONTINUITY AND LIMITS 73
14.1. CONTINUOUS FUNCTIONS 73
14.2. MAPS INTO AND FROM PRODUCTS 77
14.3. LIMITS 79

Chapter 15. COMPACT METRIC SPACES 83
15.1. DEFINITION AND ELEMENTARY PROPERTIES 83
15.2. THE EXTREME VALUE THEOREM 84
15.3. DINI’S THEOREM 85

Chapter 16. SEQUENTIAL CHARACTERIZATION OF COMPACTNESS 87
16.1. SEQUENTIAL COMPACTNESS 87
16.2. CONDITIONS EQUIVALENT TO COMPACTNESS 88
16.3. PRODUCTS OF COMPACT SPACES 89
16.4. THE HEINE-BOREL THEOREM 90

Chapter 17. CONNECTEDNESS 93
17.1. CONNECTED SPACES 93
17.2. ARCWISE CONNECTED SPACES 94

Chapter 18. COMPLETE SPACES 97
18.1. CAUCHY SEQUENCES 97
18.2. COMPLETENESS 97
18.3. COMPLETENESS VS. COMPACTNESS 98

Chapter 19. APPLICATIONS OF A FIXED POINT THEOREM 101
19.1. THE CONTRACTIVE MAPPING THEOREM 101
19.2. APPLICATION TO INTEGRAL EQUATIONS 105

Chapter 20. VECTOR SPACES 107
20.1. DEFINITIONS AND EXAMPLES 107
20.2. LINEAR COMBINATIONS 111
20.3. CONVEX COMBINATIONS 112

Chapter 21. LINEARITY 115
21.1. LINEAR TRANSFORMATIONS 115



CONTENTS vii

21.2. THE ALGEBRA OF LINEAR TRANSFORMATIONS 118
21.3. MATRICES 120
21.4. DETERMINANTS 124
21.5. MATRIX REPRESENTATIONS OF LINEAR TRANSFORMATIONS 125

Chapter 22. NORMS 129
22.1. NORMS ON LINEAR SPACES 129
22.2. NORMS INDUCE METRICS 130
22.3. PRODUCTS 131
22.4. THE SPACE B(S, V ) 134

Chapter 23. CONTINUITY AND LINEARITY 137
23.1. BOUNDED LINEAR TRANSFORMATIONS 137
23.2. THE STONE-WEIERSTRASS THEOREM 141
23.3. BANACH SPACES 143
23.4. DUAL SPACES AND ADJOINTS 144

Chapter 24. THE CAUCHY INTEGRAL 145
24.1. UNIFORM CONTINUITY 145
24.2. THE INTEGRAL OF STEP FUNCTIONS 147
24.3. THE CAUCHY INTEGRAL 150

Chapter 25. DIFFERENTIAL CALCULUS 157
25.1. O AND o FUNCTIONS 157
25.2. TANGENCY 159
25.3. DIFFERENTIATION 160
25.4. DIFFERENTIATION OF CURVES 163
25.5. DIRECTIONAL DERIVATIVES 165
25.6. FUNCTIONS MAPPING INTO PRODUCT SPACES 166

Chapter 26. PARTIAL DERIVATIVES AND ITERATED INTEGRALS 169
26.1. THE MEAN VALUE THEOREM(S) 169
26.2. PARTIAL DERIVATIVES 173
26.3. ITERATED INTEGRALS 177

Chapter 27. COMPUTATIONS IN Rn 181
27.1. INNER PRODUCTS 181
27.2. THE GRADIENT 183
27.3. THE JACOBIAN MATRIX 187
27.4. THE CHAIN RULE 188

Chapter 28. INFINITE SERIES 195
28.1. CONVERGENCE OF SERIES 195
28.2. SERIES OF POSITIVE SCALARS 200
28.3. ABSOLUTE CONVERGENCE 200
28.4. POWER SERIES 202

Chapter 29. THE IMPLICIT FUNCTION THEOREM 209
29.1. THE INVERSE FUNCTION THEOREM 209
29.2. THE IMPLICIT FUNCTION THEOREM 213

Appendix A. QUANTIFIERS 219

Appendix B. SETS 221



viii CONTENTS

Appendix C. SPECIAL SUBSETS OF R 225

Appendix D. LOGICAL CONNECTIVES 227
D.1. DISJUNCTION AND CONJUNCTION 227
D.2. IMPLICATION 228
D.3. RESTRICTED QUANTIFIERS 229
D.4. NEGATION 230

Appendix E. WRITING MATHEMATICS 233
E.1. PROVING THEOREMS 233
E.2. CHECKLIST FOR WRITING MATHEMATICS 234
E.3. FRAKTUR AND GREEK ALPHABETS 236

Appendix F. SET OPERATIONS 237
F.1. UNIONS 237
F.2. INTERSECTIONS 239
F.3. COMPLEMENTS 240

Appendix G. ARITHMETIC 243
G.1. THE FIELD AXIOMS 243
G.2. UNIQUENESS OF IDENTITIES 244
G.3. UNIQUENESS OF INVERSES 245
G.4. ANOTHER CONSEQUENCE OF UNIQUENESS 245

Appendix H. ORDER PROPERTIES OF R 247

Appendix I. NATURAL NUMBERS AND MATHEMATICAL INDUCTION 249

Appendix J. LEAST UPPER BOUNDS AND GREATEST LOWER BOUNDS 253
J.1. UPPER AND LOWER BOUNDS 253
J.2. LEAST UPPER AND GREATEST LOWER BOUNDS 253
J.3. THE LEAST UPPER BOUND AXIOM FOR R 255
J.4. THE ARCHIMEDEAN PROPERTY 256

Appendix K. PRODUCTS, RELATIONS, AND FUNCTIONS 259
K.1. CARTESIAN PRODUCTS 259
K.2. RELATIONS 260
K.3. FUNCTIONS 260

Appendix L. PROPERTIES OF FUNCTIONS 263
L.1. IMAGES AND INVERSE IMAGES 263
L.2. COMPOSITION OF FUNCTIONS 264
L.3. The IDENTITY FUNCTION 264
L.4. DIAGRAMS 265
L.5. RESTRICTIONS AND EXTENSIONS 265

Appendix M. FUNCTIONS WHICH HAVE INVERSES 267
M.1. INJECTIONS, SURJECTIONS, AND BIJECTIONS 267
M.2. INVERSE FUNCTIONS 269

Appendix N. PRODUCTS 271

Appendix O. FINITE AND INFINITE SETS 273

Appendix P. COUNTABLE AND UNCOUNTABLE SETS 277

Appendix Q. SOLUTIONS TO EXERCISES 281



CONTENTS ix

Q.1. Exercises in chapter 01 281
Q.2. Exercises in chapter 02 281
Q.3. Exercises in chapter 03 282
Q.4. Exercises in chapter 04 283
Q.5. Exercises in chapter 05 285
Q.6. Exercises in chapter 06 285
Q.7. Exercises in chapter 07 286
Q.8. Exercises in chapter 08 287
Q.9. Exercises in chapter 09 288
Q.10. Exercises in chapter 10 289
Q.11. Exercises in chapter 11 289
Q.12. Exercises in chapter 12 290
Q.13. Exercises in chapter 13 290
Q.14. Exercises in chapter 14 292
Q.15. Exercises in chapter 15 294
Q.16. Exercises in chapter 16 294
Q.17. Exercises in chapter 17 295
Q.18. Exercises in chapter 18 297
Q.19. Exercises in chapter 19 298
Q.20. Exercises in chapter 20 301
Q.21. Exercises in chapter 21 302
Q.22. Exercises in chapter 22 307
Q.23. Exercises in chapter 23 308
Q.24. Exercises in chapter 24 312
Q.25. Exercises in chapter 25 315
Q.26. Exercises in chapter 26 319
Q.27. Exercises in chapter 27 324
Q.28. Exercises in chapter 28 329
Q.29. Exercises in chapter 29 335
Q.30. Exercises in appendix D 338
Q.31. Exercises in appendix F 339
Q.32. Exercises in appendix G 341
Q.33. Exercises in appendix H 341
Q.34. Exercises in appendix I 341
Q.35. Exercises in appendix J 342
Q.36. Exercises in appendix K 344
Q.37. Exercises in appendix L 344
Q.38. Exercises in appendix M 345
Q.39. Exercises in appendix N 347
Q.40. Exercises in appendix O 347
Q.41. Exercises in appendix P 348

Bibliography 351

Index 353





PREFACE

In American universities two distinct types of courses are often called “Advanced Calculus”: one,
largely for engineers, emphasizes advanced computational techniques in calculus; the other, a more
“theoretical” course, usually taken by majors in mathematics and physical sciences (and often called
elementary analysis or intermediate analysis), concentrates on conceptual development and proofs.
This ProblemText is a book of the latter type. It is not a place to look for post-calculus material
on Fourier series, Laplace transforms, and the like. It is intended for students of mathematics and
others who have completed (or nearly completed) a standard introductory calculus sequence and
who wish to understand where all those rules and formulas come from.

Many advanced calculus texts contain more topics than this ProblemText. When students are
encouraged to develop much of the subject matter for themselves, it is not possible to “cover”
material at the same breathtaking pace that can be achieved by a truly determined lecturer. But,
while no attempt has been made to make the book encyclopedic, I do think it nevertheless provides
an integrated overview of Calculus and, for those who continue, a solid foundation for a first year
graduate course in Real Analysis.

As the title of the present document, ProblemText in Advanced Calculus, is intended to suggest,
it is as much an extended problem set as a textbook. The proofs of most of the major results are
either exercises or problems. The distinction here is that solutions to exercises are written out in
a separate chapter in the ProblemText while solutions to problems are not given. I hope that this
arrangement will provide flexibility for instructors who wish to use it as a text. For those who prefer
a (modified) Moore-style development, where students work out and present most of the material,
there is a quite large collection of problems for them to hone their skills on. For instructors who
prefer a lecture format, it should be easy to base a coherent series of lectures on the presentation
of solutions to thoughtfully chosen problems.

I have tried to make the ProblemText (in a rather highly qualified sense discussed below)
“self-contained”. In it we investigate how the edifice of calculus can be grounded in a carefully
developed substrata of sets, logic, and numbers. Will it be a “complete” or “totally rigorous”
development of the subject? Absolutely not. I am not aware of any serious enthusiasm among
mathematicians I know for requiring rigorous courses in Mathematical Logic and Axiomatic Set
Theory as prerequisites for a first introduction to analysis. In the use of the tools from set theory
and formal logic there are many topics that because of their complexity and depth are cheated,
or not even mentioned. (For example, though used often, the axiom of choice is mentioned only
once.) Even everyday topics such as “arithmetic,” see appendix G, are not developed in any great
detail.

Before embarking on the main ideas of Calculus proper one ideally should have a good back-
ground in all sorts of things: quantifiers, logical connectives, set operations, writing proofs, the
arithmetic and order properties of the real numbers, mathematical induction, least upper bounds,
functions, composition of functions, images and inverse images of sets under functions, finite and
infinite sets, countable and uncountable sets. On the one hand all these are technically prerequisite
to a careful discussion of the foundations of calculus. On the other hand any attempt to do all this
business systematically at the beginning of a course will defer the discussion of anything concerning
calculus proper to the middle of the academic year and may very well both bore and discourage
students. Furthermore, in many schools there may be students who have already studied much of

xi



xii PREFACE

this material (in a “proofs” course, for example). In a spirit of compromise and flexibility I have
relegated this material to appendices. Treat it any way you like. I teach in a large university where
students show up for Advanced Calculus with a wide variety of backgrounds, so it is my practice
to go over the appendices first, covering many of them in a quite rapid and casual way, my goal
being to provide just enough detail so that everyone will know where to find the relevant material
when they need it later in the course. After a rapid traversal of the appendices I start Chapter 1.

For this text to be useful a student should have previously studied introductory calculus, more
for mathematical maturity than anything else. Familiarity with properties of elementary functions
and techniques of differentiation and integration may be assumed and made use of in examples—but
is never relied upon in the logical development of the material.

One motive for my writing this text is to make available in fairly simple form material that I
think of as “calculus done right.” For example, differential calculus as it appears in many texts is
a morass of tedious epsilon-delta arguments and partial derivatives, the net effect of which is to
almost totally obscure the beauty and elegance which results from a careful and patient elaboration
of the concept of tangency. On the other hand texts in which things are done right (for example
Loomis and Sternberg [8]) tend to be rather forbidding. I have tried to write a text which will be
helpful to a determined student with an average background. (I seriously doubt that it will be of
much use to the chronically lazy or totally unengaged.)

In my mind one aspect of doing calculus “correctly” is arrange things so that there is nothing
to unlearn later. For example, in this text topological properties of the real line are discussed early
on. Later, topological things (continuity, compactness, connectedness, and so on) are discussed in
the context of metric spaces (because they unify the material conceptually and greatly simplify
subsequent arguments). But the important thing is the definitions in the single variable case and
the metric space case are the same. Students do not have to “unlearn” material as they go to more
general settings. Similarly, the differential calculus is eventually developed in its natural habitat
of normed linear spaces. But here again, the student who has mastered the one-dimensional case,
which occurs earlier in the text, will encounter definitions and theorems and proofs that are virtually
identical to the ones with which (s)he is already familiar. There is nothing to unlearn.

In the process of writing this ProblemText I have rethought the proofs of many standard the-
orems. Although some, perhaps most, results in advanced calculus have reached a final, optimal
form, there are many others that, despite dozens of different approaches over the years, have proofs
that are genuinely confusing to most students. To mention just one example there is the theorem
concerning change of order of differentiation whose conclusion is

∂2f

∂x ∂y
=

∂2f

∂y ∂x
.

This well-known result to this day still receives clumsy, impenetrable, and even incorrect proofs. I
make an attempt, here and elsewhere in the text, to lead students to proofs that are conceptually
clear, even when they may not be the shortest or most elegant. And throughout I try very hard to
show that mathematics is about ideas and not about manipulation of symbols.

There are of course a number of advantages and disadvantages in consigning a document to
electronic life. One slight advantage is the rapidity with which links implement cross-references.
Hunting about in a book for lemma 3.14.23 can be time-consuming (especially when an author
engages in the entirely logical but utterly infuriating practice of numbering lemmas, propositions,
theorems, corollaries, etc. separately). A perhaps more substantial advantage is the ability to
correct errors, add missing bits, clarify opaque arguments, and remedy infelicities of style in a
timely fashion. The correlative disadvantage is that a reader returning to the web page after
a short time may find everything (pages, definitions, theorems, sections) numbered differently.
(LATEXis an amazing tool.) I will change the date on the title page to inform the reader of the date
of the last nontrivial update (that is, one that affects numbers or cross-references).

The most serious disadvantage of electronic life is impermanence. In most cases when a web
page vanishes so, for all practical purposes, does the information it contains. For this reason (and



PREFACE xiii

the fact that I want this material to be freely available to anyone who wants it) I am making use
of a “Share Alike” license from Creative Commons. It is my hope that anyone who finds this text
useful will correct what is wrong, add what is missing, and improve what is clumsy. To make
this possible I am also including the LATEXsource code on my web page. For more information on
creative commons licenses see

http://creativecommons.org/

I extend my gratitude to the many students over the years who have endured various versions
of this ProblemText and to my colleagues who have generously nudged me when they found me
napping. I want especially to thank Dan Streeter who provided me with so much help in the
technical aspects of getting this document produced. The text was prepared using AMS-LATEX. For
the diagrams I used the macro package XY-pic by Kristoffer H. Rose and Ross Moore supplemented
by additional macros in the diagxy package by Michael Barr.

Finally it remains only to say that I will be delighted to receive, and will consider, any comments,
suggestions, or error reports. My e-mail address is

erdman@pdx.edu





FOR STUDENTS: HOW TO USE THIS PROBLEMTEXT

Some years ago at a national meeting of mathematicians many of the conventioneers went
about wearing pins which proclaimed, “Mathematics is Not a Spectator Sport”. It is hard to
overemphasize the importance of this observation. The idea behind it has been said in many ways
by many people; perhaps it was said best by Paul Halmos [5]: The only way to learn mathematics
is to do mathematics.

In most respects learning mathematics is more like learning to play tennis than learning history.
It is principally an activity, and only secondarily a body of knowledge. Although no one would try
to learn tennis just by watching others play the game and perhaps reading a book or two about it,
thousands of mathematics students in American universities every year attempt to master mathe-
matical subjects by reading textbooks and passively watching their instructors do mathematics on
a blackboard. There are, of course, reasons why this is so, but it is unfortunate nevertheless. This
book is designed to encourage you to do mathematics.

When you sit down to work it is important to have a sizeable block of time at your disposal
during which you will not be interrupted. As you read pay especially close attention to definitions.
(After all, before you can think about a mathematical concept you must know what it means.) Read
until you arrive at a result (results are labeled “theorem”, “proposition”, “example”, “problem”,
“lemma”, etc.). Every result requires justification. The proof of a result may appear in the body
of the text, or it may be left to you as an exercise or a problem.

When you reach a result stop and try to prove it. Make a serious attempt. If a hint appears
after the statement of the result, at first do not read it. Do not try to find the result elsewhere;
and do not ask for help. Halmos [5] points out: “To the passive reader a routine computation
and a miracle of ingenuity come with equal ease, and later, when he must depend on himself, he
will find that they went as easily as they came.” Of course, it is true that sometimes, even after
considerable effort, you will not have discovered a proof. What then?

If a hint is given, and if you have tried seriously but unsuccessfully to derive the result, then
(and only then) should you read the hint. Now try again. Seriously.

What if the hint fails to help, or if there is no hint? If you are stuck on a result whose proof is
labeled “exercise”, then follow the link to the solution. Turning to the solution should be regarded
as a last resort. Even then do not read the whole proof; read just the first line or two, enough to
get you started. Now try to complete the proof on your own. If you can do a few more steps, fine.
If you get stuck again in midstream, read some more of the proof. Use as little of the printed proof
as possible.

If you are stuck on a result whose proof is a “problem”, you will not find a solution in the text.
After a really serious attempt to solve the problem, go on. You can’t bring your mathematical
education to a halt because of one refractory problem. Work on the next result. After a day or two
go back and try again. Problems often “solve themselves”; frequently an intractably murky result,
after having been allowed to “rest” for a few days, will suddenly, and inexplicably become entirely
clear. In the worst case, if repeated attempts fail to produce a solution, you may have to discuss
the problem with someone else—instructor, friend, mother, . . . .

A question that students frequently ask is, “When I’m stuck and I have no idea at all what to
do next, how can I continue to work on a problem?” I know of only one really good answer. It is

xv



xvi FOR STUDENTS: HOW TO USE THIS PROBLEMTEXT

advice due to Polya. If you can’t solve a problem, then there is an easier problem you can’t solve:
find it.

Consider examples. After all, mathematical theorems are usually generalizations of things that
happen in interesting special cases. Try to prove the result in some concrete cases. If you succeed,
try to generalize your argument. Are you stuck on a theorem about general metric spaces? Try to
prove it for Euclidean n-space. No luck? How about the plane? Can you get the result for the real
line? The unit interval?

Add hypotheses. If you can’t prove the result as stated, can you prove it under more restrictive
assumptions? If you are having no success with a theorem concerning general matrices, can you
prove it for symmetric ones? How about diagonal ones? What about the 2× 2 case?

Finally, one way or another, you succeed in producing a proof of the stated result. Is that the
end of the story? By no means. Now you should look carefully at the hypotheses. Can any of them
be weakened? Eliminated altogether? If not, construct counterexamples to show that each of the
hypotheses is necessary. Is the conclusion true in a more general setting? If so, prove it. If not,
give a counterexample. Is the converse true? Again, prove or disprove. Can you find applications
of the result? Does it add anything to what you already know about other mathematical objects
and facts?

Once you have worked your way through several results (a section or a chapter, say) it is a good
idea to consider the organization of the material. Is the order in which the definitions, theorems, etc.
occur a good one? Or can you think of a more perspicuous ordering? Rephrase definitions (being
careful, of course, not to change meanings!), recast theorems, reorganize material, add examples.
Do anything you can to make the results into a clear and coherent body of material. In effect you
should end up writing your own advanced calculus text.

The fruit of this labor is understanding. After serious work on the foregoing items you will begin
to feel that you “understand” the body of material in question. This quest for understanding, by
the way, is pretty much what mathematicians do with their lives.

If you don’t enjoy the activities outlined above, you probably don’t very much like mathematics.
Like most things that are worth doing, learning advanced calculus involves a substantial com-

mitment of time and energy; but as one gradually becomes more and more proficient, the whole
process of learning begins to give one a great sense of accomplishment, and, best of all, turns out
to be lots of fun.



CHAPTER 1

INTERVALS

The three great realms of calculus are differential calculus, integral calculus, and the theory of
infinite series. Central to each of these is the notion of limit : derivatives, integrals, and infinite
series can be defined as limits of appropriate objects. Before entering these realms, however, one
must have some background. There are the basic facts about the algebra, the order properties, and
the topology of the real line R. One must know about functions and the various ways in which they
can be combined (addition, composition, and so on). And, finally, one needs some basic facts about
continuous functions, in particular the intermediate value theorem and the extreme value theorem.

Much of this material appears in the appendices. The remainder (the topology of R, continuity,
and the intermediate and extreme value theorems) occupies the first six chapters. After these have
been completed we proceed with limits and the differential calculus of functions of a single variable.

As you will recall from beginning calculus we are accustomed to calling certain intervals “open”
(for example, (0, 1) and (−∞, 3) are open intervals) and other intervals “closed” (for example, [0, 1]
and [1,∞) are closed intervals). In this chapter and the next we investigate the meaning of the
terms “open” and “closed”. These concepts turn out to be rather more important than one might
at first expect. It will become clear after our discussion in subsequent chapters of such matters as
continuity, connectedness, and compactness just how important they really are.

1.1. DISTANCE AND NEIGHBORHOODS

1.1.1. Definition. If x and a are real numbers, the distance between x and a, which we denote
by d(x, a), is defined to be |x− a|.

1.1.2. Example. There are exactly two real numbers whose distance from the number 3 is 7.

Proof. We are looking for all numbers x ∈ R such that d(x, 3) = 7. In other words we want
solutions to the equation |x−3| = 7. There are two such solutions. If x−3 ≥ 0, then |x−3| = x−3;
so x = 10 satisfies the equation. On the other hand, if x− 3 < 0, then |x− 3| = −(x− 3) = 3− x,
in which case x = −4 is a solution. �

1.1.3. Exercise. Find the set of all points on the real line that are within 5 units of the number −2.
(Solution Q.1.1.)

1.1.4. Problem. Find the set of all real numbers whose distance from 4 is greater than 15.

1.1.5. Definition. Let a be a point in R and ε > 0. The open interval (a− ε, a+ ε) centered at a is
called the ε-neighborhood of a and is denoted by Jε(a). Notice that this neighborhood consists
of all numbers x whose distance from a is less than ε; that is, such that |x− a| < ε.

1.1.6. Example. The 1
2 - neighborhood of 3 is the open interval

(
5
2 ,

7
2

)
.

Proof. We have d(x, 3) < 1
2 only if |x − 3| < 1

2 . Solve this inequality to obtain J 1
2
(3) =(

5
2 ,

7
2

)
. �

1.1.7. Example. The open interval (1, 4) is an ε-neighborhood of an appropriate point.

Proof. The midpoint of (1, 4) is the point 5
2 . The distance from this point to either end of

the interval is 3
2 . Thus (1, 4) = J 3

2

(
5
2

)
. �

1



2 1. INTERVALS

1.1.8. Problem. Find, if possible, a number ε such that the ε-neighborhood of 1
3 contains both 1

4

and 1
2 but does not contain 17

30 . If such a neighborhood does not exist, explain why.

1.1.9. Problem. Find, if possible, a number ε such that the ε-neighborhood of 1
3 contains 11

12 but

does not contain either 1
2 or 5

8 . If such a neighborhood does not exist, explain why.

1.1.10. Problem. Let U =
(
1
4 ,

2
3

)
and V =

(
1
2 ,

6
5

)
. Write U and V as ε-neighborhoods of appro-

priate points. (That is, find numbers a and ε such that U = Jε(a) and find numbers b and δ such
that V = Jδ(b). ) Also write the sets U ∪ V and U ∩ V as ε-neighborhoods of appropriate points.

1.1.11. Problem. Generalize your solution to the preceding problem to show that the union
and the intersection of any two ε-neighborhoods that overlap is itself an ε-neighborhood of some
point. Hint. Since ε-neighborhoods are open intervals of finite length, we can write the given
neighborhoods as (a, b) and (c, d). There are really just two distinct cases. One neighborhood may
contain the other; say, a ≤ c < d ≤ b. Or each may have points that are not in the other; say
a < c < b < d. Deal with the two cases separately.

1.1.12. Proposition. If a ∈ R and 0 < δ ≤ ε, then Jδ(a) ⊆ Jε(a).

Proof. Exercise. (Solution Q.1.2.)

1.2. INTERIOR OF A SET

1.2.1. Definition. Let A ⊆ R. A point a is an interior point of A if some ε-neighborhood of
a lies entirely in A. That is, a is an interior point of A if and only if there exists ε > 0 such that
Jε(a) ⊆ A. The set of all interior points of A is denoted by A◦ and is called the interior of A.

1.2.2. Example. Every point of the interval (0, 1) is an interior point of that interval. Thus
(0, 1)◦ = (0, 1).

Proof. Let a be an arbitrary point in (0, 1). Choose ε to be the smaller of the two (positive)
numbers a and 1 − a. Then Jε(a) = (a − ε, a + ε) ⊆ (0, 1) (because ε ≤ a implies a − ε ≥ 0, and
ε ≤ 1− a implies a+ ε ≤ 1). �

1.2.3. Example. If a < b, then every point of the interval (a, b) is an interior point of the interval.
Thus (a, b)◦ = (a, b).

Proof. Problem.

1.2.4. Example. The point 0 is not an interior point of the interval [0, 1).

Proof. Argue by contradiction. Suppose 0 belongs to the interior of [0, 1). Then for some
ε > 0 the interval (−ε, ε) = Jε(0) is contained in [0, 1). But this is impossible since the number −1

2ε
belongs to (−ε, ε) but not to [0, 1). �

1.2.5. Example. Let A = [a, b] where a < b. Then A◦ = (a, b).

Proof. Problem.

1.2.6. Example. Let A = {x ∈ R : x2 − x− 6 ≥ 0}. Then A◦ 6= A.

Proof. Exercise. (Solution Q.1.3.)

1.2.7. Problem. Let A = {x ∈ R : x3 − 2x2 − 11x+ 12 ≤ 0}. Find A◦.

1.2.8. Example. The interior of the set Q of rational numbers is empty.

Proof. No open interval contains only rational numbers. �

1.2.9. Proposition. If A and B are sets of real numbers with A ⊆ B, then A◦ ⊆ B◦.

Proof. Let a ∈ A◦. Then there is an ε > 0 such that Jε(a) ⊆ A ⊆ B. This shows that
a ∈ B◦. �
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1.2.10. Proposition. If A is a set of real numbers, then A◦◦ = A◦.

Proof. Problem.

1.2.11. Proposition. If A and B are sets of real numbers, then

(A ∩B)◦ = A◦ ∩B◦.

Proof. Exercise. Hint. Show separately that (A∩B)◦ ⊆ A◦∩B◦ and that A◦∩B◦ ⊆ (A∩B)◦.
(Solution Q.1.4.)

1.2.12. Proposition. If A and B are sets of real numbers, then

(A ∪B)◦ ⊇ A◦ ∪B◦ .

Proof. Exercise. (Solution Q.1.5.)

1.2.13. Example. Equality may fail in the preceding proposition.

Proof. Problem. Hint. See if you can find sets A and B in R both of which have empty
interior but whose union is all of R.





CHAPTER 2

TOPOLOGY OF THE REAL LINE

It is clear from the definition of “interior” that the interior of a set is always contained in the
set. Those sets for which the reverse inclusion also holds are called open sets.

2.1. OPEN SUBSETS OF R

2.1.1. Definition. A subset U of R is open if U◦ = U . That is, a set is open if and only if every

point of the set is an interior point of the set. If U is an open subset of R we write U
◦
⊆ R.

Notice, in particular, that the empty set is open. This is a consequence of the way implication is
defined in section D.2: the condition that each point of ∅ be an interior point is vacuously satisfied
because there are no points in ∅. (One argues that if an element x belongs to the empty set, then
it is an interior point of the set. The hypothesis is false; so the implication is true.) Also notice
that R itself is an open subset of R.

2.1.2. Example. Bounded open intervals are open sets. That is, if a < b, then the open interval
(a, b) is an open set.

Proof. Example 1.2.3. �

2.1.3. Example. The interval (0,∞) is an open set.

Proof. Problem.

One way of seeing that a set is open is to verify that each of its points is an interior point of
the set. That is what the definition says. Often it is easier to observe that the set can be written
as a union of bounded open intervals. That this happens exactly when a set is open is the point of
the next proposition.

2.1.4. Proposition. A nonempty subset of R is open if and only if it is a union of bounded open
intervals.

Proof. Let U ⊆ R. First, let us suppose U is a nonempty open subset of R. Each point of
U is then an interior point of U . So for each x ∈ U we may choose a bounded open interval J(x)
centered at x which is entirely contained in U . Since x ∈ J(x) for each x ∈ U , we see that

U =
⋃
x∈U
{x} ⊆

⋃
x∈U

J(x). (2.1)

On the other hand, since J(x) ⊆ U for each x ∈ U , we have (see proposition F.1.8)⋃
x∈U

J(x) ⊆ U. (2.2)

Together (2.1) and (2.2) show that U is a union of bounded open intervals.
For the converse suppose U =

⋃
J where J is a family of open bounded intervals. Let x be

an arbitrary point of U . We need only show that x is an interior point of U . To this end choose
an interval J ∈ J which contains x. Since J is a bounded open interval we may write J = (a, b)
where a < b. Choose ε to be the smaller of the numbers x − a and b − x. Then it is easy to see
that ε > 0 and that x ∈ Jε(x) = (x− ε, x+ ε) ⊆ (a, b). Thus x is an interior point of U . �

5
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2.1.5. Example. Every interval of the form (−∞, a) is an open set. So is every interval of the
form (a,∞). (Notice that this and example 2.1.2 give us the very comforting result that the things
we are accustomed to calling open intervals are indeed open sets.)

Proof. Problem.

The study of calculus has two main ingredients: algebra and topology. Algebra deals with
operations and their properties, and with the resulting structure of groups, fields, vector spaces,
algebras, and the like. Topology, on the other hand, is concerned with closeness, ε-neighborhoods,
open sets, and with the associated structure of metric spaces and various kinds of topological spaces.
Almost everything in calculus results from the interplay between algebra and topology.

2.1.6. Definition. The word “topology” has a technical meaning. A family T of subsets of a set
X is a topology on X if

(1) ∅ and X belong to T;
(2) if S ⊆ T (that is, if S is a subfamily of T), then

⋃
S ∈ T; and

(3) if S is a finite subfamily of T, then
⋂
S ∈ T.

We can paraphrase this definition by saying that a family of subsets of X, which contains both
∅ and X, is a topology on X if it is closed under arbitrary unions and finite intersections. If
this definition doesn’t make any sense to you at first reading, don’t fret. This kind of abstract
definition, although easy enough to remember, is irritatingly difficult to understand. Staring at
it doesn’t help. It appears that a bewildering array of entirely different things might turn out to
be topologies. And this is indeed the case. An understanding and appreciation of the definition
come only gradually. You will notice as you advance through this material that many important
concepts such as continuity, compactness, and connectedness are defined by (or characterized by)
open sets. Thus theorems which involve these ideas will rely on properties of open sets for their
proofs. This is true not only in the present realm of the real line but in the much wider world of
metric spaces, which we will shortly encounter in all their fascinating variety. You will notice that
two properties of open sets are used over and over: that unions of open sets are open and that
finite intersections of open sets are open. Nothing else about open sets turns out to be of much
importance. Gradually one comes to see that these two facts completely dominate the discussion
of continuity, compactness, and so on. Ultimately it becomes clear that nearly everything in the
proofs goes through in situations where only these properties are available—that is, in topological
spaces.

Our goal at the moment is quite modest: we show that the family of all open subsets of R is
indeed a topology on R.

2.1.7. Proposition. Let S be a family of open sets in R. Then

(a) the union of S is an open subset of R; and
(b) if S is finite, the intersection of S is an open subset of R.

Proof. Exercise. (Solution Q.2.1.)

2.1.8. Example. The set U = {x ∈ R : x < −2} ∪ {x > 0: x2− x− 6 < 0} is an open subset of R.

Proof. Problem.

2.1.9. Example. The set R \ N is an open subset of R.

Proof. Problem.

2.1.10. Example. The family T of open subsets of R is not closed under arbitrary intersections.s
(That is, there exists a family S of open subsets of R such that

⋂
S is not open.)

Proof. Problem.
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2.2. CLOSED SUBSETS OF R

Next we will investigate the closed subsets of R. These will turn out to be the complements of
open sets. But initially we will approach them from a different perspective.

2.2.1. Definition. A point b in R is an accumulation point of a set A ⊆ R if every ε-
neighborhood of b contains at least one point of A distinct from b. (We do not require that b
belong to A, although, of course, it may.) The set of all accumulation points of A is called the
derived set of A and is denoted by A′. The closure of A, denoted by A, is A ∪A′.

2.2.2. Example. Let A = {1/n : n ∈ N}. Then 0 is an accumulation point of A. Furthermore,
A = {0} ∪A.

Proof. Problem.

2.2.3. Example. Let A be (0, 1) ∪ {2} ⊆ R. Then A′ = [0, 1] and A = [0, 1] ∪ {2}.

Proof. Problem.

2.2.4. Example. Every real number is an accumulation point of the set Q of rational numbers
(since every open interval in R contains infinitely many rationals); so Q is all of R.

2.2.5. Exercise. Let A = Q ∩ (0,∞). Find A◦, A′, and A. (Solution Q.2.2.)

2.2.6. Problem. Let A = (0, 1] ∪
(
[2, 3] ∩Q

)
. Find:

(a) A◦;

(b) A;

(c) A◦;

(d)
(
A
)◦

;

(e) Ac;

(f)
(
Ac
)◦

;

(g)
(
Ac
)◦

; and

(h)
(
Ac
)◦

.

2.2.7. Example. Let A be a nonempty subset of R. If A is bounded above, then supA belongs
to the closure of A. Similarly, if A is bounded below, then inf A belongs to A.

Proof. Problem.

2.2.8. Problem. Starting with a set A, what is the greatest number of different sets you can get
by applying successively the operations of closure, interior, and complement? Apply them as many
times as you wish and in any order. For example, starting with the empty set doesn’t produce
much. We get only ∅ and R. If we start with the closed interval [0, 1], we get four sets: [0, 1], (0, 1),
(−∞, 0]∪ [1,∞), and (−∞, 0)∪ (1,∞). By making a more cunning choice of A, how many different
sets can you get?

2.2.9. Proposition. Let A ⊆ R. Then

(a)
(
A◦
)c

= Ac; and

(b)
(
Ac
)◦

=
(
A
)c

.

Proof. Exercise. Hint. Part (b) is a very easy consequence of (a). (Solution Q.2.3.)

2.2.10. Definition. A subset A of R is closed if A = A.

2.2.11. Example. Every closed interval
(
that is, intervals of the form [a, b] or (−∞, a] or [a,∞)

or (−∞,∞)
)

are closed.
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Proof. Problem.

CAUTION. It is a common mistake to treat subsets of R as if they were doors or windows, and
to conclude, for example, that a set is closed because it is not open, or that it cannot be closed
because it is open. These “conclusions” are wrong! A subset of R may be open and not closed, or
closed and not open, or both open and closed, or neither. For example, in R:

(1) (0, 1) is open but not closed;
(2) [0, 1] is closed but not open;
(3) R is both open and closed; and
(4) [0, 1) is neither open nor closed.

This is not to say, however, that there is no relationship between these properties. In the next
proposition we discover that the correct relation has to do with complements.

2.2.12. Proposition. A subset of R is open if and only if its complement is closed.

Proof. Problem. Hint. Use proposition 2.2.9.

2.2.13. Proposition. The intersection of an arbitrary family of closed subsets of R is closed.

Proof. Let A be a family of closed subsets of R. By De Morgan’s law (see proposition F.3.5)⋂
A is the complement of

⋃
{Ac : A ∈ A}. Since each set Ac is open (by 2.2.12), the union of

{Ac : A ∈ A} is open (by 2.1.7(a)); and its complement
⋂
A is closed (2.2.12 again). �

2.2.14. Proposition. The union of a finite family of closed subsets of R is closed.

Proof. Problem.

2.2.15. Problem. Give an example to show that the union of an arbitrary family of closed subsets
of R need not be closed.

2.2.16. Definition. Let a be a real number. Any open subset of R which contains a is a neigh-
borhood of a. Notice that an ε-neighborhood of a is a very special type of neighborhood: it is
an interval and it is symmetric about a. For most purposes the extra internal structure possessed
by ε-neighborhoods is irrelevant to the matter at hand. To see that we can operate as easily with
general neighborhoods as with ε-neighborhoods do the next problem.

2.2.17. Problem. Let A be a subset of R. Prove the following.

(a) A point a is an interior point of A if and only if some neighborhood of a lies entirely in A.
(b) A point b is an accumulation point of A if and only if every neighborhood of b contains at

least one point of A distinct from b.



CHAPTER 3

CONTINUOUS FUNCTIONS FROM R TO R

The continuous functions are perhaps the most important single class of functions studied in
calculus. Very roughly, a function f : R → R is continuous at a point a in R if f(x) can be
made arbitrarily close to f(a) by insisting that x be sufficiently close to a. In this chapter we
define continuity for real valued functions of a real variable and derive some useful necessary and
sufficient conditions for such a function to be continuous. Also we will show that composites of
continuous functions are themselves continuous. We will postpone until the next chapter proofs
that other combinations (sums, products, and so on) of continuous functions are continuous. The
first applications of continuity will come in chapters 5 and 6 on connectedness and compactness.

3.1. CONTINUITY—AS A LOCAL PROPERTY

The definition of continuity uses the notion of the inverse image of a set under a function. It is
a good idea to look at appendices L and M, at least to fix notation.

3.1.1. Definition. A function f : R → R is continuous at a point a in R if f←(V ) contains a
neighborhood of a whenever V is a neighborhood of f(a). Here is another way of saying exactly
the same thing: f is continuous at a if every neighborhood of f(a) contains the image under f
of a neighborhood of a. (If it is not entirely clear that these two assertions are equivalent, use
propositions M.1.22 (a) and M.1.23 (a) to prove that U ⊆ f←(V ) if and only if f→(U) ⊆ V .)

As we saw in chapter 2, it seldom matters whether we work with general neighborhoods (as in
the preceding definition) or with the more restricted ε-neighborhoods (as in the next proposition).

3.1.2. Proposition. A function f : R → R is continuous at a ∈ R if and only if for every ε > 0
there exists δ > 0 such that

Jδ(a) ⊆ f←
(
Jε(f(a))

)
(3.1)

Before starting on a proof it is always a good idea to be certain that the meaning of the
proposition is entirely clear. In the present case the “if and only if” tells us that we are being
given a condition characterizing continuity at the point a; that is, a condition which is both
necessary and sufficient in order for the function to be continuous at a. The condition states that
no matter what positive number ε we are given, we can find a corresponding positive number δ
such that property (3.1) holds. This property is the heart of the matter and should be thought of
conceptually rather than in terms of symbols. Learning mathematics is easiest when we regard the
content of mathematics to be ideas; it is hardest when mathematics is thought of as a game played
with symbols. Thus property (3.1) says that if x is any number in the open interval (a− δ, a+ δ),
then the corresponding value f(x) lies in the open interval between f(a)− ε and f(a) + ε. Once we
are clear about what it is that we wish to establish, it is time to turn to the proof.

Proof. Suppose f is continuous at a. If ε > 0, then Jε(f(a)) is a neighborhood of f(a) and
therefore f←

(
Jε(f(a))

)
contains a neighborhood U of a. Since a is an interior point of U , there

exists δ > 0 such that Jδ(a) ⊆ U . Then

Jδ(a) ⊆ U ⊆ f←
(
Jε(f(a))

)
.

Conversely, suppose that for every ε > 0 there exists δ > 0 such that Jδ(a) ⊆ f←
(
Jε(f(a))

)
.

Let V be a neighborhood of f(a). Then Jε(f(a)) ⊆ V for some ε > 0. By hypothesis, there exists

9
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δ > 0 such that Jδ(a) ⊆ f←
(
Jε(f(a))

)
. Then Jδ(a) is a neighborhood of a and Jδ(a) ⊆ f←(V ); so

f is continuous at a. �

We may use the remarks preceding the proof of 3.1.2 to give a second characterization of
continuity at a point. Even though the condition given is algebraic in form, it is best to think of
it geometrically. Think of it in terms of distance. In the next corollary read “|x − a| < δ” as “x
is within δ units of a” (not as “the absolute value of x minus a is less than δ”). If you follow this
advice, statements about continuity, when we get to metric spaces, will sound familiar. Otherwise,
everything will appear new and strange.

3.1.3. Corollary. A function f : R → R is continuous at a if and only if for every ε > 0 there
exists δ > 0 such that

|x− a| < δ =⇒ |f(x)− f(a)| < ε . (3.2)

Proof. This is just a restatement of proposition 3.1.2 because condition (3.1) holds if and only
if

x ∈ Jδ(a) =⇒ f(x) ∈ Jε(f(a)) .

But x belongs to the interval Jδ(a) if and only if |x − a| < δ, and f(x) belongs to Jε(f(a)) if and
only if |f(x)− f(a)| < ε. Thus (3.1) and (3.2) say exactly the same thing. �

Technically, 3.1.1 is the definition of continuity at a point, while 3.1.2 and 3.1.3 are charac-
terizations of this property. Nevertheless, it is not altogether wrong-headed to think of them as
alternative (but equivalent) definitions of continuity. It really doesn’t matter which one we choose
to be the definition. Each of them has its uses. For example, consider the result: if f is continuous
at a and g is continuous at f(a), then g◦f is continuous at a (see 3.2.17). The simplest proof of this
uses 3.1.1. On the other hand, when we wish to verify that some particular function is continuous
at a point (see, for example, 3.2.2), then, usually, 3.1.3 is best. There are other characterizations
of continuity (see 3.2.12–3.2.16). Before embarking on a particular problem involving this concept,
it is wise to take a few moments to reflect on which choice among the assorted characterizations
is likely to produce the simplest and most direct proof. This is a favor both to your reader and to
yourself.

3.2. CONTINUITY—AS A GLOBAL PROPERTY

3.2.1. Definition. A function f : R → R is continuous if it is continuous at every point in its
domain.

The purpose of the next few items is to give you practice in showing that particular functions
are (or are not) continuous. If you did a lot of this in beginning calculus, you may wish to skip to
the paragraph preceding proposition 3.2.12.

3.2.2. Example. The function f : R→ R : x 7→ −2x+ 3 is continuous.

Proof. We use corollary 3.1.3. Let a ∈ R. Given ε > 0 choose δ = 1
2ε. If |x− a| < δ,then

|f(x)− f(a)| = |(−2x+ 3)− (−2a+ 3)|
= 2|x− a| < 2δ = ε.

�

3.2.3. Example. The function f : R→ R defined by

f(x) =

{
0 for x ≤ 0,

1 for x > 0

is not continuous at a = 0.
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Proof. Use proposition 3.1.2; the denial of the condition given there is that there exists a
number ε such that for all δ > 0 property 3.1 fails. (See example D.4.5.) Let ε = 1

2 . Then

f←
(
J1/2(f(0))

)
= f←(J1/2(0)) = f←(−1

2 ,
1
2) = (−∞, 0]. Clearly this contains no δ-neighborhood

of 0. Thus 3.1 is violated, and f is not continuous at 0. �

3.2.4. Example. The function f : R→ R : x 7→ 5x− 8 is continuous.

Proof. Exercise. (Solution Q.3.1.)

3.2.5. Example. The function f : x 7→ x3 is continuous at the point a = −1.

Proof. Exercise. (Solution Q.3.2.)

3.2.6. Example. The function f : x 7→ 2x2 − 5 is continuous.

Proof. Exercise. (Solution Q.3.3.)

3.2.7. Example. Let f(x) = 7− 5x for all x ∈ R. Then f is continuous at the point a = −2.

Proof. Problem.

3.2.8. Example. Let f(x) =
√
|x+ 2| for all x ∈ R. Then f is continuous at the point a = 0.

Proof. Problem.

3.2.9. Example. If f(x) = 3x− 5 for all x ∈ R, then f is continuous.

Proof. Problem.

3.2.10. Example. The function f defined by

f(x) =

{
−x2 for x < 0,

x+ 1
10 for x ≥ 0

is not continuous.

Proof. Problem.

3.2.11. Example. For x > 0 sketch the functions x 7→ sin 1
x and x 7→ x sin 1

x . Then verify the
following.

(a) The function f defined by

f(x) =

{
0 for x ≤ 0,

sin 1
x , for x > 0

is not continuous.
(b) The function f defined by

f(x) =

{
0 for x ≤ 0,

x sin 1
x , for x > 0

is continuous at 0.

Proof. Problem.

The continuity of a function f at a point is a local property; that is, it is entirely determined
by the behavior of f in arbitrarily small neighborhoods of the point. The continuity of f , on the
other hand, is a global property; it can be determined only if we know how f behaves everywhere
on its domain. In 3.1.1–3.1.3 we gave three equivalent conditions for local continuity. In 3.2.12–
3.2.16 we give equivalent conditions for the corresponding global concept. The next proposition
gives the most useful of these conditions; it is the one that becomes the definition of continuity in
arbitrary topological spaces. It says: a necessary and sufficient condition for f to be continuous
is that the inverse image under f of open sets be open. This shows that continuity is a purely
topological property; that is, it is entirely determined by the topologies (families of all open
sets) of the domain and the codomain of the function.
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3.2.12. Proposition. A function f : R→ R is continuous if and only if f←(U) is open whenever
U is open in R.

Proof. Exercise. (Solution Q.3.4.)

3.2.13. Proposition. A function f : R → R is continuous if and only if f←(C) is a closed set
whenever C is a closed subset of R.

Proof. Problem.

3.2.14. Proposition. A function f : R→ R is continuous if and only if

f←(B◦) ⊆ (f←(B))◦

for all B ⊆ R.

Proof. Problem.

3.2.15. Proposition. A function f : R→ R is continuous if and only if

f→(A ) ⊆ f→(A)

for all A ⊆ R.

Proof. Problem. Hint. This isn’t so easy. Use problem 3.2.13 and the fact (see propositions
M.1.22 and M.1.23) that for any sets A and B

f→(f←(B)) ⊆ B and A ⊆ f←(f→(A)).

Show that if f is continuous, then A ⊆ f←
(
f→(A)

)
. Then apply f→. For the converse, apply the

hypothesis to the set f←(C) where C is a closed subset of R. Then apply f←. �

3.2.16. Proposition. A function f : R→ R is continuous if and only if

f←(B) ⊆ f←(B )

for all B ⊆ R.

Proof. Problem.

3.2.17. Proposition. Let f, g : R→ R. If f is continuous at a and g is continuous at f(a), then
the composite function g ◦ f is continuous at a.

Proof. Let W be a neighborhood of g(f(a)). We wish to show that the inverse image of W
under g ◦ f contains a neighborhood of a. Since g is continuous at f(a), the set g←(W ) contains a
neighborhood V of f(a). And since f is continuous at a, the set f←(V ) contains a neighborhood
U of a. Then

(g ◦ f)←(W ) = f←(g←(W ))

⊇ f←(V )

⊇ U ,

which is what we wanted. �

This important result has an equally important but entirely obvious consequence.

3.2.18. Corollary. The composite of two continuous functions is continuous.

3.2.19. Problem. Give a direct proof of corollary 3.2.18. (That is, give a proof which does not
rely on proposition 3.2.17.)
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3.3. FUNCTIONS DEFINED ON SUBSETS OF R

The remainder of this chapter is devoted to a small but important technical problem. Thus
far the definitions and propositions concerning continuity have dealt with functions whose domain
is R. What do we do about functions whose domain is a proper subset of R? After all, many old
friends—the functions x 7→

√
x, x 7→ 1

x , and x 7→ tanx, for example—have domains which are not
all of R. The difficulty is that if we were to attempt to apply proposition 3.1.2 to the square root
function f : x 7→

√
x (which would of course be improper since the hypothesis f : R → R is not

satisfied), we would come to the unwelcome conclusion that f is not continuous at 0: if ε > 0 then
the set f←

(
Jε(f(0))

)
= f←

(
Jε(0)

)
= f←(−ε, ε) = [0, ε2) contains no neighborhood of 0 in R.

Now this can’t be right. What we must do is to provide an appropriate definition for the
continuity of functions whose domains are proper subsets of R. And we wish to do it in such a way
that we make as few changes as possible in the resulting propositions.

The source of our difficulty is the demand (in definition 3.1.1) that f←(V ) contain a neighbor-
hood of the point a—and neighborhoods have been defined only in R. But why R? That is not the
domain of our function; the set A = [0,∞) is. We should be talking about neighborhoods in A. So
the question we now face is: how should we define neighborhoods in (and open subsets of) proper
subsets of R? The best answer is astonishingly simple. An open subset of A is the intersection of
an open subset of R with A.

3.3.1. Definition. Let A ⊆ R. A set U contained in A is open in A if there exists an open subset
V of R such that U = V ∩A. Briefly, the open subsets of A are restrictions to A of open subsets of

R. If U is an open subset of A we write U
◦
⊆ A. A neighborhood of a in A is an open subset

of A which contains a.

3.3.2. Example. The set [0, 1) is an open subset of [0,∞).

Proof. Let V = (−1, 1). Then V
◦
⊆ R and [0, 1) = V ∩ [0,∞); so [0, 1)

◦
⊆ [0,∞). �

Since, as we have just seen, [0, 1) is open in [0,∞) but is not open in R, there is a possibility
for confusion. Openness is not an intrinsic property of a set. When we say that a set is open, the
answer to the question “open in what?” must be either clear from context or else specified. Since
the topology (that is, collection of open subsets) which a set A inherits from R is often called the
relative topology on A, emphasis may be achieved by saying that a subset B of A is relatively
open in A. Thus, for example, we may say that [0, 1) is relatively open in [0,∞); or we may say
that [0, 1) is a relative neighborhood of 0 (or any other point in the interval). The question here is
emphasis and clarity, not logic.

3.3.3. Example. The set {1} is an open subset of N.

Proof. Problem.

3.3.4. Example. The set of all rational numbers x such that x2 ≤ 2 is an open subset of Q.

Proof. Problem.

3.3.5. Example. The set of all rational numbers x such that x2 ≤ 4 is not an open subset of Q.

Proof. Problem.

3.3.6. Definition. Let A ⊆ R, a ∈ A, and ε > 0. The ε-neighborhood of a in A is (a− ε, a+
ε) ∩A.

3.3.7. Example. In N the 1
2 - neighborhood of 1 is {1}.

Proof. Since (1− 1
2 , 1 + 1

2) ∩N = (12 ,
3
2) ∩N = {1}, we conclude that the ε-neighborhood of 1

is {1}. �
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Now is the time to show that the family of relatively open subsets of A (that is, the relative
topology on A) is in fact a topology on A. In particular, we must show that this family is closed
under unions and finite intersections.

3.3.8. Proposition. Let A ⊆ R. Then

(i) ∅ and A are relatively open in A;
(ii) if U is a family of relatively open sets in A, then

⋃
U is relatively open in A; and

(iii) if U is a finite family of relatively open sets in A, then
⋂
U is relatively open in A.

Proof. Problem.

3.3.9. Example. Every subset of N is relatively open in N.

Proof. Problem.

Now we are in a position to consider the continuity of functions defined on proper subsets of R.

3.3.10. Definition. Let a ∈ A ⊆ R and f : A → R. The function f is continuous at a if
f←(V ) contains a neighborhood of a in A whenever V is a neighborhood of f(a). The function f
is continuous if it is continuous at each point in its domain.

It is important to notice that we discuss the continuity of a function only at points where it is
defined. We will not, for example, make the claim found in so many beginning calculus texts that
the function x 7→ 1/x is discontinuous at zero. Nor will we try to decide whether the sine function
is continuous at the Bronx zoo.

The next proposition tells us that the crucial characterization of continuity in terms of inverse
images of open sets (see 3.2.12) still holds under the definition we have just given. Furthermore
codomains don’t matter; that is, it doesn’t matter whether we start with open subsets of R or with
sets open in the range of the function.

3.3.11. Proposition. Let A be a subset of R. A function f : A → R is continuous if and only if
f←(V ) is open in A whenever V is open in ran f .

Proof. Problem. Hint. Notice that if W
◦
⊆ R and V = W ∩ ran f , then f←(V ) = f←(W ).

3.3.12. Problem. Discuss the changes (if any) that must be made in 3.1.2, 3.1.3, 3.2.17, and
3.2.18, in order to accommodate functions whose domain is not all of R.

3.3.13. Problem. Let A ⊆ R. Explain what “(relatively) closed subset of A” should mean.
Suppose further that B ⊆ A. Decide how to define “the closure of B in A” and “the interior of B
with respect to A”. Explain what changes these definitions will require in propositions 3.2.13–3.2.16
so that the results hold for functions whose domains are proper subsets of R.

3.3.14. Problem. Let A = (0, 1) ∪ (1, 2). Define f : A→ R by

f(x) =

{
0 for 0 < x < 1,

1 for 1 < x < 2 .

Is f a continuous function?

3.3.15. Example. The function f defined by

f(x) =
1

x
for x 6= 0

is continuous.

Proof. Problem.

3.3.16. Example. The function f defined by

f(x) =
√
x+ 2 for x ≥ −2

is continuous at x = −2.
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Proof. Problem.

3.3.17. Example. The square root function is continuous.

Proof. Problem.

3.3.18. Problem. Define f : (0, 1) → R by setting f(x) = 0 if x is irrational and f(x) = 1/n if
x = m/n where m and n are natural numbers with no common factors. Where is f continuous?

3.3.19. Example. Inclusion mappings between subsets of R are continuous. That is, if A ⊆ B ⊆ R,
then the inclusion mapping ι : A→ B : a 7→ a is continuous. (See definition L.3.1.)

Proof. Let U
◦
⊆ B. By the definition of the relative topology on B (see 3.3.1), there exists an

open subset V of R such that U = V ∩ B. Then ι←(U) = ι←(V ∩ B) = V ∩ B ∩ A = V ∩ A
◦
⊆ A.

Since the inverse image under ι of each open set is open, ι is continuous. �

It is amusing to note how easy it is with the preceding example in hand to show that restrictions
of continuous functions are continuous.

3.3.20. Proposition. Let A ⊆ B ⊆ R. If f : B → R is continuous, then f |A, the restriction of f
to A, is continuous.

Proof. Recall (see appendix L section L.5) that f |A = f ◦ ι where ι is the inclusion mapping
of A into B. Since f is continuous (by hypothesis) and ι is continuous (by example 3.3.19), their
composite f |A is also continuous (by the generalization of 3.2.18 in 3.3.12). �

We conclude this chapter with the observation that if a continuous function is positive at a
point, it is positive nearby.

3.3.21. Proposition. Let A ⊆ R and f : A → R be continuous at the point a. If f(a) > 0, then
there exists a neighborhood J of a in A such that f(x) > 1

2f(a) for all x ∈ J .

Proof. Problem.





CHAPTER 4

SEQUENCES OF REAL NUMBERS

Sequences are an extremely useful tool in dealing with topological properties of sets in R
and, as we will see later, in general metric spaces. A major goal of this chapter is to illustrate
this usefulness by showing how sequences may be used to characterize open sets, closed sets, and
continuous functions.

4.1. CONVERGENCE OF SEQUENCES

A sequence is a function whose domain is the set N of natural numbers. In this chapter the
sequences we consider will all be sequences of real numbers, that is, functions from N into R. If a
is a sequence, it is conventional to write its value at a natural number n as an rather than as a(n).
The sequence itself may be written in a number of ways:

a = (an)∞n=1 = (an) = (a1, a2, a3, . . . ).

Care should be exercised in using the last of these notations. It would not be clear, for example,
whether (13 ,

1
5 ,

1
7 , . . . ) is intended to be the sequence of reciprocals of odd primes (in which case

the next term would be 1
11) or the sequence of reciprocals of odd integers greater than 1 (in which

case the next term would be 1
9). The element an in the range of a sequence is the nth term of the

sequence.
It is important to distinguish in one’s thinking between a sequence and its range. Think of a

sequence (x1, x2, x3, . . . ) as an ordered set: there is a first element x1, and a second element x2,
and so on. The range {x1, x2, x3, . . . } is just a set. There is no “first” element. For example, the
sequences (1, 2, 3, 4, 5, 6, . . . ) and (2, 1, 4, 3, 6, 5, . . . ) are different whereas the sets {1, 2, 3, 4, 5, 6, . . . }
and {2, 1, 4, 3, 6, 5, . . . } are exactly the same (both are N).

Remark. Occasionally in the sequel it will be convenient to alter the preceding definition a bit to
allow the domain of a sequence to be the set N∪{0} of all positive integers. It is worth noticing as
we go along that this in no way affects the correctness of the results we prove in this chapter.

4.1.1. Definition. A sequence (xn) of real numbers is eventually in a set A if there exists a
natural number n0 such that xn ∈ A whenever n ≥ n0.

4.1.2. Example. For each n ∈ N let xn = 3 +
7− n

2
. Then the sequence (xn)∞n=1 is eventually

strictly negative; that is, the sequence is eventually in the interval (−∞, 0).

Proof. If n ≥ 14, then
7− n

2
≤ −7

2
and xn = 3+

7− n
2
≤ −1

2
< 0. So xn ∈ (−∞, 0) whenever

n ≥ 14. �

4.1.3. Example. For each n ∈ N let xn =
2n− 3

n
. Then the sequence (xn)∞n=1 is eventually in the

interval (32 , 2).

Proof. Problem.

4.1.4. Definition. A sequence (xn)∞n=1 of real numbers converges to a ∈ R if it is eventually in
every ε-neighborhood of a. When the sequence converges to a we write

xn → a as n→∞. (4.1)

17
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These symbols may be read, “xn approaches a as n gets large.” If (xn) converges to a, the number
a is the limit of the sequence (xn). It would not be proper to refer to the limit of a sequence if
it were possible for a sequence to converge to two different points. We show now that this cannot
happen; limits of sequences are unique.

4.1.5. Proposition. Let (xn) be a sequence in R. If xn → a and xn → b as n→∞, then a = b.

Proof. Argue by contradiction. Suppose a 6= b, and let ε = |a− b|. Then ε > 0. Since (xn) is
eventually in Jε/2(a), there exists n0 ∈ N such that xn ∈ Jε/2(a) for n ≥ n0. That is, |xn − a| < ε

2
for n ≥ n0. Similarly, since (xn) is eventually in Jε/2(b), there is an m0 ∈ N such that |xn − b| < ε

2
for n ≥ m0. Now if n is any integer larger than both n0 and m0, then

ε = |a− b| = |a− xn + xn − b| ≤ |a− xn|+ |xn − b| < ε
2 + ε

2 = ε.

But ε < ε is impossible. Therefore, our initial supposition was wrong, and a = b. �

Since limits are unique, we may use an alternative notation to (4.1): if (xn) converges to a we
may write

lim
n→∞

xn = a.

(Notice how inappropriate this notation would be if limits were not unique.)

4.1.6. Definition. If a sequence (xn) does not converge (that is, if there exists no a ∈ R such that
(xn) converges to a), then the sequence diverges. Sometimes a divergent sequence (xn) has the
property that it is eventually in every interval of the form (p,∞) where p ∈ N. In this case we
write

xn →∞ as n→∞ or lim
n→∞

xn =∞.

If a divergent sequence (xn) is eventually in every interval of the form (−∞,−p) for p ∈ N, we
write

xn → −∞ as n→∞ or lim
n→∞

xn = −∞.

CAUTION. It is not true that every divergent sequence satisfies either xn → ∞ or xn → −∞.
See 4.1.9 below.

It is easy to rephrase the definition of convergence of a sequence in slightly different language.
The next problem gives two such variants. Sometimes one of these alternative “definitions” is more
convenient than 4.1.4.

4.1.7. Problem. Let (xn) be a sequence of real numbers and a ∈ R.

(a) Show that xn → a if and only if for every ε > 0 there exists n0 ∈ N such that |xn − a| < ε
whenever n ≥ n0.

(b) Show that xn → a if and only if (xn) is eventually in every neighborhood of a.

4.1.8. Example. The sequence ( 1
n)∞n=1 converges to 0.

Proof. Let ε > 0. Use the Archimedean property J.4.1 of the real numbers to choose N ∈ N
large enough that N > 1

ε . Then ∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
≤ 1

N
< ε.

whenever n ≥ N . �

4.1.9. Example. The sequence
(
(−1)n

)∞
n=0

diverges.
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Proof. Argue by contradiction. If we assume that (−1)n → a for some a ∈ R, then there
exists N ∈ N such that n ≥ N implies |(−1)n − a| < 1. Thus for every n ≥ N

2 = |(−1)n − (−1)n+1|
= |(−1)n − a+ a− (−1)n+1|
≤ |(−1)n − a|+ |a− (−1)n+1|
< 1 + 1 = 2

which is not possible. �

4.1.10. Example. The sequence

(
n

n+ 1

)∞
n=1

converges to 1.

Proof. Problem.

4.1.11. Proposition. Let (xn) be a sequence in R. Then xn → 0 if and only if |xn| → 0.

Proof. Exercise. (Solution Q.4.1.)

4.2. ALGEBRAIC COMBINATIONS OF SEQUENCES

As you will recall from beginning calculus, one standard way of computing the limit of a
complicated expression is to find the limits of the constituent parts of the expression and then
combine them algebraically. Suppose, for example, we are given sequences (xn) and (yn) and are
asked to find the limit of the sequence (xn + yn). What do we do? First we try to find the limits
of the individual sequences (xn) and (yn). Then we add. This process is justified by a proposition
that says, roughly, that the limit of a sum is the sum of the limits. Limits with respect to other
algebraic operations behave similarly.

The aim of the following problem is to develop the theory detailing how limits of sequences
interact with algebraic operations.

4.2.1. Problem. Suppose that (xn) and (yn) are sequences of real numbers, that xn → a and
yn → b, and that c ∈ R. For the case where a and b are real numbers derive the following:

(a) xn + yn → a+ b,
(b) xn − yn → a− b,
(c) xnyn → ab,
(d) cxn → ca, and

(e)
xn
yn
→ a

b
if b 6= 0.

Then consider what happens in case a = ±∞ or b = ±∞ (or both). What can you say (if anything)
about the limits of the left hand expressions of (a)–(e)? In those cases in which nothing can be said,
give examples to demonstrate as many outcomes as possible. For example, if a =∞ and b = −∞,
then nothing can be concluded about the limit as n gets large of xn + yn. All of the following are
possible:

(i) xn + yn → −∞. [Let xn = n and yn = −2n.]
(ii) xn + yn → α, where α is any real number. [Let xn = α+ n and yn = −n.]
(iii) xn + yn →∞. [Let xn = 2n and yn = −n.]
(iv) None of the above. [Let (xn) = (1, 2, 5, 6, 9, 10, 13, 14, . . . ) and yn = (0,−3,−4,−7,−8,−11,−12,−15, . . . ).]

4.2.2. Example. If xn → a in R and p ∈ N, then xn
p → ap.

Proof. Use induction on p. The conclusion obviously holds when p = 1. Suppose xn
p−1 →

ap−1. Apply part (c) of the preceding problem:

xn
p = xn

p−1 · xn → ap−1 · a = ap.

�
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4.2.3. Example. If xn =
2− 5n+ 7n2 − 6n3

4− 3n+ 5n2 + 4n3
for each n ∈ N, then xn → −3

2 as n→∞.

Proof. Problem.

4.2.4. Problem. Find limn→∞(
√
n2 + 5n− n).

Another very useful tool in computing limits is the “sandwich theorem”, which says that a
sequence sandwiched between two other sequences with a common limit has that same limit.

4.2.5. Proposition (Sandwich theorem). Let a be a real number or one of the symbols +∞ or −∞.
If xn → a and zn → a and if xn ≤ yn ≤ zn for all n, then yn → a.

Proof. Problem.

4.2.6. Example. If xn =
sin
(
3 + πn

2)
n3/2

for each n ∈ N, then xn → 0 as n→∞.

Proof. Problem. Hint. Use 4.1.11, 4.1.8, and 4.2.5.

4.2.7. Example. If (xn) is a sequence in (0,∞) and xn → a, then
√
xn →

√
a.

Proof. Problem. Hint. There are two possibilities: treat the cases a = 0 and a > 0 sepa-
rately. For the first use problem 4.1.7(a). For the second use 4.2.1(b) and 4.1.11; write

√
xn −

√
a

as |xn − a|/(√xn +
√
a). Then find an inequality that allows you to use the sandwich theo-

rem(proposition 4.2.5).

4.2.8. Example. The sequence
(
n1/n

)
converges to 1.

Proof. Problem. Hint. For each n let an = n1/n − 1. Apply the binomial theorem I.1.17 to

(1 + an)n to obtain the inequality n > 1
2n(n− 1) an

2 and hence to conclude that 0 < an <

√
2

n− 1
for every n. Use the sandwich theorem 4.2.5.

4.3. SUFFICIENT CONDITION FOR CONVERGENCE

An amusing situation sometimes arises in which we know what the limit of a sequence must be
if it exists, but we have no idea whether the sequence actually converges. Here is an example of
this odd behavior. The sequence will be recursively defined. Sequences are said to be recursively
defined if only the first term or first few terms are given explicitly and the remaining terms are
defined by means of the preceding term(s).

Consider the sequence (xn) defined so that x1 = 1 and for n ∈ N

xn+1 =
3(1 + xn)

3 + xn
. (4.2)

It is obvious that IF the sequence converges to a limit, say `, then ` must satisfy

` =
3(1 + `)

3 + `
.

(This is obtained by taking limits as n→∞ on both sides of (4.2).) Cross-multiplying and solving
for ` leads us to the conclusion that ` = ±

√
3. Since the first term x1 is positive, equation (4.2)

makes it clear that all the terms will be positive; so ` cannot be −
√

3. Thus it is entirely clear that
if the limit of the sequence exists, it must be

√
3. What is not clear is whether the limit exists at

all. This indicates how useful it is to know some conditions sufficient to guarantee convergence of
a sequence. The next proposition gives one important example of such a condition: it says that
bounded monotone sequences converge.

First, the relevant definitions.
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4.3.1. Definition. A sequence (xn) of real numbers is bounded if its range is a bounded subset
of R. Another way of saying the same thing: a sequence (xn) in R is bounded if there exists a
number M such that |xn| ≤M for all n ∈ N.

4.3.2. Definition. A sequence (an) of real numbers is increasing if an+1 ≥ an for every n ∈ N;
it is strictly increasing if an+1 > an for every n. A sequence is decreasing if an+1 ≤ an for
every n, and is strictly decreasing if an+1 < an for every n. A sequence is monotone if it is
either increasing or decreasing.

4.3.3. Proposition. Every bounded monotone sequence of real numbers converges. In fact, if a
sequence is bounded and increasing, then it converges to the least upper bound of its range. Similarly,
if it is bounded and decreasing, then it converges to the greatest lower bound of its range.

Proof. Let (xn) be a bounded increasing sequence. Let R be the range of the sequence
and ` be the least upper bound of R; that is, ` = sup{xn : n ∈ N}. We have seen in example
2.2.7 that the least upper bound of a nonempty subset of R belongs to the closure of that set.
In particular, ` ∈ R. Thus given any ε > 0 we can find a number xn0 of R that lies in the
interval Jε(`). In fact, xn0 ∈ (` − ε, `]. Since the sequence is increasing and bounded above by `,
we have xn ∈ (` − ε, `] ⊆ Jε(`) for every n ≥ n0. What we have just proved is that the sequence
(xn) is eventually in every ε-neighborhood of `. That is, xn → `.

If (xn) is bounded and decreasing, then the sequence (−xn) is bounded and increasing. If R is
the range of (xn) and g is the greatest lower bound of R, then −R is the range of (−xn) and −g is
the least upper bound of −R. By what we have just proved, −xn → −g. So xn → g as desired. �

4.3.4. Example. Let (xn) be the sequence recursively defined above: x1 = 1 and (4.2) holds for
all n ≥ 1. Then xn →

√
3 as n → ∞.

Proof. We have argued previously that the limit of the sequence is
√

3 if it exists. So what we
must show is that the sequence does converge. We have thus far one tool—proposition 4.3.3. Thus
we hope that we will be able to prove that the sequence is bounded and monotone. If the sequence
starts at 1, is monotone, and approaches

√
3, then it must be increasing. How do we prove that the

sequence is bounded? Bounded by what? We observed earlier that x1 ≥ 0 and equation (4.2) then
guarantees that all the remaining xn’s will be positive. So 0 is a lower bound for the sequence. If
the sequence is increasing and approaches

√
3, then

√
3 will be an upper bound for the terms of

the sequence. Thus it appears that the way to make use of proposition 4.3.3 is to prove two things:
(1) 0 ≤ xn ≤

√
3 for all n; and (2) (xn) is increasing. If we succeed in establishing both of these

claims, we are done.

Claim 1. 0 ≤ xn ≤
√

3 for all n ∈ N.

Proof. We have already observed that xn ≥ 0 for all n. We use mathematical induction to
show that xn ≤

√
3 for all n. Since x1 = 1, it is clear that x1 ≤

√
3. For the inductive hypothesis

suppose that for some particular k we have

xk ≤
√

3 . (4.3)

We wish to show that xk+1 ≤
√

3. To start, multiply both sides of (4.3) by 3 −
√

3. (If you are
wondering, “How did you know to do that?” consult the next problem.) This gives us

3xk −
√

3xk ≤ 3
√

3− 3.

Rearrange so that all terms are positive

3 + 3xk ≤ 3
√

3 +
√

3xk =
√

3(3 + xk).

But then clearly

xk+1 =
3 + 3xk
3 + xk

≤
√

3,

which was to be proved.
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Claim 2. The sequence (xn) is increasing.

Proof. We will show that xn+1 − xn ≥ 0 for all n. For each n

xn+1 − xn =
3 + 3xn
3 + xn

− xn =
3− xn2

3 + xn
≥ 0.

(We know that 3− xn2 ≥ 0 from claim 1.) �

4.3.5. Problem. A student, Fred R. Dimm, tried on an exam to prove the claims made in example
4.3.4. For the inductive proof of claim 1 that xn ≤

√
3 he offered the following “proof”:

xk+1 ≤
√

3

3 + 3xk
3 + xk

≤
√

3

3 + 3xk ≤
√

3(3 + xk)

3xk −
√

3xk ≤ 3
√

3− 3

(3−
√

3)xk ≤ (3−
√

3)
√

3

xk ≤
√

3, which is true by hypothesis.

(a) Aside from his regrettable lack of explanation, Fred seems to be making a serious logical
error. Explain to poor Fred why his offering is not a proof. Hint. What would you say
about a proof that 1 = 2, that goes as follows?

1 = 2

0 · 1 = 0 · 2
0 = 0, which is true.

(b) Now explain why Fred’s computation in (a) is really quite useful scratch work, even if it is
not a proof. Hint. In the correct proof of claim 1, how might its author have been inspired
to “multiply both sides of 4.3 by 3−

√
3”?

4.3.6. Example. The condition (bounded and monotone) given in proposition 4.3.3, while suffi-
cient to guarantee the convergence of a sequence, is not necessary.

Proof. Problem. (Give an explicit example.)

Expressed as a conditional, proposition 4.3.3 says that if a sequence is bounded and monotone,
then it converges. Example 4.3.6 shows that the converse of this conditional is not correct. A
partial converse does hold however: if a sequence converges, it must be bounded.

4.3.7. Proposition. Every convergent sequence in R is bounded.

Proof. Exercise. (Solution Q.4.2.)

We will encounter many situations when it is important to know the limit as n gets large of rn

where r is a number in the interval (−1, 1) and the limit of r1/n where r is a number greater than
0. The next two propositions show that the respective limits are always 0 and 1.

4.3.8. Proposition. If |r| < 1, then rn → 0 as n→∞. If |r| > 1, then (rn) diverges.

Proof. Suppose that |r| < 1. If r = 0, the proof is trivial, so we consider only r 6= 0. Since
0 < |r| < 1 whenever −1 < r < 0, proposition 4.1.11 allows us to restrict our attention to numbers
lying in the interval (0, 1). Thus we suppose that 0 < r < 1 and prove that rn → 0. Let R be the
range of the sequence (rn). That is, let R = {rn : n ∈ N}. Let g = inf R. Notice that g ≥ 0 since 0
is a lower bound for R. We use an argument by contradiction to prove that g = 0. Assume to the
contrary that g > 0. Since 0 < r < 1, it must follow that gr−1 > g. Since g is the greatest lower
bound of R, the number gr−1 is not a lower bound for R. Thus there exists a member, say rk, of
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R such that rk < gr−1. But then rk+1 < g, which contradicts the choice of g as a lower bound of
R. We conclude that g = 0.

The sequence (rn) is bounded and decreasing. Thus by proposition 4.3.3 it converges to the
greatest lower bound of its range; that is, rn → 0 as n→∞.

Now suppose r > 1. Again we argue by contradiction. Suppose that (rn) converges. Then its
range R is a bounded subset of R.

Let ` = supR. Since r > 1, it is clear that `r−1 < `. Since ` is the least upper bound of R,
there exists a number rk of R such that rk > `r−1. Then rk+1 > `, contrary to the choice of ` as
an upper bound for R.

Finally, suppose that r < −1. If (rn) converges then its range is bounded. In particular,
{r2n : n ∈ N} is bounded. As in the preceding paragraph, this is impossible. �

4.3.9. Proposition. If r > 0, then r1/n → 1 as n→∞.

Proof. Problem. Hint. Show that 1
n < r < n for some natural number n. Then use example

4.2.8 and proposition 4.2.5. (You will also make use of a standard arithmetic fact—one that arises

in problem J.4.5—that if 0 < a < b, then a1/n < b1/n for every natural number n.)

4.3.10. Problem. Find lim
n→∞

5n + 3n+ 1

7n − n− 2
.

4.4. SUBSEQUENCES

As example 4.1.9 shows, boundedness of a sequence of real numbers does not suffice to guarantee
convergence. It is interesting to note, however, that although the sequence

(
(−1)n

)∞
n=1

does not
converge, it does have subsequences that converge. The odd numbered terms form a constant
sequence (−1,−1,−1, . . . ), which of course converges. The even terms converge to +1. It is an
interesting, if not entirely obvious, fact that every bounded sequence has a convergent subsequence.
This is a consequence of our next proposition.

Before proving proposition 4.4.3 we discuss the notion of subsequence. The basic idea here
is simple enough. Let a = (a1, a2, a3, . . . ) be a sequence of real numbers, and suppose that we
construct a new sequence b by taking some but not necessarily all of the terms of a and listing
them in the same order in which they appear in a. Then we say that this new sequence b is a
subsequence of a. We might, for example, choose every fifth member of a thereby obtaining the
subsequence b = (b1, b2, b3, . . . ) = (a5, a10, a15, . . . ). The following definition formalizes this idea.

4.4.1. Definition. Let (an) be a sequence of real numbers. If (nk)
∞
k=1 is a strictly increasing

sequence in N, then the sequence

(ank) = (ank)∞k=1 = (an1 , an2 , an3 , . . . )

is a subsequence of the sequence (an).

4.4.2. Example. If ak = 2−k and bk = 4−k for all k ∈ N, then (bk) is a subsequence of (ak).
Intuitively, this is clear, since the second sequence (14 ,

1
16 ,

1
64 , . . . ) just picks out the even-numbered

terms of the first sequence (12 ,
1
4 ,

1
8 ,

1
16 , . . . ). This “picking out” is implemented by the strictly

increasing function n(k) = 2 k (for k ∈ N). Thus b = a ◦ n since

ank = a(n(k)) = a(2k) = 2−2k = 4−k = bk

for all k in N.

4.4.3. Proposition. Every sequence of real numbers has a monotone subsequence.

Proof. Exercise. Hint. A definition may be helpful. Say that a term am of a sequence in R
is a peak term if it is greater than or equal to every succeeding term (that is, if am ≥ am+k for
all k ∈ N). There are only two possibilities: either there is a subsequence of the sequence (an)
consisting of peak terms, or else there is a last peak term in the sequence. (Include in this second
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case the situation in which there are no peak terms.) Show in each case how to select a monotone
subsequence of (an). (Solution Q.4.3.)

4.4.4. Corollary. Every bounded sequence of real numbers has a convergent subsequence.

Proof. This is an immediate consequence of propositions 4.3.3 and 4.4.3. �

Our immediate purpose in studying sequences is to facilitate our investigation of the topology of
the set of real numbers. We will first prove a key result 4.4.9, usually known as Bolzano’s theorem,
which tells us that bounded infinite subsets of R have accumulation points. We then proceed to
make available for future work sequential characterizations of open sets 4.4.10, closed sets 4.4.12,
and continuity of functions 4.4.13.

4.4.5. Definition. A sequence (A1, A2, A3, . . . ) of sets is nested if Ak+1 ⊆ Ak for every k.

4.4.6. Proposition. The intersection of a nested sequence of nonempty closed bounded intervals
whose lengths approach 0 contains exactly one point.

Proof. Problem. Hint. Suppose that Jn = [an, bn] 6= ∅ for each n ∈ N, that Jn+1 ⊆ Jn for
each n, and that bn − an → 0 as n→∞. Show that ∩∞n=1Jn = {c} for some c ∈ R.

4.4.7. Problem. Show by example that the intersection of a nested sequence of nonempty closed
intervals may be empty.

4.4.8. Problem. Show by example that proposition 4.4.6 no longer holds if “closed” is replaced
by “open”.

4.4.9. Proposition (Bolzano’s theorem). Every bounded infinite subset of R has at least one
accumulation point.

Proof. Let A be a bounded infinite subset of R. Since it is bounded it is contained in some
interval J0 = [a0, b0]. Let c0 be the midpoint of J0. Then at least one of the intervals [a0, c0] or
[c0, b0] contains infinitely many members of A (see O.1.17). Choose one that does and call it J1.
Now divide J1 in half and choose J2 to be one of the resulting closed subintervals whose intersection
with A is infinite. Proceed inductively to obtain a nested sequence of closed intervals

J0 ⊇ J1 ⊇ J2 ⊇ J3 ⊇ . . .
each one of which contains infinitely many points of A. By proposition 4.4.6 the intersection of all
the intervals Jk consists of exactly one point c. Every open interval about c contains some interval
Jk and hence infinitely many points of A. Thus c is an accumulation point of A. �

4.4.10. Proposition. A subset U of R is open if and only if every sequence that converges to an
element of U is eventually in U .

Proof. Suppose U is open in R. Let (xn) be a sequence that converges to a point a in U .
Since U is a neighborhood of a, (xn) is eventually in U by 4.1.7(b).

Conversely, suppose that U is not open. Then there is at least one point a of U that is not an
interior point of U . Then for each n ∈ N there is a point xn that belongs to J1/n(a) but not to U .
Then the sequence (xn) converges to a but no term of the sequence belongs to U . �

4.4.11. Proposition. A point b belongs to the closure of a set A in R if and only if there exists a
sequence (an) in A that converges to b.

Proof. Exercise. (Solution Q.4.4.)

4.4.12. Corollary. A subset A of R is closed if and only if b belongs to A whenever there is a
sequence (an) in A that converges to b.

4.4.13. Proposition. Let A ⊆ R. A function f : A→ R is continuous at a if and only if f(xn)→
f(a) whenever (xn) is a sequence in A such that xn → a.
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Proof. Problem.

4.4.14. Problem. Discuss in detail the continuity of algebraic combinations of continuous real
valued functions defined on subsets of R. Show, for example, that if functions f and g are continuous
at a point a in R, then such combinations as f + g and fg are also continuous at a. What can you
say about the continuity of polynomials? Hint. Use problem 4.2.1 and proposition 4.4.13.

We conclude this chapter with some problems. The last six of these concern the convergence of
recursively defined sequences. Most of these are pretty much like example 4.3.4 and require more
in the way of patience than ingenuity.

4.4.15. Problem. If A is a nonempty subset of R that is bounded above, then there exists an
increasing sequence of elements of A that converges to supA. Similarly, if A is nonempty and
bounded below, then there is a decreasing sequence in A converging to inf A.

4.4.16. Problem (Geometric Series). Let |r| < 1 and a ∈ R. For each n ≥ 0 let sn =
∑n

k=0 ar
k.

(a) Show that the sequence (sn)∞n=0 converges. Hint. Consider sn − rsn.
(b) The limit found in part (a) is usually denoted by

∑∞
k=0 ar

k. (This is the sum of a geometric

series.) Use (a) to find
∑∞

k=0 2−k.
(c) Show how (a) may be used to write the decimal 0.15242424 . . . as the quotient of two

natural numbers.

4.4.17. Exercise. Suppose a sequence (xn) of real numbers satisfies

4xn+1 = xn
3

for all n ∈ N. For what values of x1 does the sequence (xn) converge? For each such x1 what is
limn→∞ xn? Hint. First establish that if the sequence (xn) converges, its limit must be −2, 0, or 2.
This suggests looking at several special cases: x1 < −2, x1 = −2, −2 < x1 < 0, x1 = 0, 0 < x1 < 2,
x1 = 2, and x1 > 2. In case x1 < −2, for example, show that xn < −2 for all n. Use this to show
that the sequence (xn) is decreasing and that it has no limit. The other cases can be treated in a
similar fashion. (Solution Q.4.5.)

4.4.18. Problem. Suppose a sequence (xn) in R satisfies

5xn+1 = 3xn + 4

for all n ∈ N. Show that (xn) converges. Hint. First answer an easy question: If xn → `, what is
`? Then look at three cases: x1 < `, x1 = `, and x1 > ` . Show, for example, that if x1 < `, then
(xn) is bounded and increasing.

4.4.19. Problem. Suppose a sequence (xn) in R satisfies

xn+1 =
√

2 + xn

for all n ∈ N. Show that (xn) converges. To what does it converge?

4.4.20. Problem. Suppose that a sequence (xn) in R satisfies

xn+1 = 1−
√

1− xn

for all n ∈ N. Show that (xn) converges. To what does it converge? Does

(
xn+1

xn

)
converge?

4.4.21. Problem. Suppose that a sequence (xn) of real numbers satisfies

3xn+1 = xn
3 − 2

for all n ∈ N. For what choices of x1 does the sequence converge? To what? Hint. Compute
xn+1 − xn.
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4.4.22. Problem. Let a > 1. Suppose that a sequence (xn) in R satisfies

(a+ xn)xn+1 = a(1 + xn)

for all n. Show that if x1 > 0, then (xn) converges. In this case find limxn.



CHAPTER 5

CONNECTEDNESS AND THE INTERMEDIATE VALUE
THEOREM

5.1. CONNECTED SUBSETS OF R

There appears to be no way of finding an exact solution to such an equation as

sinx = x− 1. (5.1)

No algebraic trick or trigonometric identity seems to help. To be entirely honest we must ask what
reason we have for thinking that (5.1) has a solution. True, even a rough sketch of the graphs
of the functions x 7→ sinx and x 7→ x − 1 seems to indicate that the two curves cross not far
from x = 2. But is it not possible in the vast perversity of the-way-things-are that the two curves
might somehow skip over one another without actually having a point in common? To say that
it seems unlikely is one thing, to say that we know it can not happen is another. The solution to
our dilemma lies in a result familiar from nearly every beginning calculus course: the intermediate
value theorem. Despite the complicated symbol-ridden formulations in most calculus texts what
this theorem really says is that continuous functions from R to R take intervals to intervals. In
order to prove this fact we will first need to introduce an important topological property of all
intervals, connectedness. Once we have proved the intermediate value theorem not only will we
have the intellectual satisfaction of saying that we know (5.1) has a solution, but we can utilize
this same theorem to find approximations to the solution of (5.1) whose accuracy is limited only
by the computational means at our disposal.

So, first we define “connected”. Or rather, we define “disconnected”, and then agree that sets
are connected if they are not disconnected.

5.1.1. Definition. A subset A of R is disconnected if there exist disjoint nonempty sets U and
V both open in A whose union is A. In this case we say that the sets U and V disconnect A. A
subset A of R is connected if it is not disconnected.

5.1.2. Proposition. A set A ⊆ R is connected if and only if the only subsets of A which are both
open in A and closed in A are the null set and A itself.

Proof. Exercise. (Solution Q.5.1.)

5.1.3. Example. The set {1, 4, 8} is disconnected.

Proof. Let A = {1, 4, 8} ⊆ R. Notice that the sets {1} and {4, 8} are open subsets of A.
Reason: (−∞, 2)∩A = {1} and (2,∞)∩A = {4, 8}; so {1} is the intersection of an open subset of
R with A, and so is {4, 8} (see definition 3.3.1). Thus {1} and {4, 8} are disjoint nonempty open
subsets of A whose union is A. That is, the sets {1} and {4, 8} disconnect A. �

5.1.4. Example. The set Q of rational numbers is disconnected.

Proof. The sets {x ∈ Q : x < π} and {x ∈ Q : x > π} disconnect Q. �

5.1.5. Example. The set { 1n : n ∈ N} is disconnected.

Proof. Problem.

27
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If A is a subset of R, it is somewhat awkward that “connected” is defined in terms of (relatively)
open subsets of A. In general, it is a nuisance to deal with relatively open subsets. It would be
much more convenient to deal only with the familiar topology of R. Happily, this can be arranged.

It is an elementary observation that A is disconnected if we can find disjoint sets U and V ,
both open in R, whose intersections with A are nonempty and whose union contains A. (For then
the sets U ∩A and V ∩A disconnect A.) Somewhat less obvious is the fact that A is disconnected
if and only if it can be written as the union of two nonempty subsets C and D of R such that

C ∩D = C ∩D = ∅. (5.2)

(The indicated closures are in R.)

5.1.6. Definition. Two nonempty subsets C and D of R which satisfy equation (5.2) are said to
be mutually separated in R.

5.1.7. Proposition. A subset A of R is disconnected if and only if it is the union of two nonempty
sets mutually separated in R.

Proof. If A is disconnected, it can be written as the union of two disjoint nonempty sets U
and V which are open in A. (These sets need not, of course, be open in R.) We show that U and
V are mutually separated. It suffices to prove that U ∩V is empty, that is, U ⊆ R \V . To this end
suppose that u ∈ U . Since U is open in A, there exists δ > 0 such that

A ∩ Jδ(u) = {x ∈ A : |x− u| < δ} ⊆ U ⊆ R \ V.
The interval Jδ(u) = (u − δ, u + δ) is the union of two sets: A ∩ Jδ(u) and Ac ∩ Jδ(u). We have
just shown that the first of these belongs to R \ V . Certainly the second piece contains no points
of A and therefore no points of V . Thus Jδ(u) ⊆ R \ V . This shows that u does not belong to the
closure (in R) of the set V ; so u ∈ R \ V . Since u was an arbitrary point of U , we conclude that
U ⊆ R \ V .

Conversely, suppose that A = U ∪ V where U and V are nonempty sets mutually separated
in R. To show that the sets U and V disconnect A, we need only show that they are open in A,
since they are obviously disjoint.

Let us prove that U is open in A. Let u ∈ U and notice that since U ∩ V is empty, u cannot
belong to V .

Thus there exists δ > 0 such that Jδ(u) is disjoint from V . Then certainly A∩ Jδ(u) is disjoint
from V . Thus A ∩ Jδ(u) is contained in U . Conclusion: U is open in A. �

The importance of proposition 5.1.7 is that it allows us to avoid the definition of “connected”,
which involves relatively open subsets, and replace it with an equivalent condition which refers only
to closures in R. There is no important idea here, only a matter of convenience. We will use this
characterization in the proof of our next proposition, which identifies the connected subsets of the
real line. (To appreciate the convenience that proposition 5.1.7 brings our way, try to prove the
next result using only the definition of “connected” and not 5.1.7.) As mentioned earlier we need
to know that in the real line the intervals are the connected sets. This probably agrees with your
intuition in the matter. It is plausible, and it is true; but it is not obvious, and its proof requires a
little thought.

5.1.8. Definition. A subset J of R is an interval provided that it satisfies the following condition:
if c, d ∈ J and c < z < d, then z ∈ J . (Thus, in particular, the empty set and sets containing a
single point are intervals.)

5.1.9. Proposition. A subset J of R is connected if and only if it is an interval.

Proof. To show that intervals are connected argue by contradiction. Assume that there exists
an interval J in R which is not connected. By proposition 5.1.7 there exist nonempty sets C and
D in R such that J = C ∪D and

C ∩D = C ∩D = ∅
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(closures are taken in R). Choose c ∈ C and d ∈ D. Without loss of generality suppose c < d. Let
A = (−∞, d) ∩ C and z = supA. Certainly c ≤ z ≤ d. Now z ∈ C. (We know from example 2.2.7
that z belongs to A and therefore to C.) Furthermore z ∈ D. (If z = d, then z ∈ D ⊆ D. If z < d,
then the interval (z, d) is contained in J and, since z is an upper bound for A, this interval contains
no point of C. Thus (z, d) ⊆ D and z ∈ D.) Finally, since z belongs to J it is a member of either
C or D. But z ∈ C implies z ∈ C ∩D = ∅, which is impossible; and z ∈ D implies z ∈ C ∩D = ∅,
which is also impossible.

The converse is easy. If J is not an interval, then there exist numbers c < z < d such that c,
d ∈ J and z /∈ J . It is easy to see that the sets (−∞, z) ∩ J and (z,∞) ∩ J disconnect J . �

5.2. CONTINUOUS IMAGES OF CONNECTED SETS

Some of the facts we prove in this chapter are quite specific to the real line R. When we move
to more complicated metric spaces no reasonable analog of these facts is true. For example, even
in the plane R2 nothing remotely like proposition 5.1.9 holds. While it is not unreasonable to guess
that the connected subsets of the plane are those in which we can move continuously between any
two points of the set without leaving the set, this conjecture turns out to be wrong. The latter
property, arcwise connectedness, is sufficient for connectedness to hold—but is not necessary. In
chapter 17 we will give an example of a connected set which is not arcwise connected.

Despite the fact that some of our results are specific to R, others will turn out to be true
in very general settings. The next theorem, for example, which says that continuity preserves
connectedness, is true in R, in Rn, in metric spaces, and even in general topological spaces. More
important, the same proof works in all these cases! Thus when you get to chapter 17, where
connectedness in metric spaces is discussed, you will already know the proof that the continuous
image of a connected set is itself connected.

5.2.1. Theorem. The continuous image of a connected set is connected.

Proof. Exercise. Hint. Prove the contrapositive. Let f : A → R be a continuous function
where A ⊆ R. Show that if ran f is disconnected, then so is A. (Solution Q.5.2.)

The important intermediate value theorem, is an obvious corollary of the preceding theorem.

5.2.2. Theorem (Intermediate Value Theorem: Conceptual Version). The continuous image in R
of an interval is an interval.

Proof. Obvious from 5.1.9 and 5.2.1. �

A slight variant of this theorem, familiar from beginning calculus, helps explain the name of
the result. It says that if a continuous real valued function defined on an interval takes on two
values, then it takes on every intermediate value, that is, every value between them. It is useful
in establishing the existence of solutions to certain equations and also in approximating these
solutions.

5.2.3. Theorem (Intermediate Value Theorem: Calculus Text Version). Let f : J → R be a
continuous function defined on an interval J ⊆ R. If a, b ∈ ran f and a < z < b, then z ∈ ran f .

Proof. Exercise. (Solution Q.5.3.)

Here is a typical application of the intermediate value theorem.

5.2.4. Example. The equation

x27 + 5x13 + x = x3 + x5 +
2√

1 + 3x2
(5.3)

has at least one real solution.

Proof. Exercise. Hint. Consider the function f whose value at x is the left side minus the right
side of (5.3). What can you say without much thought about f(2) and f(−2)? (Solution Q.5.4.)
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As another application of the intermediate value theorem we prove a fixed point theorem.
(Definition: Let f : S → S be a mapping from a set S into itself. A point c in S is a fixed point
of the function f if f(c) = c.) The next result is a (very) special case of the celebrated Brouwer
fixed point theorem, which says that every continuous map from the closed unit ball of Rn into
itself has a fixed point. The proof of this more general result is rather complicated and will not be
given here.

5.2.5. Proposition. Let a < b in R. Every continuous map of the interval [a, b] into itself has a
fixed point.

Proof. Exercise. (Solution Q.5.5.)

5.2.6. Example. The equation

x180 +
84

1 + x2 + cos2 x
= 119

has at least two solutions in R.

Proof. Problem.

5.2.7. Problem. Show that the equation

1√
4x2 + x+ 4

− 1 = x− x5

has at least one real solution. Locate such a solution between consecutive integers.

5.2.8. Problem. We return to the problem we discussed at the beginning of this chapter. Use the
intermediate value theorem to find a solution to the equation

sinx = 1− x
accurate to within 10−5. Hint. You may assume, for the purposes of this problem, that the function
x 7→ sinx is continuous. You will not want to do the computations by hand; write a program for a
computer or programmable calculator. Notice to begin with that there is a solution in the interval
[0, 1]. Divide the interval in half and decide which half, [0, 12 ] or [12 , 1], contains the solution. Then
take the appropriate half and divide it in half. Proceed in this way until you have achieved the
desired accuracy. Alternatively, you may find it convenient to divide each interval into tenths rather
than halves.

5.3. HOMEOMORPHISMS

5.3.1. Definition. Two subsets A and B of R are homeomorphic if there exists a continuous
bijection f from A onto B such that f−1 is also continuous. In this case the function f is a
homeomorphism.

Notice that if two subsets A and B are homeomorphic, then there is a one-to-one correspondence
between the open subsets of A and those of B. In terms of topology, the two sets are identical. Thus
if we know that the open intervals (0, 1) and (3, 7) are homeomorphic (see the next problem), then
we treat these two intervals for all topological purposes as indistinguishable. (Of course, a concept
such as distance is another matter; it is not a topological property. When we consider the distance
between points of our two intervals, we can certainly distinguish between them: one is four times
the length of the other.) A homeomorphism is sometimes called a topological isomorphism.

5.3.2. Problem. Discuss the homeomorphism classes of intervals in R. That is, tell, as generally
as you can, which intervals in R are homeomorphic to which others—and, of course, explain why.
It might be easiest to start with some examples. Show that

(a) the open intervals (0, 1) and (3, 7) are homeomorphic; and
(b) the three intervals (0, 1), (0,∞), and R are homeomorphic.
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Then do some counterexamples. Show that

(c) no two of the intervals (0, 1), (0, 1], and [0, 1] are homeomorphic.

Hint. For (a) consider the function x 7→ 4x+ 3. For part of (c) suppose that f : (0, 1]→ (0, 1) is a
homeomorphism. What can you say about the restriction of f to (0, 1)?

When you feel comfortable with the examples, then try to prove more general statements. For
example, show that any two bounded open intervals are homeomorphic.

Finally, try to find the most general possible homeomorphism classes. (A homeomorphism
class is a family of intervals any two of which are homeomorphic.)

5.3.3. Problem. Describe the class of all continuous mappings from R into Q.





CHAPTER 6

COMPACTNESS AND THE EXTREME VALUE THEOREM

One of the most important results in beginning calculus is the extreme value theorem: a con-
tinuous function on a closed and bounded subset of the real line achieves both a maximum and a
minimum value. In the present chapter we prove this result. Central to understanding the extreme
value theorem is a curious observation: while neither boundedness nor the property of being closed
is preserved by continuity (see problems 6.1.1 and 6.1.2), the property of being closed and bounded
is preserved. Once we have proved this result it is easy to see that a continuous function defined
on a closed and bounded set attains a maximum and minimum on the set.

Nevertheless, there are some complications along the way. To begin with, the proof that conti-
nuity preserves the property of being closed and bounded turns out to be awkward and unnatural.
Furthermore, although this result can be generalized to Rn, it does not hold in more general metric
spaces. This suggests—even if it is not conclusive evidence—that we are looking at the wrong
concept. One of the mathematical triumphs of the early twentieth century was the recognition that
indeed the very concept of closed-and-bounded is a manifestation of the veil of māyā, a seductively
simple vision which obscures the “real” topological workings behind the scenes. Enlightenment,
at this level, consists in piercing this veil of illusion and seeing behind it the “correct” concept—
compactness. There is now overwhelming evidence that compactness is the appropriate concept.
First and most rewarding is the observation that the proofs of the preservation of compactness by
continuity and of the extreme value theorem now become extremely natural. Also, the same proofs
work not only for Rn but for general metric spaces and even arbitrary topological spaces. Further-
more, the property of compactness is an intrinsic one—if A ⊆ B ⊆ C, then A is compact in B if and
only if it is compact in C. (The property of being closed is not intrinsic: the interval (0, 1] is closed
in (0,∞) but not in R.) Finally, there is the triumph of products. In the early 1900’s there were
other contenders for the honored place ultimately held by compactness—sequential compactness
and countable compactness. Around 1930 the great Russian mathematician Tychonov was able to
show that arbitrary products of compact spaces are compact, a powerful and useful property not
shared by the competitors.

There is, however, a price to be paid for the wonders of compactness—a frustratingly unintuitive
definition. It is doubtless this lack of intuitive appeal which explains why it took workers in the
field so long to come up with the optimal notion. Do not be discouraged if you feel you don’t
understand the definition. I’m not sure anyone really “understands” it. What is important is to
be able to use it. And that is quite possible—with a little practice. In this chapter we first define
compactness (6.1.3) and give two important examples of compact sets: finite sets (see 6.2.1) and
the interval [0, 1] (see 6.2.4). Then we give a number of ways of creating new compact sets from
old ones (see 6.2.2, 6.2.8, 6.2.9(b), and 6.3.2). In 6.3.2 we show that the continuous image of a
compact set is compact and in 6.3.3 we prove the extreme value theorem. Finally (in 6.3.6) we
prove the Heine-Borel theorem for R: the compact subsets of R are those which are both closed
and bounded.

6.1. COMPACTNESS

6.1.1. Problem. Give an example to show that if f is a continuous real valued function of a
real variable and A is a closed subset of R which is contained in the domain of f , then it is not
necessarily the case that f→(A) is a closed subset of R.
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6.1.2. Problem. Give an example to show that if f is a continuous real valued function of a real
variable and A is a bounded subset of the domain of f , then it is not necessarily the case that
f→(A) is bounded.

6.1.3. Definition. A family U of sets is said to cover a set A if
⋃

U ⊇ A. The phrases “U covers
A”, “U is a cover for A”, “U is a covering of A”, and “A is covered by U” are used interchangeably.
If A is a subset of R and U is a cover for A which consists entirely of open subsets of R, then U is
an open cover for A. If U is a family of sets which covers A and V is a subfamily of U which also
covers A, then V is a subcover of U for A. A subset A of R is compact if every open cover of A
has a finite subcover.

6.1.4. Example. Let A = [0, 1], U1 = (−3, 23), U2 = (−1, 12), U3 = (0, 12), U4 = (13 ,
2
3), U5 = (12 , 1),

U6 = ( 9
10 , 2), and U7 = (23 ,

3
2). Then the family U = {Uk : 1 ≤ k ≤ 7} is an open cover for A

(because each Uk is open and
⋃7
k=1 Uk = (−3, 2) ⊇ A). The subfamily V = {U1, U5, U6} of U is a

subcover for A (because U1 ∪ U5 ∪ U6 = (−3, 2) ⊇ A). The subfamily W = {U1, U2, U3, U7} of U is
not a subcover for A (because U1 ∪ U2 ∪ U3 ∪ U7 = (−3, 23) ∪ (23 ,

3
2) does not contain A).

6.1.5. Problem. Let J be the open unit interval (0, 1). For each a let Ua =
(
a, a+ 1

4

)
, and let

U = {Ua : 0 ≤ a ≤ 3
4}. Then certainly U covers J .

(a) Find a finite subfamily of U which covers J .
(b) Explain why a solution to (a) does not suffice to show that J is compact.
(c) Show that J is not compact.

6.2. EXAMPLES OF COMPACT SUBSETS OF R

It is easy to give examples of sets that are not compact. For example, R itself is not compact.
To see this consider the family U of all open intervals of the form (−n, n) where n is a natural
number. Then U covers R (what property of R guarantees this?); but certainly no finite subfamily
of U does.

What is usually a lot trickier, because the definition is hard to apply directly, is proving that
some particular compact set really is compact. The simplest examples of compact spaces are the
finite ones. (See example 6.2.1.) Finding nontrivial examples is another matter.

In this section we guarantee ourselves a generous supply of compact subsets of R by specifying
some rather powerful methods for creating new compact sets from old ones. In particular, we will
show that a set is compact if it is

(1) a closed subset of a compact set (6.2.2),
(2) a finite union of compact sets (6.2.9(b)), or
(3) the continuous image of a compact set (6.3.2).

Nevertheless it is clear that we need something to start with. In example 6.2.4 we prove directly
from the definition that the closed unit interval [0, 1] is compact. It is fascinating to see how this
single example together with conditions (1)–(3) above can be used to generate a great variety of
compact sets in general metric spaces. This will be done in chapter 15.

6.2.1. Example. Every finite subset of R is compact.

Proof. Let A = {x1, x2, . . . , xn} be a finite subset of R. Let U be a family of open sets which
covers A. For each k = 1, . . . , n there is at least one set Uk in U which contains xk. Then the family
{U1, . . . , Un} is a finite subcover of U for A. �

6.2.2. Proposition. Every closed subset of a compact set is compact.

Proof. Problem. Hint. Let A be a closed subset of a compact set K and U be a cover of A
by open sets. Consider U ∪ {Ac}.

6.2.3. Proposition. Every compact subset of R is closed and bounded.
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Proof. Exercise. Hint. To show that a compact set A is closed, show that its complement is
open. To this end let y be an arbitrary point in Ac. For each x in A take disjoint open intervals
about x and y. (Solution Q.6.1.)

As we will see later, the preceding result holds in arbitrary metric spaces. In fact, it is true
in very general topological spaces. Its converse, the celebrated Heine-Borel theorem (see 6.3.6),
although also true in Rn, (see 16.4.1) does not hold in all metric spaces (see problems 6.3.9, 16.4.7
and 16.4.8). Thus it is important at a conceptual level not to regard the property closed-and-
bounded as being identical with compactness.

Now, finally, we give a nontrivial example of a compact space. The proof requires verifying
some details, which at first glance may make it seem complicated. The basic idea behind the proof,
however, is quite straightforward. It repays close study since it involves an important technique of
proof that we will encounter again. The first time you read the proof, try to see its structure, to
understand its basic logic. Postpone for a second reading the details which show that the conditions
labelled (1) and (2) hold. Try to understand instead why verification of these two conditions is
really all we need in order to prove that [0, 1] is compact.

6.2.4. Example. The closed unit interval [0, 1] is compact.

Proof. Let U be a family of open subsets of R which covers [0, 1] and let A be the set of all
x in [0, 1] such that the closed interval [0, x] can be covered by finitely many members of U. It is
clear that A is nonempty (since it contains 0), and that if a number y belongs to A then so does
any number in [0, 1] less than y. We prove two more facts about A:

(1) If x ∈ A and x < 1, then there exists a number y > x such that y ∈ A.
(2) If y is a number in [0, 1] such that x ∈ A for all x < y, then y ∈ A.

To prove (1) suppose that x ∈ A and x < 1. Since x ∈ A there exists sets U1, . . . , Un in U which
cover the interval [0, x]. The number x belongs to at least one of these sets, say U1. Since U1 is an
open subset of R, there is an interval (a, b) such that x ∈ (a, b) ⊆ U1. Since x < 1 and x < b, there
exists a number y ∈ (0, 1) such that x < y < b. From [0, x] ⊆

⋃n
k=1 Uk and [x, y] ⊆ (a, b) ⊆ U1 it

follows that U1, . . . , Un cover the interval [0, y]. Thus y > x and y belongs to A.
The proof of (2) is similar. Suppose that y ∈ [0, 1] and that [0, y) ⊆ A. The case y = 0 is

trivial so we suppose that y > 0. Then y belongs to at least one member of U, say V . Choose an
open interval (a, b) in [0, 1] such that y ∈ (a, b) ⊆ V . Since a ∈ A there is a finite collection of sets
U1, . . . , Un in U which covers [0, a]. Then clearly {U1, . . . , Un, V } is a cover for [0, y]. This shows
that y belongs to A.

Finally, let u = supA. We are done if we can show that u = 1. Suppose to the contrary that
u < 1. Then [0, u) ⊆ A. We conclude from (2) that u ∈ A and then from (1) that there is a point
greater than u which belongs to A. This contradicts the choice of u as the supremum of A. �

6.2.5. Problem. Let A = {0} ∪ {1/n : n ∈ N} and U be the family {Un : n ≥ 0} where U0 =

(−1, 0.1) and Un =

(
5

6n
,

7

6n

)
for n ≥ 1.

(a) Find a finite subfamily of U which covers A.
(b) Explain why a solution to (a) does not suffice to show that A is compact.
(c) Use the definition of compactness to show that A is compact.
(d) Use proposition 6.2.2 to show that A is compact.

6.2.6. Example. Show that the set A = {1/n : n ∈ N} is not a compact subset of R.

Proof. Problem.

6.2.7. Problem. Give two proofs that the interval [0, 1) is not compact—one making use of
proposition 6.2.3 and one not.

6.2.8. Proposition. The intersection of a nonempty collection of compact subsets of R is itself
compact.
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Proof. Problem.

6.2.9. Problem. Let K be the family of compact subsets of R.

(a) Show that
⋃
K need not be compact.

(b) Show that if K contains only finitely many sets, then
⋃
K is compact.

6.3. THE EXTREME VALUE THEOREM

6.3.1. Definition. A real-valued function f on a set A is said to have a maximum at a point a in
A if f(a) ≥ f(x) for every x in A; the number f(a) is the maximum value of f . The function has
a minimum at a if f(a) ≤ f(x) for every x in A; and in this case f(a) is the minimum value of
f . A number is an extreme value of f if it is either a maximum or a minimum value. It is clear
that a function may fail to have maximum or minimum values. For example, on the open interval
(0, 1) the function f : x 7→ x assumes neither a maximum nor a minimum.

The concepts we have just defined are frequently called global (or absolute) maximum and
global (or absolute) minimum. This is to distinguish them from two different ideas local (or
relative) maximum and local (or relative) minimum, which we will encounter later. In this text,
“maximum” and “minimum” without qualifiers will be the global concepts defined above.

Our goal now is to show that every continuous function on a compact set attains both a
maximum and a minimum. This turns out to be an easy consequence of the fact, which we prove
next, that the continuous image of a compact set is compact.

6.3.2. Theorem. Let A be a subset of R. If A is compact and f : A → R is continuous, then
f→(A) is compact.

Proof. Exercise. (Solution Q.6.2.)

6.3.3. Theorem (Extreme Value Theorem). If A is a compact subset of R and f : A → R is
continuous, then f assumes both a maximum and a minimum value on A.

Proof. Exercise. (Solution Q.6.3.)

6.3.4. Example. The closed interval [−3, 7] is a compact subset of R.

Proof. Let A = [0, 1] and f(x) = 10x − 3. Since A is compact and f is continuous, theorem
6.3.2 tells us that the set [−3, 7] = f→(A) is compact. �

6.3.5. Example. If a < b, then the closed interval [a, b] is a compact subset of R.

Proof. Problem.

6.3.6. Example (Heine-Borel Theorem for R). Every closed and bounded subset of R is compact.

Proof. Problem. Hint. Use 6.3.5 and 6.2.2.

6.3.7. Example. Define f : [−1, 1]→ R by

f(x) =

x sin

(
1

x

)
, if x 6= 0

0, if x = 0.

The set of all x such that f(x) = 0 is a compact subset of [−1, 1].

Proof. Problem.

6.3.8. Problem. Let f : A→ B be a continuous bijection between subsets of R.

(a) Show by example that f need not be a homeomorphism.
(b) Show that if A is compact, then f must be a homeomorphism.

6.3.9. Problem. Find in Q a set which is both relatively closed and bounded but which is not
compact.
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6.3.10. Problem. Show that the interval [0,∞) is not compact using each of the following:

(a) the definition of compactness;
(b) proposition 6.2.3;
(c) the extreme value theorem.

6.3.11. Problem. Let f and g be two continuous functions mapping the interval [0, 1] into itself.
Show that if f ◦ g = g ◦ f , then f and g agree at some point of [0, 1]. Hint. Argue by contradiction.
Show that we may suppose, without loss of generality, that f(x)− g(x) > 0 for all x in [0, 1]. Now
try to show that there is a number a > 0 such that fn(x) ≥ gn(x) + na for every natural number
n and every x in [0, 1]. (Here fn = f ◦ f ◦ · · · ◦ f (n copies of f); and gn is defined similarly.)





CHAPTER 7

LIMITS OF REAL VALUED FUNCTIONS

In chapter 4 we studied limits of sequences of real numbers. In this very short chapter we
investigate limits of real valued functions of a real variable. Our principal result (7.2.3) is a char-
acterization of the continuity of a function f at a point in terms of the limit of f at that point.

Despite the importance of this characterization, there is one crucial difference between a function
being continuous at a point and having a limit there. If f is continuous at a, then a must belong
to the domain of f . In order for f to have a limit at a, it is not required that a be in the domain
of f .

7.1. DEFINITION

To facilitate the definition of “limit” we introduce the notion of a deleted neighborhood of a
point.

7.1.1. Definition. If J = (b, c) is a neighborhood of a point a (that is, if b < a < c), then
J∗, the deleted neighborhood associated with J , is just J with the point a deleted. That
is, J∗ = (b, a) ∪ (a, c). In particular, if Jδ(a) is the δ-neighborhood of a, then J∗δ (a) denotes
(a− δ, a) ∪ (a, a+ δ).

7.1.2. Definition. Let A be a subset of R, let f : A → R, let a be an accumulation point of A,
and let l be a real number. We say that l is the limit of f as x approaches a (or the limit of
f at a) if: for every ε > 0 there exists δ > 0 such that f(x) ∈ Jε(l) whenever x ∈ A ∩ J∗δ (a).

Using slightly different notation we may write this condition as

(∀ε > 0)(∃δ > 0)(∀x ∈ A) 0 < |x− a| < δ =⇒ |f(x)− l| < ε .

If this condition is satisfied we write

f(x)→ l as x→ a

or
lim
x→a

f(x) = l .

(Notice that this last notation is a bit optimistic. It would not make sense if f could have two
distinct limits as x approaches a. We will show in proposition 7.1.3 that this cannot happen.)

The first thing we notice about the preceding definition is that the point a at which we take
the limit need not belong to the domain A of the function f . Very often in practice it does not.
Recall the definition in beginning calculus of the derivative of a function f : R→ R at a point a. It

is the limit as h→ 0 of the Newton quotient
f(a+ h)− f(a)

h
. This quotient is not defined at the

point h = 0. Nevertheless we may still take the limit as h approaches 0.
Here is another example of the same phenomenon. The function on (0,∞) defined by x 7→

(1 + x)1/x is not defined at x = 0. But its limit at 0 exists: recall from beginning calculus that

limx→0(1 + x)1/x = e.
One last comment about the definition: even if a function f is defined at a point a, the value

of f at a is irrelevant to the question of the existence of a limit there. According to the definition
we consider only points x satisfying 0 < |x− a| < δ. The condition 0 < |x− a| says just one thing:
x 6= a.

39
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7.1.3. Proposition. Let f : A → R where A ⊆ R, and let a be an accumulation point of A. If
f(x)→ b as x→ a, and if f(x)→ c as x→ a, then b = c.

Proof. Exercise. (Solution Q.7.1.)

7.2. CONTINUITY AND LIMITS

There is a close connection between the existence of a limit of a function at a point a and the
continuity of the function at a. In proposition 7.2.3 we state the precise relationship. But first we
give two examples to show that in the absence of additional hypotheses neither of these implies the
other.

7.2.1. Example. The inclusion function f : N→ R : n 7→ n is continuous (because every subset of
N is open in N, and thus every function defined on N is continuous). But the limit of f exists at
no point (because N has no accumulation points).

7.2.2. Example. Let

f(x) =

{
0, for x 6= 0

1, for x = 0 .

Then limx→0 f(x) exists (and equals 0), but f is not continuous at x = 0.

We have shown in the two preceding examples that a function f may be continuous at a point
a without having a limit there and that it may have a limit at a without being continuous there.
If we require the point a to belong to the domain of f and to be an accumulation point of the
domain of f (these conditions are independent!), then a necessary and sufficient condition for f to
be continuous at a is that the limit of f as x approaches a (exist and) be equal to f(a).

7.2.3. Proposition. Let f : A → R where A ⊆ R, and let a ∈ A ∩ A′. Then f is continuous at a
if and only if

lim
x→a

f(x) = f(a) .

Proof. Exercise. (Solution Q.7.2.)

7.2.4. Proposition. If f : A→ R where A ⊆ R, and a ∈ A′, then

lim
h→0

f(a+ h) = lim
x→a

f(x)

in the sense that if either limit exists, then so does the other and the two limits are equal.

Proof. Exercise. (Solution Q.7.3.)

7.2.5. Problem. Let f(x) = 4 − x if x < 0 and f(x) = (2 + x)2 if x > 0. Using the definition of
“limit” show that limx→0 f(x) exists.

7.2.6. Proposition. Let f : A→ R where A ⊆ R and let a ∈ A′. Then

lim
x→a

f(x) = 0 if and only if lim
x→a
|f(x)| = 0 .

Proof. Problem.

7.2.7. Proposition. Let f , g, h : A→ R where A ⊆ R, and let a ∈ A′. If f ≤ g ≤ h and

lim
x→a

f(x) = lim
x→a

h(x) = l,

then limx→a g(x) = l.

Proof. Problem. Hint. A slight modification of your proof of proposition 4.2.5 should do the
trick.
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7.2.8. Problem (Limits of algebraic combinations of functions). Carefully formulate and prove
the standard results from beginning calculus on the limits of sums, constant multiples, products,
and quotients of functions.

7.2.9. Problem. Let A, B ⊆ R, a ∈ A, f : A→ B, and g : B → R.

(a) If l = limx→a f(x) exists and g is continuous at l, then

lim
x→a

(g ◦ f)(x) = g(l) .

(b) Show by example that the following assertion need not be true: If l = limx→a f(x) exists
and limy→l g(y) exists, then limx→a(g ◦ f)(x) exists.





CHAPTER 8

DIFFERENTIATION OF REAL VALUED FUNCTIONS

Differential calculus is a highly geometric subject—a fact which is not always made entirely
clear in elementary texts, where the study of derivatives as numbers often usurps the place of
the fundamental notion of linear approximation. The contemporary French mathematician Jean
Dieudonné comments on the problem in chapter 8 of his magisterial multivolume treatise on the
Foundations of Modern Analysis[3]

. . . the fundamental idea of calculus [is] the “local” approximation of functions
by linear functions. In the classical teaching of Calculus, this idea is immediately
obscured by the accidental fact that, on a one-dimensional vector space, there is a
one-to-one correspondence between linear forms and numbers, and therefore the
derivative at a point is defined as a number instead of a linear form. This slavish
subservience to the shibboleth of numerical interpretation at any cost becomes
much worse when dealing with functions of several variables . . .

The goal of this chapter is to display as vividly as possible the geometric underpinnings of the
differential calculus. The emphasis is on “tangency” and “linear approximation”, not on number.

8.1. THE FAMILIES O AND o

8.1.1. Notation. Let a ∈ R. We denote by Fa the family of all real valued functions defined on a
neighborhood of a. That is, f belongs to Fa if there exists an open set U such that a ∈ U ⊆ dom f .

Notice that for each a ∈ R, the set Fa is closed under addition and multiplication. (We define
the sum of two functions f and g in Fa to be the function f + g whose value at x is f(x) + g(x)
whenever x belongs to dom f ∩ dom g. A similar convention holds for multiplication.)

Among the functions defined on a neighborhood of zero are two subfamilies of crucial impor-
tance; they are O (the family of “big-oh” functions) and o (the family of “little-oh” functions).

8.1.2. Definition. A function f in F0 belongs to O if there exist numbers c > 0 and δ > 0 such
that

|f(x)| ≤ c |x|
whenever |x| < δ.

A function f in F0 belongs to o if for every c > 0 there exists δ > 0 such that

|f(x)| ≤ c |x|

whenever |x| < δ. Notice that f belongs to o if and only if f(0) = 0 and

lim
h→0

|f(h)|
|h|

= 0 .

8.1.3. Example. Let f(x) =
√
|x|. Then f belongs to neither O nor o. (A function belongs to O

only if in some neighborhood of the origin its graph lies between two lines of the form y = cx and
y = −cx.)

8.1.4. Example. Let g(x) = |x|. Then g belongs to O but not to o.

8.1.5. Example. Let h(x) = x2. Then h is a member of both O and o.
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Much of the elementary theory of differential calculus rests on a few simple properties of the
families O and o. These are given in propositions 8.1.8–8.1.14.

8.1.6. Definition. A function L : R→ R is linear if

L(x+ y) = L(x) + L(y)

and
L(cx) = cL(x)

for all x, y, c ∈ R. The family of all linear functions from R into R will be denoted by L.

The collection of linear functions from R into R is not very impressive, as the next problem
shows. When we get to spaces of higher dimension the situation will become more interesting.

8.1.7. Example. A function f : R → R is linear if and only if its graph is a (nonvertical) line
through the origin.

Proof. Problem.

CAUTION. Since linear functions must pass through the origin, straight lines are not in general
graphs of linear functions.

8.1.8. Proposition. Every member of o belongs to O; so does every member of L. Every member
of O is continuous at 0.

Proof. Obvious from the definitions. �

8.1.9. Proposition. Other than the constant function zero, no linear function belongs to o.

Proof. Exercise. (Solution Q.8.1.)

8.1.10. Proposition. The family O is closed under addition and multiplication by constants.

Proof. Exercise. (Solution Q.8.2.)

8.1.11. Proposition. The family o is closed under addition and multiplication by constants.

Proof. Problem.

The next two propositions say that the composite of a function in O with one in o (in either
order) ends up in o.

8.1.12. Proposition. If g ∈ O and f ∈ o, then f ◦ g ∈ o.

Proof. Problem.

8.1.13. Proposition. If g ∈ o and f ∈ O, then f ◦ g ∈ o.

Proof. Exercise. (Solution Q.8.3.)

8.1.14. Proposition. If φ, f ∈ O, then φf ∈ o.

Proof. Exercise. (Solution Q.8.4.)

Remark. The preceding facts can be summarized rather concisely. (Notation: C0 is the set of all
functions in F0 which are continuous at 0.)

(1) L ∪ o ⊆ O ⊆ C0 .
(2) L ∩ o = 0 .

(3) O + O ⊆ O ; αO ⊆ O .

(4) o + o ⊆ o ; α o ⊆ o .

(5) o ◦O ⊆ o .

(6) O ◦ o ⊆ o .

(7) O ·O ⊆ o .
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8.1.15. Problem. Show that O ◦O ⊆ O. That is, if g ∈ O and f ∈ O, then f ◦ g ∈ O. (As usual,
the domain of f ◦ g is taken to be {x : g(x) ∈ dom f}.)

8.2. TANGENCY

The fundamental idea of differential calculus is the local approximation of a “smooth” function
by a translate of a linear one. Certainly the expression “local approximation” could be taken to
mean many different things. One sense of this expression which has stood the test of usefulness
over time is “tangency”. Two functions are said to be tangent at zero if their difference lies in the
family o. We can of course define tangency of functions at an arbitrary point (see project 8.2.12
below); but for our purposes, “tangency at 0” will suffice. All the facts we need to know concerning
this relation turn out to be trivial consequences of the results we have just proved.

8.2.1. Definition. Two functions f and g in F0 are tangent at zero, in which case we write
f ' g, if f − g ∈ o.

8.2.2. Example. Let f(x) = x and g(x) = sinx. Then f ' g since f(0) = g(0) = 0 and

lim
x→0

x− sinx

x
= lim

x→0

(
1− sinx

x

)
= 0.

8.2.3. Example. If f(x) = x2 − 4x− 1 and g(x) =
(
3x2 + 4x− 1

)−1
, then f ' g.

Proof. Exercise. (Solution Q.8.5.)

8.2.4. Proposition. The relation “tangency at zero” is an equivalence relation on F0.

Proof. Exercise. (Solution Q.8.6.)

The next result shows that at most one linear function can be tangent at zero to a given
function.

8.2.5. Proposition. Let S, T ∈ L and f ∈ F0. If S ' f and T ' f , then S = T .

Proof. Exercise. (Solution Q.8.7.)

8.2.6. Proposition. If f ' g and j ' k, then f + j ' g + k, and furthermore, αf ' αg for all
α ∈ R.

Proof. Problem.

Suppose that f and g are tangent at zero. Under what circumstances are h◦f and h◦g tangent
at zero? And when are f ◦ j and g ◦ j tangent at zero? We prove next that sufficient conditions
are: h is linear and j belongs to O.

8.2.7. Proposition. Let f, g ∈ F0 and T ∈ L. If f ' g, then T ◦ f ' T ◦ g.

Proof. Problem.

8.2.8. Proposition. Let h ∈ O and f, g ∈ F0. If f ' g, then f ◦ h ' g ◦ h.

Proof. Problem.

8.2.9. Example. Let f(x) = 3x2 − 2x+ 3 and g(x) =
√
−20x+ 25− 2 for x ≤ 1. Then f ' g.

Proof. Problem.

8.2.10. Problem. Let f(x) = x3 − 6x2 + 7x. Find a linear function T : R → R which is tangent
to f at 0.

8.2.11. Problem. Let f(x) = |x|. Show that there is no linear function T : R → R which is
tangent to f at 0.
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8.2.12. Problem. Let Ta : x 7→ x + a. The mapping Ta is called translation by a. Note that
it is not linear (unless, of course, a = 0). We say that functions f and g in Fa are tangent at a
if the functions f ◦ Ta and g ◦ Ta are tangent at zero.

(a) Let f(x) = 3x2 + 10x+ 13 and g(x) =
√
−20x− 15. Show that f and g are tangent at −2.

(b) Develop a theory for the relationship “tangency at a” which generalizes our work on
“tangency at 0”.

8.2.13. Problem. Each of the following is an abbreviated version of a proposition. Formulate
precisely and prove.

(a) C0 + O ⊆ C0.
(b) C0 + o ⊆ C0.
(c) O + o ⊆ O.

8.2.14. Problem. Suppose that f ' g. Then the following hold.

(a) If g is continuous at 0, so is f .
(b) If g belongs to O, so does f .
(c) If g belongs to o, so does f .

8.3. LINEAR APPROXIMATION

One often hears that differentiation of a smooth function f at a point a in its domain is the
process of finding the best “linear approximation” to f at a. This informal assertion is not quite
correct. For example, as we know from beginning calculus, the tangent line at x = 1 to the curve
y = 4 + x2 is the line y = 2x + 3, which is not a linear function since it does not pass through
the origin. To rectify this rather minor shortcoming we first translate the graph of the function
f so that the point (a, f(a)) goes to the origin, and then find the best linear approximation at
the origin. The operation of translation is carried out by a somewhat notorious acquaintance from
beginning calculus ∆y. The source of its notoriety is two-fold: first, in many texts it is inadequately
defined; and second, the notation ∆y fails to alert the reader to the fact that under consideration
is a function of two variables. We will be careful on both counts.

8.3.1. Definition. Let f ∈ Fa. Define the function ∆fa by

∆fa(h) := f(a+ h)− f(a)

for all h such that a+ h is in the domain of f . Notice that since f is defined in a neighborhood of
a, the function ∆fa is defined in a neighborhood of 0; that is, ∆fa belongs to F0. Notice also that
∆fa(0) = 0.

8.3.2. Problem. Let f(x) = cosx for 0 ≤ x ≤ 2π.

(a) Sketch the graph of the function f .
(b) Sketch the graph of the function ∆fπ.

8.3.3. Proposition. If f ∈ Fa and α ∈ R, then

∆(αf)a = α∆fa .

Proof. To show that two functions are equal show that they agree at each point in their
domain. Here

∆(αf)a(h) = (αf)(a+ h)− (αf)(a)

= αf(a+ h)− αf(a)

= α(f(a+ h)− f(a))

= α∆fa(h)

for every h in the domain of ∆fa. �
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8.3.4. Proposition. If f, g ∈ Fa, then

∆(f + g)a = ∆fa + ∆ga .

Proof. Exercise. (Solution Q.8.8.)

The last two propositions prefigure the fact that differentiation is a linear operator; the next
result will lead to Leibniz’s rule for differentiating products.

8.3.5. Proposition. If φ, f ∈ Fa, then

∆(φf)a = φ(a) ·∆fa + ∆φa · f(a) + ∆φa ·∆fa .
Proof. Problem.

Finally, we present a result which prepares the way for the chain rule.

8.3.6. Proposition. If f ∈ Fa, g ∈ Ff(a), and g ◦ f ∈ Fa, then

∆(g ◦ f)a = ∆g
f(a)
◦∆fa .

Proof. Exercise. (Solution Q.8.9.)

8.3.7. Proposition. Let A ⊆ R. A function f : A → R is continuous at the point a in A if and
only if ∆fa is continuous at 0.

Proof. Problem.

8.3.8. Proposition. If f : U → U1 is a bijection between subsets of R, then for each a in U the
function ∆fa : U − a→ U1 − f(a) is invertible and(

∆fa
)−1

= ∆
(
f−1

)
f(a)

.

Proof. Problem.

8.4. DIFFERENTIABILITY

We now have developed enough machinery to talk sensibly about differentiating real valued
functions.

8.4.1. Definition. Let f ∈ Fa. We say that f is differentiable at a if there exists a linear
function which is tangent at 0 to ∆fa. If such a function exists, it is called the differential of
f at a and is denoted by dfa. (Don’t be put off by the slightly complicated notation; dfa is just a
member of L satisfying dfa ' ∆fa.) We denote by Da the family of all functions in Fa which are
differentiable at a.

The next proposition justifies the use of the definite article which modifies “differential” in the
preceding paragraph.

8.4.2. Proposition. Let f ∈ Fa. If f is differentiable at a, then its differential is unique. (That
is, there is at most one linear map tangent at 0 to ∆fa.)

Proof. Proposition 8.2.5. �

8.4.3. Example. It is instructive to examine the relationship between the differential of f at a,
which we defined in 8.4.1, and the derivative of f at a as defined in beginning calculus. For f ∈ Fa
to be differentiable at a it is necessary that there be a linear function T : R→ R which is tangent
at 0 to ∆fa. According to 8.1.7 there must exist a constant c such that Tx = cx for all x in R. For
T to be tangent to ∆fa, it must be the case that

∆fa − T ∈ o ;

that is,

lim
h→0

∆fa(h)− ch
h

= 0 .
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Equivalently,

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

∆fa(h)

h
= c .

In other words, the function T , which is tangent to ∆fa at 0, must be a line through the origin
whose slope is

lim
h→0

f(a+ h)− f(a)

h
.

This is, of course, the familiar “derivative of f at a” from beginning calculus. Thus for any real
valued function f which is differentiable at a in R

dfa(h) = f ′(a) · h

for all h ∈ R.

8.4.4. Problem. Explain carefully the quotation from Dieudonné given at the beginning of the
chapter.

8.4.5. Example. Let f(x) = 3x2 − 7x + 5 and a = 2. Then f is differentiable at a. (Sketch the
graph of the differential dfa.)

Proof. Problem.

8.4.6. Example. Let f(x) = sinx and a = π/3. Then f is differentiable at a. (Sketch the graph
of the differential dfa.)

Proof. Problem.

8.4.7. Proposition. Let T ∈ L and a ∈ R. Then dTa = T .

Proof. Problem.

8.4.8. Proposition. If f ∈ Da, then ∆fa ∈ O.

Proof. Exercise. (Solution Q.8.10.)

8.4.9. Corollary. Every function which is differentiable at a point is continuous there.

Proof. Exercise. (Solution Q.8.11.)

8.4.10. Proposition. If f is differentiable at a and α ∈ R, then αf is differentiable at a and

d(αf)a = αdfa .

Proof. Exercise. (Solution Q.8.12.)

8.4.11. Proposition. If f and g are differentiable at a, then f + g is differentiable at a and

d(f + g)a = dfa + dga .

Proof. Problem.

8.4.12. Proposition (Leibniz’s Rule.). If φ, f ∈ Da, then φf ∈ Da and

d(φf)a = dφa · f(a) + φ(a) dfa .

Proof. Exercise. (Solution Q.8.13.)

8.4.13. Theorem (The Chain Rule). If f ∈ Da and g ∈ Df(a), then g ◦ f ∈ Da and

d(g ◦ f)a = dg
f(a)
◦ dfa .

Proof. Exercise. (Solution Q.8.14.)
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8.4.14. Problem (A Problem Set on Functions from R into R). We are now in a position to derive
the standard results, usually contained in the first term of a beginning calculus course, concerning
the differentiation of real valued functions of a single real variable. Having at our disposal the
machinery developed earlier in this chapter, we may derive these results quite easily; and so the
proof of each is a problem.

8.4.15. Definition. If f ∈ Da, the derivative of f at a, denoted by f ′(a) or Df(a), is defined

to be lim
h→0

f(a+ h)− f(a)

h
. By 7.2.4 this is the same as lim

x→a

f(x)− f(a)

x− a
.

8.4.16. Proposition. If f ∈ Da, then Df(a) = dfa(1).

Proof. Problem.

8.4.17. Proposition. If f , g ∈ Da, then

D(fg)(a) = Df(a) · g(a) + f(a) ·Dg(a) .

Proof. Problem. Hint. Use Leibniz’s rule (8.4.12) and proposition 8.4.16.

8.4.18. Example. Let r(t) =
1

t
for all t 6= 0. Then r is differentiable and Dr(t) = − 1

t2
for all

t 6= 0.

Proof. Problem.

8.4.19. Proposition. If f ∈ Da and g ∈ Df(a), then g ◦ f ∈ Da and

D(g ◦ f)(a) = (Dg)(f(a)) ·Df(a) .

Proof. Problem.

8.4.20. Proposition. If f , g ∈ Da and g(a) 6= 0, then

D

(
f

g

)
(a) =

g(a)Df(a)− f(a)Dg(a)

(g(a))2
.

Proof. Problem. Hint. Write
f

g
as f · (r ◦ g) and use 8.4.16, 8.4.19, and 8.4.18.

8.4.21. Proposition. If f ∈ Da and Df(a) > 0, then there exists r > 0 such that

(i) f(x) > f(a) whenever a < x < a+ r, and
(ii) f(x) < f(a) whenever a− r < x < a.

Proof. Problem. Hint. Define g(h) = h−1 ∆fa(h) if h 6= 0 and g(0) = Df(a). Use proposi-
tion 7.2.3 to show that g is continuous at 0. Then apply proposition 3.3.21.

8.4.22. Proposition. If f ∈ Da and Df(a) < 0, then there exists r > 0 such that

(i) f(x) < f(a) whenever a < x < a+ r, and
(ii) f(x) > f(a) whenever a− r < x < a.

Proof. Problem. Hint. Of course it is possible to obtain this result by doing 8.4.21 again with
some inequalities reversed. That is the hard way.

8.4.23. Definition. Let f : A → R where A ⊆ R. The function f has a local (or relative)
maximum at a point a ∈ A if there exists r > 0 such that f(a) ≥ f(x) whenever |x − a| < r and
x ∈ dom f . It has a local (or relative) minimum at a point a ∈ A if there exists r > 0 such
that f(a) ≤ f(x) whenever |x− a| < r and x ∈ dom f .

Recall from chapter 6 that f : A → R is said to attain a maximum at a if f(a) ≥ f(x) for all
x ∈ dom f . This is often called a global (or absolute) maximum to help distinguish it from the
local version just defined. It is clear that every global maximum is also a local maximum but not
vice versa. (Of course a similar remark holds for minima.)
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8.4.24. Proposition. If f ∈ Da and f has either a local maximum or a local minimum at a, then
Df(a) = 0.

Proof. Problem. Hint. Use propositions 8.4.21 and 8.4.22.)

8.4.25. Proposition (Rolle’s Theorem). Let a < b. If f : [a, b] → R is continuous, if it is differ-
entiable on (a, b), and if f(a) = f(b), then there exists a point c in (a, b) such that Df(c) = 0.

Proof. Problem. Hint. Argue by contradiction. Use the extreme value theorem 6.3.3 and
proposition 8.4.24.

8.4.26. Theorem (Mean Value Theorem). Let a < b. If f : [a, b] → R is continuous and if it is
differentiable on (a, b), then there exists a point c in (a, b) such that

Df(c) =
f(b)− f(a)

b− a
.

Proof. Problem. Hint. Let y = g(x) be the equation of the line which passes through the
points (a, f(a)) and (b, f(b)). Show that the function f − g satisfies the hypotheses of Rolle’s
theorem (8.4.25)

8.4.27. Proposition. Let J be an open interval in R. If f : J → R is differentiable and Df(x) = 0
for every x ∈ J , then f is constant on J .

Proof. Problem. Hint. Use the mean value theorem (8.4.26).



CHAPTER 9

METRIC SPACES

Underlying the definition of the principal objects of study in calculus—derivatives, integrals,
and infinite series—is the notion of “limit”. What we mean when we write

lim
x→a

f(x) = L

is that f(x) can be made arbitrarily close to L by choosing x sufficiently close to a. To say what
we mean by “closeness” we need the notion of the distance between two points. In this chapter we
study “distance functions”, also known as “metrics”.

In the preceding chapters we have looked at such topics as limits, continuity, connectedness, and
compactness from the point of view of a single example, the real line R, where the distance between
two points is the absolute value of their difference. There are other familiar distance functions (the
Euclidean metric in the plane R2 or in three-space R3, for example, where the distance between
points is usually taken to be the square root of the sum of the squares of the differences of their
coordinates), and there are many less familiar ones which are also useful in analysis. Each of these
has its own distinctive properties which merit investigation. But that would be a poor place to
start. It is easier to study first those properties they have in common. We list four conditions we
may reasonably expect any distance function to satisfy. If x and y are points, then the distance
between x and y should be:

(i) greater than or equal to zero;
(ii) greater than zero if x and y are distinct;
(iii) the same as the distance between y and x; and
(iv) no larger than the sum of the distances produced by taking a detour through a point z.

We formalize these conditions to define a “metric” on a set.

9.1. DEFINITIONS

9.1.1. Definition. Let M be a nonempty set. A function d : M×M → R is a metric (or distance
function) on M if for all x, y, z ∈M

(1) d(x, y) = d(y, x)

(2) d(x, y) ≤ d(x, z) + d(z, y)

(3) d(x, y) = 0 if and only if x = y.

If d is a metric on a set M , then we say that the pair (M,d) is a metric space.

It is standard practice—although certainly an abuse of language—to refer to “the metric space
M” when in fact we mean “the metric space (M,d)”. We will adopt this convention when it appears
that no confusion will result. We must keep in mind, however, that there are situations where it is
clearly inappropriate; if, for example, we are considering two different metrics on the same set M ,
a reference to “the metric space M” would be ambiguous.

In our formal definition of “metric”, what happened to condition (i) above, which requires
a metric to be nonnegative? It is an easy exercise to show that it is implied by the remaining
conditions.

9.1.2. Proposition. If d is a metric on a set M , then d(x, y) ≥ 0 for all x, y ∈M .

51
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Proof. Exercise. (Solution Q.9.1.)

9.1.3. Definition. For each point a in a metric space (M,d) and each number r > 0 we define
Br(a), the open ball about a of radius r, to be the set of all those points whose distance from a
is less than r. That is,

Br(a) := {x ∈M : d(x, a) < r} .

9.2. EXAMPLES

9.2.1. Example. The absolute value of the difference of two numbers is a metric on R. We will
call this the usual metric on R. Notice that in this metric the open ball about a of radius r is just
the open interval (a− r, a+ r). (Proof: x ∈ Br(a) if and only if d(x, a) < r if and only if |x−a| < r
if and only if a− r < x < a+ r.)

9.2.2. Problem. Define d(x, y) = |arctanx− arctan y| for all x, y ∈ R.

(a) Show that d is a metric on R.
(b) Find d(−1,

√
3).

(c) Solve the equation d(x, 0) = d(x,
√

3).

9.2.3. Problem. Let f(x) =
1

1 + x
for all x ≥ 0. Define a metric d on [0,∞) by d(x, y) =

|f(x) − f(y)|. Find a point z 6= 1 in this space whose distance from 2 is equal to the distance
between 1 and 2.

9.2.4. Example. Define d(x, y) = |x2 − y2| for all x, y ∈ R. Then d is not a metric on R.

Proof. Problem.

9.2.5. Example. Let f(x) =
x

1 + x2
for x ≥ 0. Define a function d on [0,∞)× [0,∞) by d(x, y) =

|f(x)− f(y)|. Then d is not a metric on [0,∞).

Proof. Problem.

For our next example we make use of a (special case of) an important fact known as Minkowski’s
inequality. This we derive from another standard result, Schwarz’s inequality.

9.2.6. Proposition (Schwarz’s Inequality). Let u1, . . . , un, v1, . . . , vn ∈ R. Then( n∑
k=1

ukvk

)2

≤
( n∑
k=1

uk
2

)( n∑
k=1

vk
2

)
.

Proof. To simplify notation make some abbreviations: let a =
n∑
k=1

uk
2, b =

n∑
k=1

vk
2, and

c =
n∑
k=1

ukvk. Then

0 ≤
n∑
k=1

(√
b uk −

c√
b
vk

)2

= ab− 2c2 + c2

= ab− c2 .
�

9.2.7. Proposition (Minkowski’s Inequality). Let u1, . . . , un, v1, . . . , vn ∈ R. Then( n∑
k=1

(
uk + vk

)2) 1
2

≤
( n∑
k=1

uk
2

) 1
2

+

( n∑
k=1

vk
2

) 1
2

.
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Proof. Let a, b, and c be as in 9.2.6. Then
n∑
k=1

(uk + vk)
2 = a+ 2c+ b

≤ a+ 2|c|+ b

≤ a+ 2
√
ab+ b (by 9.2.6)

=
(√
a+
√
b
)2
.

�

9.2.8. Example. For points x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn let

d(x, y) :=

( n∑
k=1

(xk − yk)2
) 1

2

.

Then d is the usual (or Euclidean) metric on Rn. The only nontrivial part of the proof that d
is a metric is the verification of the triangle inequality (that is, condition (2) of the definition):

d(x, y) ≤ d(x, z) + d(z, y) .

To accomplish this let x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) be points in Rn.
Apply Minkowski’s inequality (9.2.7) with uk = xk − zk and vk = zk − yk for 1 ≤ k ≤ n to obtain

d(x, y) =

( n∑
k=1

(xk − yk)2
) 1

2

=

( n∑
k=1

(
(xk − zk) + (zk − yk)

)2) 1
2

≤
( n∑
k=1

(xk − zk)2
) 1

2

+

( n∑
k=1

(zk − yk)2
) 1

2

= d(x, z) + d(z, y) .

9.2.9. Problem. Let d be the usual metric on R2.

(a) Find d(x, y) when x = (3,−2) and y = (−3, 1).
(b) Let x = (5,−1) and y = (−3,−5). Find a point z in R2 such that d(x, y) = d(y, z) =

d(x, z).
(c) Sketch Br(a) when a = (0, 0) and r = 1.

The Euclidean metric is by no means the only metric on Rn which is useful. Two more examples
follow (9.2.10 and 9.2.12).

9.2.10. Example. For points x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn let

d1(x, y) :=

n∑
k=1

|xk − yk| .

It is easy to see that d1 is a metric on Rn. When n = 2 this is frequently called the taxicab
metric. (Why?)

9.2.11. Problem. Let d1 be the taxicab metric on R2 (see 9.2.10).

(a) Find d1(x, y) where x = (3,−2) and y = (−3, 1).
(b) Let x = (5,−1) and y = (−3,−5). Find a point z in R2 such that d1(x, y) = d1(y, z) =

d1(x, z).
(c) Sketch Br(a) for the metric d1 when a = (0, 0) and r = 1.
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9.2.12. Example. For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn let

du(x, y) := max{|xk − yk| : 1 ≤ k ≤ n} .
Then du is a metric on Rn. The triangle inequality is verified as follows:

|xk − yk| ≤ |xk − zk|+ |zk − yk|
≤ max{|xi − zi| : 1 ≤ i ≤ n}+ max{|zi − yi| : 1 ≤ i ≤ n}
= du(x, z) + du(z, y)

whenever 1 ≤ k ≤ n. Thus

du(x, y) = max{|xk − yk| : 1 ≤ k ≤ n}
≤ du(x, z) + du(z, y) .

The metric du is called the uniform metric. The reason for this name will become clear later.

Notice that on the real line the three immediately preceding metrics agree; the distance between
points is just the absolute value of their difference. That is, when n = 1 the metrics given in 9.2.8,
9.2.10, and 9.2.12 reduce to the one given in 9.2.1.

9.2.13. Problem. This problem concerns the metric du (defined in example 9.2.12) on R2.

(a) Find du(x, y) when x = (3,−2) and y = (−3, 1).
(b) Let x = (5,−1) and y = (−3,−5). Find a point z in R2 such that du(x, y) = du(y, z) =

du(x, z).
(c) Sketch Br(a) for the metric du when a = (0, 0) and r = 1.

9.2.14. Example. Let M be any nonempty set. For x, y ∈M define

d(x, y) =

{
1 if x 6= y

0 if x = y .

It is easy to see that d is a metric; this is the discrete metric on M . Although the discrete
metric is rather trivial it proves quite useful in constructing counterexamples.

9.2.15. Example. Let d be the usual metric on R2 and 0 be the origin. Define a function ρ on R2

as follows:

ρ(x, y) :=

{
d(x, y), if x and y are collinear with 0, and

d(x, 0) + d(0, y), otherwise.

The function ρ is a metric on R2. This metric is sometimes called the Greek airline metric.

Proof. Problem.

9.2.16. Problem. Let ρ be the Greek airline metric on R2.

(a) Let x = (−1, 2), y = (−3, 6), and z = (−3, 4). Find ρ(x, y) and ρ(x, z). Which point, y or
z, is closer to x with respect to ρ?

(b) Let r = 1. Sketch Br(a) for the metric ρ when a = (0, 0), a = (14 , 0), a = (12 , 0), a = (34 , 0),
a = (1, 0), and a = (3, 0).

9.2.17. Proposition. Let (M,d) be a metric space and x, y, z ∈M . Then

|d(x, z)− d(y, z)| ≤ d(x, y) .

Proof. Problem.

9.2.18. Proposition. If a and b are distinct points in a metric space, then there exists a number
r > 0 such that Br(a) and Br(b) are disjoint.

Proof. Problem.
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9.2.19. Proposition. Let a and b be points in a metric space and r, s > 0. If c belongs to
Br(a) ∩Bs(b), then there exists a number t > 0 such that Bt(c) ⊆ Br(a) ∩Bs(b).

Proof. Problem.

9.2.20. Problem. Let f(x) =
1

1 + x2
for all x ≥ 0, and define a metric d on the interval [0,∞) by

d(x, y) = |f(x)− f(y)| .
(a) With respect to this metric find the point halfway between 1 and 2.
(b) Find the open ball B 3

10
(1).

9.3. STRONGLY EQUIVALENT METRICS

Ahead of us lie many situations in which it will be possible to replace a computationally
complicated metric on some space by a simpler one without affecting the fundamental properties
of the space. As it turns out, a sufficient condition for this process to be legitimate is that the two
metrics be “strongly equivalent”. For the moment we content ourselves with the definition of this
term and an example; applications will be discussed later when we introduce the weaker notion of
“equivalent metrics” (see 11.2.2).

9.3.1. Definition. Two metrics d1 and d2 on a set M are strongly equivalent if there exist
numbers α, β > 0 such that

d1(x, y) ≤ αd2(x, y) and

d2(x, y) ≤ β d1(x, y)

for all x and y in M .

9.3.2. Proposition. On R2 the three metrics d, d1, and du, defined in examples 9.2.8, 9.2.10,
and 9.2.12, are strongly equivalent.

Proof. Exercise. Hint. First prove that if a, b ≥ 0, then

max{a, b} ≤ a+ b ≤
√

2
√
a2 + b2 ≤ 2 max{a, b} .

(Solution Q.9.2.)

9.3.3. Problem. Let d and ρ be strongly equivalent metrics on a set M . Then every open ball in
the space (M,d) contains an open ball of the space (M,ρ) (and vice versa).

9.3.4. Problem. Let a, b, c, d ∈ R. Establish each of the following:

(a) (13a+ 2
3b)

2 ≤ 1
3a

2 + 2
3b

2 .

(b) (12a+ 1
3b+ 1

6c)
2 ≤ 1

2a
2 + 1

3b
2 + 1

6c
2 .

(c) ( 5
12a+ 1

3b+ 1
6c+ 1

12d)2 ≤ 5
12a

2 + 1
3b

2 + 1
6c

2 + 1
12d

2 .

Hint. If (a), (b), and (c) are all special cases of some general result, it may be easier to give one
proof (of the general theorem) rather than three proofs (of the special cases). In each case what can
you say about the numbers multiplying a, b, c, and d? Notice that if x > 0, then xy =

√
x (
√
x y).

Use Schwarz’s inequality 9.2.6.

9.3.5. Proposition. Let (M,d) be a metric space. The function ρ defined on M ×M by

ρ(x, y) =
d(x, y)

1 + d(x, y)

is a metric on M .

Proof. Problem. Hint. Show first that
u

1 + u
≤ v

1 + v
whenever 0 ≤ u ≤ v.
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9.3.6. Problem. In problem 9.3.5 take M to be the real line R and d to be the usual metric on R
(see 9.2.1).

(a) Find the open ball B 3
5
(1) in the metric space (R, ρ).

(b) Show that the metrics d and ρ are not strongly equivalent on R.



CHAPTER 10

INTERIORS, CLOSURES, AND BOUNDARIES

10.1. DEFINITIONS AND EXAMPLES

10.1.1. Definition. Let (M,d) be a metric space and M0 be a nonempty subset of M . If d0 is
the restriction of d to M0×M0, then, clearly, (M0, d0) is a metric space. It is a metric subspace
of (M,d). In practice the restricted function (often called the induced metric) is seldom given a
name of its own; one usually writes, “(M0, d) is a (metric) subspace of (M,d)”. When the metric
on M is understood, this is further shortened to, “M0 is a subspace of M”.

10.1.2. Example. Let M be R2 equipped with the usual Euclidean metric d and M0 = Q2. The
induced metric d0 agrees with d where they are both defined:

d(x, y) = d0(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

where x = (x1, x2) and y = (y1, y2). The only difference is that d0(x, y) is defined only when both
x and y have rational coordinates.

10.1.3. Exercise. Regard M0 = {−1} ∪ [0, 4) as a subspace of R under its usual metric. In this
subspace find the open balls B1(−1), B1(0), and B2(0). (Solution Q.10.1.)

10.1.4. Definition. Let A be a subset of a metric space M . A point a is an interior point of
A if some open ball about a lies entirely in A. The interior of A, denoted by A◦, is the set of all
interior points of A. That is,

A◦ := {x ∈M : Br(x) ⊆ A for some r > 0} .
10.1.5. Example. Let M be R with its usual metric and A be the closed interval [0, 1]. Then
A◦ = (0, 1).

10.1.6. Example. Let M be R2 with its usual metric and A be the unit disk {(x, y) : x2 +y2 ≤ 1}.
Then the interior of A is the open disk {(x, y) : x2 + y2 < 1}.
10.1.7. Example. Let M = R2 with its usual metric and A = Q2. Then A◦ = ∅.

Proof. No open ball in R2 contains only points both of whose coordinates are rational. �

10.1.8. Example. Consider the metrics d, d1, and du on R2. Let A = {x ∈ R2 : d(x, 0) ≤ 1},
A1 = {x ∈ R2 : d1(x, 0) ≤ 1}, and Au = {x ∈ R2 : du(x, 0) ≤ 1}. The point

(
2
3 ,

3
8

)
belongs to A◦

and A◦u, but not to A◦1.

Proof. Problem.

10.1.9. Definition. A point x in a metric space M is an accumulation point of a set A ⊆M if
every open ball about x contains a point of A distinct from x. (We do not require that x belong to
A.) We denote the set of all accumulation points of A by A′. This is sometimes called the derived
set of A. The closure of the set A, denoted by A, is A ∪A′.
10.1.10. Example. Let R2 have its usual metric and A be

[
(0, 1)× (0, 1)

]
∪ {(2, 3)} ⊆ R2. Then

A′ = [0, 1]× [0, 1] and A =
(
[0, 1]× [0, 1]

)
∪ {(2, 3)}.

10.1.11. Example. The set Q2 is a subset of the metric space R2. Every ordered pair of real
numbers is an accumulation point of Q2 since every open ball in R2 contains (infinitely many)
points with both coordinates rational. So the closure of Q2 is all of R2.
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10.1.12. Definition. The boundary of a set A in a metric space is the intersection of the closures
of A and its complement. We denote it by ∂A. In symbols,

∂A := A ∩Ac .

10.1.13. Example. Take M to be R with its usual metric. If A = (0, 1), then A = A′ = [0, 1] and
Ac = Ac = (−∞, 0] ∪ [1,∞); so ∂A = {0, 1}.

10.1.14. Exercise. In each of the following find A◦, A′, A, and ∂A.

(a) Let A = { 1n : n ∈ N}. Regard A as a subset of the metric space R.
(b) Let A = Q ∩ (0,∞). Regard A as a subset of the metric space R.
(c) Let A = Q ∩ (0,∞). Regard A as a subset of the metric space Q (where Q is a subspace

of R).

(Solution Q.10.2.)

10.2. INTERIOR POINTS

10.2.1. Lemma. Let M be a metric space, a ∈M , and r > 0. If c ∈ Br(a), then there is a number
t > 0 such that

Bt(c) ⊆ Br(a) .

Proof. Exercise. (Solution Q.10.3.)

10.2.2. Proposition. Let A and B be subsets of a metric space.

(a) If A ⊆ B, then A◦ ⊆ B◦.
(b) A◦◦ = A◦. (A◦◦ means

(
A◦
)◦

.)

Proof. Exercise. (Solution Q.10.4.)

10.2.3. Proposition. If A and B are subsets of a metric space, then

(A ∩B)◦ = A◦ ∩B◦ .

Proof. Problem.

10.2.4. Proposition. Let A be a family of subsets of a metric space. Then

(a)
⋃
{A◦ : A ∈ A} ⊆

(⋃
A
)◦
.

(b) Equality need not hold in (a).

Proof. Exercise. (Solution Q.10.5.)

10.2.5. Proposition. Let A be a family of subsets of a metric space. Then

(a)
(⋂

A
)◦ ⊆ ⋂{A◦ : A ∈ A} .

(b) Equality need not hold in (a).

Proof. Problem.

10.3. ACCUMULATION POINTS AND CLOSURES

In 10.2.1–10.2.5 some of the fundamental properties of the interior operator A 7→ A◦ were
developed. In the next proposition we study accumulation points. Once their properties are
understood it is quite easy to derive the basic facts about the closure operator A 7→ A.

10.3.1. Proposition. Let A and B be subsets of a metric space.

(a) If A ⊆ B, then A′ ⊆ B′.
(b) A′′ ⊆ A′.
(c) Equality need not hold in (b).
(d) (A ∪B)′ = A′ ∪B′.
(e) (A ∩B)′ ⊆ A′ ∩B′.
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(f) Equality need not hold in (e).

Proof. (a) Let x ∈ A′. Then each open ball about x contains a point of A, hence of B, distinct
from x. Thus x ∈ B′.

(b) Let a ∈ A′′. If r > 0 then Br(a) contains a point, say b, of A′ distinct from a. By lemma
10.2.1 there exists s > 0 such that Bs(b) ⊆ Br(a). Let t = min{s, d(a, b)}. Note that t > 0. Since
b ∈ A′, there is a point c ∈ Bt(b) ⊆ Br(a) such that c ∈ A. Since t ≤ d(a, b), it is clear that c 6= a.
Thus every open ball Br(a) contains a point c of A distinct from a. This establishes that a ∈ A′.

(c) Problem.
(d) Problem.
(e) Since A∩B ⊆ A, part (a) implies that (A∩B)′ ⊆ A′. Similarly, (A∩B)′ ⊆ B′. Conclusion:

(A ∩B)′ ⊆ A′ ∩B′.
(f) In the metric space R let A = Q and B = Qc. Then (A ∩ B)′ = ∅′ = ∅ while A′ ∩ B′ =

R ∩ R = R. �

10.3.2. Proposition. Let A and B be subsets of a metric space with A ⊆ B. Then

(a) A ⊆ B.

(b) A = A.

Proof. Problem.

10.3.3. Proposition. If A and B are subsets of a metric space, then

A ∪B = A ∪B .

Proof. Problem.

10.3.4. Proposition. Let A be a family of subsets of a metric space. Then

(a)
⋃
{A : A ∈ A} ⊆

⋃
A.

(b) Equality need not hold in (a).

Proof. Problem.

10.3.5. Proposition. Let A be a family of subsets of a metric space. Then

(a)
⋂
A ⊆

⋂
{A : A ∈ A}.

(b) Equality need not hold in (a).

Proof. Problem.

10.3.6. Proposition. Let A be a subset of a metric space. Then

(a)
(
A◦
)c

= Ac.

(b)
(
Ac
)◦

=
(
A
)c

.

Proof. Problem.

10.3.7. Problem. Use proposition 10.3.6 and proposition 10.2.2 (but not proposition 10.3.1) to
give another proof of proposition 10.3.2.

10.3.8. Problem. Use proposition 10.3.6 and proposition 10.2.3 (but not proposition 10.3.1) to
give another proof of proposition 10.3.3.





CHAPTER 11

THE TOPOLOGY OF METRIC SPACES

11.1. OPEN AND CLOSED SETS

11.1.1. Definition. A subset A of a metric space M is open in M if A◦ = A. That is, a set
is open if it contains an open ball about each of its points. To indicate that A is open in M we

write A
◦
⊆M .

11.1.2. Example. Care must be taken to claim that a particular set is open (or not open) only
when the metric space in which the set “lives” is clearly understood. For example, the assertion
“the set [0, 1) is open” is false if the metric space in question is R. It is true, however, if the metric
space being considered is [0,∞) (regarded as a subspace of R). The reason: In the space [0,∞) the
point 0 is an interior point of [0, 1); in R it is not.

11.1.3. Example. In a metric space every open ball is an open set. Notice that this is exactly
what lemma 10.2.1 says: each point of an open ball is an interior point of that ball.

The fundamental properties of open sets may be deduced easily from information we already
possess concerning interiors of sets. Three facts about open sets are given in 11.1.4–11.1.6. The
first of these is very simple.

11.1.4. Proposition. Every nonempty open set is a union of open balls.

Proof. Let U be an open set. For each a in U there is an open ball B(a) about a contained
in U . Then clearly

U =
⋃
{Ba : a ∈ U} .

�

11.1.5. Proposition. Let M be a metric space.

(a) The union of any family of open subsets of M is open.
(b) The intersection of any finite family of open subsets of M is open.

Proof. (a) Let U be a family of open subsets of M . Since the interior of a set is always
contained in the set, we need only show that

⋃
U ⊆

(⋃
U
)◦

. By 10.2.4⋃
U =

⋃
{U : U ∈ U}

=
⋃
{U◦ : U ∈ U}

⊆
(⋃

U
)◦
.

(b) It is enough to show that the intersection of two open sets is open. Let U, V
◦
⊆M . Then

by 10.2.3

(U ∩ V )◦ = U◦ ∩ V ◦ = U ∩ V .
�

11.1.6. Proposition. The interior of a set A is the largest open set contained in A. ( Precisely:
A◦ is the union of all the open sets contained in A.)

Proof. Exercise. (Solution Q.11.1.)
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11.1.7. Definition. A subset A of a metric space is closed if A = A. That is, a set is closed if
it contains all its accumulation points.

11.1.8. Example. As is the case with open sets, care must be taken when affirming or denying
that a particular set is closed. It must be clearly understood in which metric space the set “lives”.
For example the interval (0, 1] is not closed in the metric space R, but it is a closed subset of the
metric space (0,∞) (regarded as a subspace of R).

REMINDER. Recall the remarks made after example 2.2.11: sets are not like doors or win-
dows; they are not necessarily either open or closed. One can not show that a set is closed, for
example, by showing that it fails to be open.

11.1.9. Proposition. A subset of a metric space is open if and only if its complement is closed.

Proof. Exercise. Hint. Use problem 10.3.6. (Solution Q.11.2.)

Facts already proved concerning closures of sets give us one way of dealing with closed sets; the
preceding proposition gives us another. To illustrate this, we give two proofs of the next proposition.

11.1.10. Proposition. The intersection of an arbitrary family of closed subsets of a metric space
is closed.

First proof. Let A be a family of closed subsets of a metric space. Then
⋂
A is the comple-

ment of
⋃
{Ac : A ∈ A}. Since each set Ac is open (by 11.1.9), the union of {Ac : A ∈ A} is open

(by 11.1.5(a)); and its complement
⋂
A is closed (11.1.9 again). �

Second proof. Let A be a family of closed subsets of a metric space. Since a set is always
contained in its closure, we need only show that

⋂
A ⊆

⋂
A. Use problem 10.3.5(a):⋂

A ⊆
⋂
{A : A ∈ A }

=
⋂
{A : A ∈ A }

=
⋂
A . �

11.1.11. Problem. The union of a finite family of closed subsets of a metric space is closed.

(a) Prove this assertion using propositions 11.1.5(b) and 11.1.9.
(b) Prove this assertion using problem 10.3.3.

11.1.12. Problem. Give an example to show that the intersection of an arbitrary family of open
subsets of a metric space need not be open.

11.1.13. Problem. Give an example to show that the union of an arbitrary family of closed subsets
of a metric space need not be closed.

11.1.14. Definition. Let M be a metric space, a ∈M , and r > 0. The closed ball Cr(a) about a
of radius r is {x ∈M : d(a, x) ≤ r}. The sphere Sr(a) about a of radius r is {x ∈M : d(a, x) = r}.

11.1.15. Problem. Let M be a metric space, a ∈M , and r > 0.

(a) Give an example to show that the closed ball about a of radius r need not be the same as

the closure of the open ball about a of radius r. That is, the sets Cr(a) and Br(a) may
differ.

(b) Show that every closed ball in M is a closed subset of M .
(c) Show that every sphere in M is a closed subset of M .

11.1.16. Proposition. In a metric space the closure of a set A is the smallest closed set containing
A. (Precisely: A is the intersection of the family of all closed sets which contain A.)

Proof. Problem.

11.1.17. Proposition. If A is a subset of a metric space, then its boundary ∂A is equal to A \A◦.
Thus ∂A is closed.
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Proof. Problem.

11.1.18. Proposition. Let A be a subset of a metric space M . If A is closed in M or if it is open
in M , then (∂A)◦ = ∅.

Proof. Problem.

11.1.19. Problem. Give an example of a subset A of the metric space R the interior of whose
boundary is all of R.

11.1.20. Definition. Let A ⊆ B ⊆ M where M is a metric space. We say that A is dense in B
if A ⊇ B. Thus, in particular, A is dense in the space M if A = M .

11.1.21. Example. The rational numbers are dense in the reals; so are the irrationals.

Proof. That Q = R was proved in 2.2.4. The proof that Qc = R is similar. �

The following proposition gives a useful and easily applied criterion for determining when a set
is dense in a metric space.

11.1.22. Proposition. A subset D of a metric space M is dense in M if and only if every open
ball contains a point of D.

Proof. Exercise. (Solution Q.11.3.)

11.1.23. Problem. Let M be a metric space. Prove the following.

(a) If A ⊆M and U
◦
⊆M , then U ∩A ⊆ U ∩A.

(b) If D is dense in M and U
◦
⊆M , then U ⊆ U ∩D.

11.1.24. Proposition. Let A ⊆ B ⊆ C ⊆ M where M is a metric space. If A is dense in B and
B is dense in C, then A is dense in C.

Proof. Problem.

11.2. THE RELATIVE TOPOLOGY

In example 11.1.2 we considered the set A = [0, 1) which is contained in both the metric spaces
M = [0,∞) and N = R. We observed that the question “Is A open?” is ambiguous; it depends on
whether we mean “open in M” or “open in N”. Similarly, the notation Br(a) is equivocal. In M the
open ball B 1

2
(0) is the interval [0, 12) while in N it is the interval (−1

2 ,
1
2). When working with sets

which are contained in two different spaces, considerable confusion can be created by ambiguous
choices of notation or terminology. In the next proposition, where we examine the relationship
between open subsets of a metric space N and open subsets of a subspace M , it is necessary, in
the proof, to consider open balls in both M and N . To avoid confusion we use the usual notation
Br(a) for open balls in M and a different one Dr(a) for those in N .

The point of the following proposition is that even if we are dealing with a complicated or
badly scattered subspace of a metric space, its open sets are easily identified. When an open set
in the larger space is intersected with the subspace M what results is an open set in M ; and, less
obviously, every open set in M can be produced in this fashion.

11.2.1. Proposition. Let M be a subspace of a metric space N . A set U ⊆ M is open in M if
and only if there exists a set V open in N such that U = V ∩M .

Proof. Let us establish some notation. If a ∈ M and r > 0 we write Br(a) for the open ball
about a of radius r in the space M . If a ∈ N and r > 0 we write Dr(a) for the corresponding open
ball in the space N . Notice that Br(a) = Dr(a) ∩M . Define a mapping f from the set of all open
balls in M into the set of open balls in N by

f(Br(a)) = Dr(a) .
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Thus f is just the function which associates with each open ball in the space M the corresponding
open ball (same center, same radius) in N ; so f(B) ∩M = B for each open ball B in M .

Now suppose U is open in M . By proposition 11.1.4 there exists a family B of open balls in M
such that U =

⋃
B. Let D = {f(B) : B ∈ B} and V =

⋃
D. Then V , being a union of open balls

in N , is an open subset of N and

V ∩M =
(⋃

D
)
∩M

=
(⋃
{f(B) : B ∈ B}

)
∩M

=
⋃
{f(B) ∩M : B ∈ B}

=
⋃
B

= U .

(For the third equality in the preceding string, see proposition F.2.10.)
The converse is even easier. Let V be an open subset of N and a ∈ V ∩M . In order to show

that V ∩M is open in M , it suffices to show that, in the space M , the point a is an interior point
of the set V ∩M . Since V is open in N , there exists r > 0 such that Dr(a) ⊆ V . But then

Br(a) ⊆ Dr(a) ∩M ⊆ V ∩M . �

The family of all open subsets of a metric space is called the topology on the space. As
was the case for the real numbers, the concepts of continuity, compactness, and connectedness can
be characterized entirely in terms of the open subsets of the metric spaces involved and without
any reference to the specific metrics which lead to these open sets. Thus we say that continuity,
compactness, and connectedness are topological concepts. The next proposition 11.2.3 tells us that
strongly equivalent metrics on a set produce identical topologies. Clearly, no topological property
of a metric space is affected when we replace the given metric with another metric which generates
the same topology.

11.2.2. Definition. Two metrics d1 and d2 on a set M are equivalent if they induce the same
topology on M .

We now prove that strongly equivalent metrics are equivalent.

11.2.3. Proposition. Let d1 and d2 be metrics on a set M and T1 and T2 be the topologies on
(M,d1) and (M,d2), respectively. If d1 and d2 are strongly equivalent, then T1 = T2.

Proof. Exercise. (Solution Q.11.4.)

11.2.4. Problem. Give an example to show that equivalent metrics need not be strongly equiva-
lent.

11.2.5. Definition. If M is a subspace of the metric space (N, d), the family of open subsets of M
induced by the metric d is called the relative topology on M . According to proposition 11.2.1,

the relative topology on M is {V ∩M : V
◦
⊆ N}.



CHAPTER 12

SEQUENCES IN METRIC SPACES

In chapter 4 we were able to characterize several topological properties of the real line R by
means of sequences. The same sort of thing works in general metric spaces. Early in this chapter
we give sequential characterizations of open sets, closed sets, dense sets, closure, and interior. Later
we discuss products of metric spaces.

12.1. CONVERGENCE OF SEQUENCES

Recall that a sequence is any function whose domain is the set N of natural numbers. If S
is a set and x : N → S, then we say that x is a sequence of members of S. A map x : N → R, for
example, is a sequence of real numbers. In dealing with sequences one usually (but not always)
writes xn for x(n). The element xn in the range of a sequence is the nth term of the sequence.
Frequently we use the notations (xn)∞n=1 or just (xn) to denote the sequence x.

12.1.1. Definition. A neighborhood of a point in a metric space is any open set containing the
point. Let x be a sequence in a set S and B be a subset of S. The sequence x is eventually in the
set B if there is a natural number n0 such that xn ∈ B whenever n ≥ n0. A sequence x in a metric
space M converges to a point a in M if x is eventually in every neighborhood of a (equivalently,
if it is eventually in every open ball about a). The point a is the limit of the sequence x. (In
proposition 12.2.4 we find that limits of sequences are unique, so references to “the” limit of a
sequence are justified.)

If a sequence x converges to a point a in a metric space we write

xn → a as n→∞

or

lim
n→∞

xn = a .

It should be clear that the preceding definition may be rephrased as follows: The sequence x
converges to the point a if for every ε > 0 there exists n0 ∈ N such that d(xn, a) < ε whenever
n ≥ n0. It follows immediately that xn → a if and only if d(xn, a) → 0 as n → ∞. Notice that in
the metric space R the current definition agrees with the one given in chapter 4.

12.2. SEQUENTIAL CHARACTERIZATIONS OF TOPOLOGICAL PROPERTIES

Now we proceed to characterize some metric space concepts in terms of sequences. The point
of this is that sequences are often easier to work with than arbitrary open sets.

12.2.1. Proposition. A subset U of a metric space M is open if and only if every sequence in M
which converges to an element of U is eventually in U .

Proof. Suppose that U is an open subset of M . Let (xn) be a sequence in M which converges
to a point a in U . Then U is a neighborhood of a. Since xn → a, the sequence (xn) is eventually
in U .

To obtain the converse suppose that U is not open. Some point, say a, of U is not an interior
point of U . Then for every n in N we may choose an element xn in B1/n(a) such that xn /∈ U . Then
the sequence (xn) converges to a ∈ U , but it is certainly not true that (xn) is eventually in U . �

65



66 12. SEQUENCES IN METRIC SPACES

12.2.2. Proposition. A subset A of a metric space is closed if and only if b belongs to A whenever
(an) is a sequence in A which converges to b.

Proof. Exercise. (Solution Q.12.1.)

12.2.3. Proposition. A subset D of a metric space M is dense in M if and only if every point of
M is the limit of a sequence of elements of D.

Proof. Problem.

12.2.4. Proposition. In metric spaces limits of sequences are unique. (That is, if an → b and
an → c in some metric space, then b = c.)

Proof. Problem.

12.2.5. Problem. Show that a point p is in the closure of a subset A of a metric space if and
only if there is a sequence of points in A which converges to p. Also, give a characterization of the
interior of a set by means of sequences.

12.2.6. Problem. Since the rationals are dense in R, it must be possible, according to proposi-
tion 12.2.3, to find a sequence of rational numbers which converges to the number π. Identify one
such sequence.

12.2.7. Proposition. Let d1 and d2 be strongly equivalent metrics on a set M . If a sequence of
points in M converges to a point b in the metric space (M,d1), then it also converges to b in the
space (M,d2).

Proof. Problem.

12.2.8. Problem. Use proposition 12.2.7 to show that the metric ρ defined in example 9.2.15 is
not strongly equivalent on R2 to the usual Euclidean (example 9.2.8). You gave a (presumably
different) proof of this in problem 9.3.6.

12.2.9. Problem. Let M be a metric space with the discrete metric. Give a simple characterization
of the convergent sequences in M .

12.2.10. Definition. Let A and B be nonempty subsets of a metric space M . The distance
between A and B, which we denote by d(A,B), is defined to be inf{d(a, b) : a ∈ A and b ∈ B}. If
a ∈M we write d(a,B) for d({a}, B).

12.2.11. Problem. Let B be a nonempty subset of a metric space M .

(a) Show that if x ∈ B, then d(x,B) = 0.
(b) Give an example to show that the converse of (a) may fail.
(c) Show that if B is closed, the converse of (a) holds.

12.3. PRODUCTS OF METRIC SPACES

12.3.1. Definition. Let (M1, ρ1) and (M2, ρ2) be metric spaces. We define three metrics, d, d1,
and du, on the product M1 ×M2. For x = (x1, x2) and y = (y1, y2) in M1 ×M2 let

d(x, y) =
(
(ρ1(x1, y1))

2 + (ρ2(x2, y2))
2
) 1

2 ,

d1(x, y) = ρ1(x1, y1) + ρ2(x2, y2), and

du(x, y) = max{ρ1(x1, y1), ρ2(x2, y2)} .
It is not difficult to show that these really are metrics. They are just generalizations, to arbitrary
products, of the metrics on R× R defined in 9.2.8, 9.2.10, and 9.2.12.

12.3.2. Proposition. The three metrics on M1 ×M2 defined in 12.3.1 are strongly equivalent.
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Proof. Exercise. Hint. Review proposition 9.3.2. (Solution Q.12.2.)

In light of the preceding result and proposition 11.2.3 the three metrics defined on M1×M2 (in
12.3.1) all give rise to exactly the same topology on M1×M2. Since we will be concerned primarily
with topological properties of product spaces, it makes little difference which of these metrics we
officially adopt as “the” product metric. We choose d1 because it is arithmetically simple (no square
roots of sums of squares).

12.3.3. Definition. If M1 and M2 are metric spaces, then we say that the metric space (M1 ×
M2, d1), where d1 is defined in 12.3.1, is the product (metric) space of M1 and M2; and the
metric d1 is the product metric. When we encounter a reference to “the metric space M1×M2”
we assume, unless the contrary is explicitly stated, that this space is equipped with the product
metric d1.

A minor technical point, which is perhaps worth mentioning, is that the usual (Euclidean)
metric on R2 is not (according to the definition just given) the product metric. Since these two
metrics are equivalent and since most of the properties we consider are topological ones, this will
cause little difficulty.

It is easy to work with sequences in product spaces. This is a consequence of the fact, which we
prove next, that a necessary and sufficient condition for the convergence of a sequence in a product
space is the convergence of its coordinates.

12.3.4. Proposition. Let M1 and M2 be metric spaces. A sequence
(

(xn, yn)
)∞
n=1

in the product
space converges to a point (a, b) in M1 ×M2 if and only if xn → a and yn → b.

Proof. For k = 1, 2 let ρk be the metric on the space Mk. The product metric d1 on M1×M2

is defined in 12.3.1.
Suppose (xn, yn)→ (a, b). Then

ρ1(xn, a) ≤ ρ1(xn, a) + ρ2(yn, b)

= d1
(
(xn, yn) , (a, b)

)
→ 0;

so xn → a. Similarly, yn → b.
Conversely, suppose xn → a in M1 and yn → b in M2. Given ε > 0 we may choose n1, n2 ∈ N

such that ρ1(xn, a) < 1
2ε when n ≥ n1 and ρ2(yn, b) <

1
2ε when n ≥ n2. Thus if n ≥ max{n1, n2},

d1
(
(xn, yn) , (a, b)

)
= ρ1(xn, a) + ρ2(yn, b) <

1
2ε+ 1

2ε = ε ;

so (xn, yn)→ (a, b) in M1 ×M2. �

Remark. By virtue of proposition 12.2.7, the truth of the preceding proposition would not have
been affected had either d or du (as defined in 12.3.1) been chosen as the product metric for M1×M2.

12.3.5. Problem. Generalize definitions 12.3.1 and 12.3.3 to Rn where n ∈ N. That is, write
appropriate formulas for d(x, y), d1(x, y), and du(x, y) for x, y ∈ Rn, and explain what we mean by
the product metric on an arbitrary finite product M1 ×M2 × · · · ×Mn of metric spaces.

Also state and prove generalizations of propositions 12.3.2 and 12.3.4 to arbitrary finite prod-
ucts.





CHAPTER 13

UNIFORM CONVERGENCE

13.1. THE UNIFORM METRIC ON THE SPACE OF BOUNDED FUNCTIONS

13.1.1. Definition. Let S be a nonempty set. A function f : S → R is bounded if there exists a
number M ≥ 0 such that

|f(x)| ≤M for all x ∈ S .
We denote by B(S,R) (or just by B(S)) the set of all bounded real valued functions on S.

13.1.2. Proposition. If f and g are bounded real valued functions on a nonempty set S and α is
a real number, then the functions f + g, αf , and fg are all bounded.

Proof. There exist numbers M , N ≥ 0 such that |f(x)| ≤ M and |g(x)| ≤ N for all x ∈ S.
Then, for all x ∈ S

|(f + g)(x)| ≤ |f(x)|+ |g(x)| ≤M +N,

|(αf)(x)| = |α| |f(x)| ≤ |α|M, and

|(fg)(x)| = |f(x)| |g(x)| ≤MN. �

13.1.3. Definition. Let S be a nonempty set. We define a metric du on the set B(S,R) by

du(f, g) ≡ sup{|f(x)− g(x)| : x ∈ S}

whenever f , g ∈ B(S,R). The metric du is the uniform metric on B(S,R).

13.1.4. Example. Let S = [−1, 1] and for all x ∈ S let f(x) = |x| and g(x) = 1
2(x − 1). Then

du(f, g) = 2.

Proof. It is clear from the graphs of f and g that the functions are farthest apart at x = −1.
Thus

du(f, g) = sup{|f(x)− g(x)| : − 1 ≤ x ≤ 1}
= |f(−1)− g(−1)| = 2. �

13.1.5. Example. Let f(x) = x2 and g(x) = x3 for 0 ≤ x ≤ 1. Then du(f, g) = 4/27.

Proof. Let h(x) = |f(x) − g(x)| = f(x) − g(x) for 0 ≤ x ≤ 1. To maximize h on [0, 1] use
elementary calculus to find critical points. Since h′(x) = 2x− 3x2 = 0 only if x = 0 or x = 2

3 , it is

clear that the maximum value of h occurs at x = 2
3 . Thus

du(f, g) = sup{h(x) : 0 ≤ x ≤ 1} = h

(
2

3

)
=

4

27
. �

13.1.6. Exercise. Suppose f is the constant function defined on [0, 1] whose value is 1. Asked
to describe those functions in B([0, 1]) which lie in the open ball about f of radius 1, a student
replies (somewhat incautiously) that B1(f) is the set of all real-valued functions g on [0, 1] satisfying
0 < g(x) < 2 for all x ∈ [0, 1]. Why is this response wrong? (Solution Q.13.1.)

13.1.7. Problem. Let f(x) = sinx and g(x) = cosx for 0 ≤ x ≤ π. Find du(f, g) in the set of
functions B([0, π]).

69
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13.1.8. Problem. Let f(x) = 3x − 3x3 and g(x) = 3x − 3x2 for 0 ≤ x ≤ 2. Find du(f, g) in the
set of functions B([0, 2]).

13.1.9. Problem. Explain why it is reasonable to use the same notation du (and the same name)
for both the metric in example 9.2.12 and the one defined in 13.1.3.

The terminology in 13.1.3 is somewhat optimistic. We have not yet verified that the “uniform
metric” is indeed a metric on B(S,R). We now remedy this.

13.1.10. Proposition. Let S be a nonempty set. The function du defined in 13.1.3 is a metric on
the set of functions B(S,R).

Proof. Exercise. (Solution Q.13.2.)

13.1.11. Problem. Let f(x) = x and g(x) = 0 for all x ∈ [0, 1]. Find a function h in B([0, 1])
such that

du(f, h) = du(f, g) = du(g, h) .

13.1.12. Definition. Let (fn) be a sequence of real valued functions on a nonempty set S. If there
is a function g in F(S,R) such that

sup{|fn(x)− g(x)| : x ∈ S} → 0 as n→∞
we say that the sequence (fn) converges uniformly to g and we write

fn → g (unif) .

The function g is the uniform limit of the sequence (fn). Notice that if g and all the fn’s belong
to B(S,R), then uniform convergence of (fn) to g is the same thing as convergence of fn to g in
the uniform metric.

13.1.13. Example. For each n ∈ N and x ∈ R let

fn(x) =
1

n
sin(nx) .

Then fn → 0 (unif). (Here 0 is the constant function zero.)

Proof.

du(fn, 0) = sup
{

1
n |sinnx| : x ∈ R

}
=

1

n
→ 0 as n→∞ . �

13.1.14. Example. Let g(x) = x and fn(x) = x+ 1
n for all x ∈ R and n ∈ N. Then fn → g (unif)

since

sup{|fn(x)− g(x)| : x ∈ R} =
1

n
→ 0 as n→∞.

It is not correct (although perhaps tempting) to write du(fn, g)→ 0. This expression is meaningless
since the functions fn and g do not belong to the metric space B(R) on which du is defined.

13.2. POINTWISE CONVERGENCE

Sequences of functions may converge in many different and interesting ways. Another mode of
convergence that is frequently encountered is “pointwise convergence”.

13.2.1. Definition. Let (fn) be a sequence of real valued functions on a nonempty set S. If there
is a function g such that

fn(x)→ g(x) for all x ∈ S
then (fn) converges pointwise to g. In this case we write

fn → g (ptws) .

The function g is the pointwise limit of the sequence fn.
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In the following proposition we make the important, if elementary, observation that uniform
convergence is stronger than pointwise convergence.

13.2.2. Proposition. Uniform convergence implies pointwise convergence, but not conversely.

Proof. Exercise. (Solution Q.13.3.)

13.2.3. Problem. Find an example of a sequence (fn) of functions in B([0, 1]) which converges
pointwise to the zero function 0 but satisfies

du(fn,0)→∞ as n→∞ .

Next we show that the uniform limit of a sequence of bounded functions is itself bounded.

13.2.4. Proposition. Let (fn) be a sequence in B(S) and g be a real valued function on S.

(a) If fn → g (unif), then g ∈ B(S).
(b) The assertion in (a) does not hold if uniform convergence is replaced by pointwise conver-

gence.

Proof. Exercise. (Solution Q.13.4.)

13.2.5. Exercise. Let fn(x) = xn−x2n for 0 ≤ x ≤ 1 and n ∈ N. Does the sequence (fn) converge
pointwise on [0, 1]? Is the convergence uniform? (Solution Q.13.5.)

13.2.6. Problem. Given in each of the following is the nth term of a sequence of real valued
functions defined on [0, 1]. Which of these converge pointwise on [0, 1]? For which is the convergence
uniform?

(a) x 7→ xn.
(b) x 7→ nx.
(c) x 7→ xe−nx.

13.2.7. Problem. Given in each of the following is the nth term of a sequence of real valued
functions defined on [0, 1]. Which of these converge pointwise on [0, 1]? For which is the convergence
uniform?

(a) x 7→ 1

nx+ 1
.

(b) x 7→ x

nx+ 1
.

(c) x 7→ x2

n
− x

n2
.

13.2.8. Problem. Let fn(x) =
(n− 1)x+ x2

n+ x
for all x ≥ 1 and n ∈ N. Does the sequence (fn)

have a pointwise limit on [1,∞)? A uniform limit?





CHAPTER 14

MORE ON CONTINUITY AND LIMITS

14.1. CONTINUOUS FUNCTIONS

As is the case with real valued functions of a real variable, a function f : M1 → M2 between
two metric spaces is continuous at a point a in M1 if f(x) can be made arbitrarily close to f(a) by
insisting that x be sufficiently close to a.

14.1.1. Definition. Let (M1, d1) and (M2, d2) be metric spaces. A function f : M1 → M2 is
continuous at a point a in M1 if every neighborhood of f(a) contains the image under f of a
neighborhood of a. Since every neighborhood of a point contains an open ball about the point and
since every open ball about a point is a neighborhood of that point, we may restate the definition
as follows. The function f is continuous at a if every open ball about f(a) contains the image
under f of an open ball about a; that is, if the following condition is satisfied: for every ε > 0 there
exists δ > 0 such that

f→(Bδ(a)) ⊆ Bε(f(a)). (14.1)

There are many equivalent ways of expressing (14.1). Here are three:

Bδ(a) ⊆ f←(Bε(f(a)))

x ∈ Bδ(a) implies f(x) ∈ Bε(f(a))

d1(x, a) < δ implies d2(f(x), f(a)) < ε

Notice that if f is a real valued function of a real variable, then the definition above agrees with
the one given at the beginning of chapter 3.

14.1.2. Definition. A function f : M1 → M2 between two metric spaces is continuous if it is
continuous at each point of M1.

In proving propositions concerning continuity, one should not slavishly insist on specifying the
radii of open balls when these particular numbers are of no interest. As an illustration, the next
proposition, concerning the composite of continuous functions, is given two proofs—one with the
radii of open balls specified, and a smoother one in which they are suppressed.

14.1.3. Proposition. Let f : M1 → M2 and g : M2 → M3 be functions between metric spaces. If
f is continuous at a in M1 and g is continuous at f(a) in M2, then the composite function g ◦ f is
continuous at a.

Proof 1. Let η > 0. We wish to show that there exists δ > 0 such that

Bδ(a) ⊆ (g ◦ f)←(Bη(g(f(a)))).

Since g is continuous at f(a) there exists ε > 0 such that

Bε(f(a)) ⊆ g←(Bη(g(f(a)))).

Since f is continuous at a there exists δ > 0 such that

Bδ(a) ⊆ f←(Bε(f(a))).
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Thus we have

(g ◦ f)←(Bη(g(f(a)))) = f←(g←(Bη(g(f(a)))))

⊇ f←(Bε(f(a)))

⊇ Bδ(a). �

Proof 2. Let B3 be an arbitrary open ball about g(f(a)). We wish to show that the inverse
image of B3 under g◦f contains an open ball about a. Since g is continuous at f(a), the set g←(B3)
contains an open ball B2 about f(a). And since f is continuous at a, the set f←(B2) contains an
open ball B1 about a. Thus we have

(g ◦ f)←(B3) = f←(g←(B3))

⊇ f←(B2)

⊇ B1. �

The two preceding proofs are essentially the same. The only difference is that the first proof
suffers from a severe case of clutter. It certainly is not more rigorous; it is just harder to read. It
is good practice to relieve proofs (and their readers) of extraneous detail. The following corollary
is an obvious consequence of the proposition we have just proved.

14.1.4. Corollary. The composite of two continuous functions is continuous.

Next we prove a result emphasizing that continuity is a topological notion; that is, it can be
expressed in terms of open sets. A necessary and sufficient condition for a function to be continuous
is that the inverse image of every open set be open.

14.1.5. Proposition. A function f : M1 →M2 between metric spaces is continuous if and only if
f←(U) is an open subset of M1 whenever U is open in M2.

Proof. Exercise. (Solution Q.14.1.)

14.1.6. Example. As an application of the preceding proposition we show that the function

f : R2 → R : (x, y) 7→ 2x− 5y

is continuous. One approach to this problem is to find, given a point (a, b) in R2 and ε > 0, a

number δ > 0 sufficiently small that
√

(x− a)2 + (y − b)2 < δ implies |(2x− 5y)− (2a− 5b)| < ε.
This is not excessively difficult, but it is made somewhat awkward by the appearance of squares
and a square root in the definition of the usual metric on R2. A simpler approach is possible. We
wish to prove continuity of f with respect to the usual metric d on R2 (defined in 9.2.8).

We know that the metric d1 (defined in 9.2.10) on R2 is (strongly) equivalent to d (9.3.2)
and that equivalent metrics produce identical topologies. Thus (R2, d1) and (R2, d) have the same
topologies. Since the continuity of a function is a topological concept (this was the point of 14.1.5),
we know that f will be continuous with respect to d if and only if it is continuous with respect
to d1. Since the metric d1 is algebraically simpler, we prove continuity with respect to d1. To this
end, let (a, b) ∈ R2 and ε > 0. Choose δ = ε/5. If d1((x, y), (a, b)) = |x− a|+ |y − b| < δ, then

|f(x, y)− f(a, b)| = |2(x− a)− 5(y − b)|
≤ 5(|x− a|+ |y − b|)
< 5δ

= ε.

14.1.7. Example. The function

f : R2 → R : (x, y) 7→ 5x− 7y

is continuous.

Proof. Problem.
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The principle used in example 14.1.6 works generally: replacing a metric on the domain of a
function by an equivalent metric does not affect the continuity of the function. The same assertion
is true for the codomain of a function as well. We state this formally.

14.1.8. Proposition. Let f : M1 → M2 be a continuous function between two metric spaces
(M1, d1) and (M2, d2). If ρ1 is a metric on M1 equivalent to d1 and ρ2 is equivalent to d2, then f
considered as a function from the space (M1, ρ1) to the space (M2, ρ2) is still continuous.

Proof. This is an immediate consequence of propositions 11.2.3 and 14.1.5. �

14.1.9. Example. Multiplication is a continuous function on R. That is, if we define

M : R2 → R : (x, y) 7→ xy ,

then the function M is continuous.

Proof. Exercise. Hint. Use 14.1.8. (Solution Q.14.2.)

14.1.10. Example. Addition is a continuous function on R. That is, if we define

A : R2 → R : (x, y) 7→ x+ y ,

then the function A is continuous.

Proof. Problem.

14.1.11. Problem. Let d be the usual metric on R2, let ρ be the metric on R2 defined in example
9.2.15, and let f : (R2, d)→ (R2, ρ) be the identity function on R2. Show that f is not continuous.

14.1.12. Problem. Let Rd be the set of real numbers with the discrete metric, and let M be an
arbitrary metric space. Describe the family of all continuous functions f : Rd →M .

14.1.13. Proposition. Let f : M1 →M2 where M1 and M2 are metric spaces. Then f is contin-
uous if and only if f←(C) is a closed subset of M1 whenever C is a closed subset of M2.

Proof. Problem.

14.1.14. Proposition. Let f : M1 →M2 be a function between metric spaces. Then f is continuous
if and only if

f←(B◦) ⊆
(
f←(B)

)◦
for all B ⊆M2.

Proof. Problem.

14.1.15. Proposition. Let f : M1 →M2 be a function between metric spaces. Then f is continuous
if and only if

f→
(
A
)
⊆ f→(A)

for every A ⊆M1.

Proof. Problem.

14.1.16. Proposition. Let f : M1 →M2 be a function between metric spaces. Then f is continuous
if and only if

f←(B) ⊆ f←
(
B
)

for every B ⊆M2.

Proof. Problem.

14.1.17. Proposition. Let f be a real valued function on a metric space M and a ∈ M . If f is
continuous at a and f(a) > 0, then there exists a neighborhood B of a such that f(x) > 1

2f(a) for
all x ∈ B.

Proof. Problem.
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14.1.18. Proposition. Let N be a metric space and M be a subspace of N .

(a) The inclusion map ι : M → N : x 7→ x is continuous.
(b) Restrictions of continuous functions are continuous. That is, if f : M1 →M2 is a contin-

uous mapping between metric spaces and A ⊆M1, then f |A is continuous.

Proof. Problem.

14.1.19. Problem. Show that alteration of the codomain of a continuous function does not affect
its continuity. Precisely: If f : M0 →M and g : M0 → N are functions between metric spaces such
that f(x) = g(x) for all x ∈M0 and if their common image is a metric subspace of both M and N ,
then f is continuous if and only if g is.

In the next proposition we show that if two continuous functions agree on a dense subset of a
metric space, they agree everywhere on that space.

14.1.20. Proposition. If f , g : M → N are continuous functions between metric spaces, if D is
a dense subset of M , and if f |D = g|D, then f = g.

Proof. Problem. Hint. Suppose that there is a point a where f and g differ. Consider
the inverse images under f and g, respectively, of disjoint neighborhoods of f(a) and g(a). Use
proposition 11.1.22.

14.1.21. Problem. Suppose that M is a metric space and that f : M → M is continuous but is
not the identity map. Show that there exists a proper closed set C ⊆M such that

C ∪ f←(C) = M .

Hint. Choose x so that x 6= f(x). Look at the complement of U ∩ f←(V ) where U and V are
disjoint neighborhoods of x and f(x), respectively.

There are two ways in which metric spaces may be regarded as “essentially the same”: They
may be isometric (having essentially the same distance function); or they may be topologically
equivalent (having essentially the same open sets).

14.1.22. Definition. Let(M,d) and (N, ρ) be metric spaces. A bijection f : M → N is an isom-
etry if

ρ(f(x), f(y)) = d(x, y)

for all x, y ∈ M . If an isometry exists between two metric spaces, the spaces are said to be
isometric.

14.1.23. Definition. A bijection g : M → N between metric spaces is a homeomorphism if both
g and g−1 are continuous. Notice that if g is a homeomorphism, then g→ establishes a one-to-one
correspondence between the family of open subsets of M and the family of open subsets of N . For
this reason two metric spaces are said to be (topologically) equivalent or homeomorphic if
there exists a homeomorphism between them. Since the open sets of a space are determined by its
metric, it is clear that every isometry is automatically a homeomorphism. The converse, however,
is not correct (see example 14.1.25 below).

14.1.24. Problem. Give an example of a bijection between metric spaces which is continuous but
is not a homeomorphism.

14.1.25. Example. The open interval (0, 1) and the real line R (with their usual metrics) are
homeomorphic but not isometric.

Proof. Problem.

We have seen (in chapter 12) that certain properties of sets in metric spaces can be characterized
by means of sequences. Continuity of functions between metric spaces also has a simple and useful
sequential characterization.
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14.1.26. Proposition. Let f : M1 → M2 be a function between metric spaces and a be a point
in M1. The function f is continuous at a if and only if f(xn)→ f(a) whenever xn → a.

Proof. Exercise. (Solution Q.14.3.)

14.1.27. Problem. Give a second solution to proposition 14.1.20, this time making use of propo-
sitions 12.2.3 and 14.1.26.

14.1.28. Problem. Use examples 14.1.10 and 14.1.9 to show that if xn → a and yn → b in R,
then xn + yn → a+ b and xnyn → ab. (Do not give an “ε-δ proof”.)

14.1.29. Problem. Let c be a point in a metric space M . Show that the function

f : M → R : x 7→ d(x, c)

is continuous. Hint. Use problem 9.2.17.

14.1.30. Problem. Let C be a nonempty subset of a metric space. Then the function

g : M → R : x 7→ d(x,C)

is continuous. (See 12.2.10 for the definition of d(x,C).)

14.1.31. Proposition (Urysohn’s lemma). Let A and B be nonempty disjoint closed subsets of
a metric space M . Then there exists a continuous function f : M → R such that ran f ⊆ [0, 1],
f→(A) = {0}, and f→(B) = {1}.

Proof. Problem. Hint. Consider
d(x,A)

d(x,A) + d(x,B)
. Use problems 12.2.11(c) and 14.1.30.

14.1.32. Problem. (Definition. Disjoint sets A and B in a metric space M are said to be sepa-

rated by open sets if there exist U, V
◦
⊆M such that U ∩ V = ∅, A ⊆ U , and B ⊆ V .) Show

that in a metric space every pair of disjoint closed sets can be separated by open sets.

14.1.33. Problem. If f and g are continuous real valued functions on a metric space M , then
{x ∈M : f(x) 6= g(x)} is an open subset of M .

14.1.34. Problem. Show that if f is a continuous real valued function on a metric space, then |f |
is continuous. (We denote by |f | the function x 7→ |f(x)|.)

14.1.35. Problem. Show that metrics are continuous functions. That is, show that if M is a set
and d : M ×M → R is a metric, then d is continuous. Conclude from this that if xn → a and
yn → b in a metric space, then d(xn, yn)→ d(a, b).

14.1.36. Problem. Show that if f and g are continuous real valued functions on a metric space M
and f(a) = g(a) at some point a ∈ M , then for every ε > 0 there exists a neighborhood U of a
such that f(x) < g(x) + ε for all x ∈ U .

14.2. MAPS INTO AND FROM PRODUCTS

Let (M1, ρ1) and (M2, ρ2) be metric spaces. Define the coordinate projections π1 and π2
on the product M1 ×M2 by

πk : M1 ×M2 →Mk : (x1, x2) 7→ xk for k = 1, 2.

If M1×M2 has the product metric d1 (see 12.3.1 and 12.3.3), then the coordinate projections turn
out to be continuous functions.

14.2.1. Exercise. Prove the assertion made in the preceding sentence. (Solution Q.14.4.)
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14.2.2. Notation. Let S1, S2, and T be sets. If f : T → S1 × S2, then we define functions
f1 := π1 ◦ f and f2 := π2 ◦ f . These are the components of f .

If, on the other hand, functions g : T → S1 and h : T → S2 are given, we define the function
(g, h) by

(g, h) : T → S1 × S2 : x 7→ (g(x), h(x)) .

Thus it is clear that whenever f : T → S1 × S2, we have

f = (f1, f2) .

14.2.3. Proposition. Let M1, M2, and N be metric spaces and f : N →M1 ×M2. The function
f is continuous if and only if its components f1 and f2 are.

Proof. Exercise. (Solution Q.14.5.)

14.2.4. Proposition. Let f and g be continuous real valued functions on a metric space.

(a) The product fg is a continuous function.
(b) For every real number α the function αg : x 7→ αg(x) is continuous.

Proof. Exercise. (Solution Q.14.6.)

14.2.5. Problem. Let f and g be continuous real valued functions on a metric space and suppose
that g is never zero. Show that the function f/g is continuous.

14.2.6. Proposition. If f and g are continuous real valued functions on a metric space, then f+g
is continuous.

Proof. Problem.

14.2.7. Problem. Show that every polynomial function on R is continuous. Hint. An induction
on the degree of the polynomial works nicely.

14.2.8. Definition. Let S be a set and f , g : S → R. Then f ∨ g, the supremum (or maximum)
of f and g, is defined by

(f ∨ g)(x) := max{f(x), g(x)}
for every x ∈ S. Similarly, f ∧ g, the infimum (or minimum) of f and g, is defined by

(f ∧ g)(x) := min{f(x), g(x)}
for every x ∈ S.

14.2.9. Problem. Let f(x) = sinx and g(x) = cosx for 0 ≤ x ≤ 2π. Make a careful sketch of
f ∨ g and f ∧ g.

14.2.10. Problem. Show that if f and g are continuous real valued functions on a metric space,
then f ∨ g and f ∧ g are continuous. Hint. Consider things like f + g + |f − g|.

In proposition 14.2.3 we have dealt with the continuity of functions which map into products of
metric spaces. We now turn to functions which map from products; that is, to functions of several
variables.

14.2.11. Notation. Let S1, S2, and T be sets and f : S1×S2 → T . For each a ∈ S1 we define the
function

f(a, · ) : S2 → T : y 7→ f(a, y)

and for each b ∈ S2 we define the function

f( · , b) : S1 → T : x 7→ f(x, b) .

Loosely speaking, f(a, · ) is the result of regarding f as a function of only its second variable; f( · , b)
results from thinking of f as depending on only its first variable.
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14.2.12. Proposition. Let M1, M2, and N be metric spaces and f : M1 × M2 → N . If f is
continuous, then so are f(a, · ) and f( · , b) for all a ∈M1 and b ∈M2.

Proof. Exercise. (Solution Q.14.7.)

This proposition is sometimes paraphrased as follows: Joint continuity implies separate conti-
nuity. The converse is not true. (See problem 14.2.13.)

Remark. It should be clear how to extend the results of propositions 14.2.3 and 14.2.12 to products
of any finite number of metric spaces.

14.2.13. Problem. Let f : R2 → R be defined by

f(x, y) =

{
xy(x2 + y2)−1, for (x, y) 6= (0, 0)

0, for x = y = 0.

(a) Show that f is continuous at each point of R2 except at (0, 0), where it is not continuous.
(b) Show that the converse of proposition 14.2.12 is not true.

14.2.14. Notation. Let M and N be metric spaces. We denote by C(M,N) the family of all
continuous functions f taking M into N .

In proposition 13.2.4 we showed that the uniform limit of a sequence of bounded real valued
functions is bounded. We now prove an analogous result for continuous real valued functions: The
uniform limit of a sequence of continuous real valued functions is continuous.

14.2.15. Proposition. If (fn) is a sequence of continuous real valued functions on a metric space
M which converges uniformly to a real valued function g on M , then g is continuous.

Proof. Exercise. (Solution Q.14.8.)

14.2.16. Problem. If the word “pointwise” is substituted for “uniformly” in proposition 14.2.15,
the conclusion no longer follows. In particular, find an example of a sequence (fn) of continuous
functions on [0, 1] which converges pointwise to a function g on [0, 1] which is not continuous.

14.3. LIMITS

We now generalize to metric spaces the results of chapter 7 on limits of real valued functions.
Most of this generalization is accomplished quite simply: just replace open intervals on the real
line with open balls in metric spaces.

14.3.1. Definition. If Br(a) is the open ball of radius r about a point a in a metric space M ,
then B∗r (a), the deleted open ball of radius r about a, is just Br(a) with the point a deleted.
That is, B∗r (a) = {x ∈M : 0 < d(x, a) < r}.

14.3.2. Definition. Let (M,d) and (N, ρ) be metric spaces, A ⊆M , f : A→ N , a be an accumu-
lation point of A, and l ∈ N . We say that l is the limit of f as x approaches a (of the limit
of f at a) if: for every ε > 0 there exists δ > 0 such that f(x) ∈ Bε(l) whenever x ∈ A ∩ B∗δ (a).
In slightly different notation:

(∀ε > 0)(∃δ > 0)(∀x ∈ A) 0 < d(x, a) < δ =⇒ ρ(f(x), l) < ε.

When this condition is satisfied we write

f(x)→ l as x→ a

or
lim
x→a

f(x) = l.

As in chapter 7 this notation is optimistic. We will show in the next proposition that limits, if they
exist, are unique.
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14.3.3. Proposition. Let f : A → N where M and N are metric spaces and A ⊆ M , and let
a ∈ A′. If f(x)→ b as x→ a and f(x)→ c as x→ a, then b = c.

Proof. Exercise. (Solution Q.14.9.)

For a function between metric spaces the relationship between its continuity at a point and its
limit there is exactly the same as in the case of real valued functions. (See proposition 7.2.3 and
the two examples which precede it.)

14.3.4. Proposition. Let M and N be metric spaces, let f : A → N where A ⊆ M , and let
a ∈ A ∩A′. Then f is continuous at a if and only if

lim
x→a

f(x) = f(a).

Proof. Problem. Hint. Modify the proof of 7.2.3.

14.3.5. Proposition. If M is a metric space, f : A→M where A ⊆ R, and a ∈ A′, then

lim
h→0

f(a+ h) = lim
x→a

f(x)

in the sense that if either limit exists, then so does the other and the two limits are equal.

Proof. Problem. Hint. Modify the proof of 7.2.4.

We conclude this chapter by examining the relationship between “double” and “iterated” limits
of real valued functions of two real variables. A limit of the form

lim
(x,y)→(a,b)

f(x, y)

is a double limit; limits of the form

lim
x→a

(
lim
y→b

f(x, y)
)

and lim
y→b

(
lim
x→a

f(x, y)
)

are iterated limits. The meaning of the expression limx→a
(
limy→b f(x, y)

)
should be clear: it is

limx→a h(x) where h is the function defined by h(x) = limy→b f(x, y).

14.3.6. Example. Let f(x, y) = x sin(1 + x2y2) for all x, y ∈ R. Then lim(x,y)→(0,0) f(x, y) = 0.

Proof. The function f maps R2 into R. We take the usual Euclidean metric on both of these
spaces. Given ε > 0, choose δ = ε. If (x, y) ∈ B∗δ (0, 0), then

|f(x, y)− 0| = |x||sin(1 + x2y2)| ≤ |x| ≤
√
x2 + y2 = d

(
(x, y), (0, 0)

)
< δ = ε . �

14.3.7. Example. Let f(x, y) = x sin(1+x2y2) for all x, y ∈ R. Then limx→0

(
limy→0 f(x, y)

)
= 0.

Proof. Compute the inner limit first: limx→0

(
limy→0

(
x sin(1+x2y2)

)
= limx→0(x sin 1) = 0.

�

Because of the intimate relationship between continuity and limits (proposition 14.3.4) and
because of the fact that joint continuity implies separate continuity (proposition 14.2.12), many
persons wrongly conclude that the existence of a double limit implies the existence of the corre-
sponding iterated limits. One of the last problems in this chapter will provide you with an example
of a function having a double limit at the origin but failing to have one of the corresponding iterated
limits. In the next proposition we prove that if in addition to the existence of the double limit we
assume that limx→a f(x, y) and limy→b f(x, y) always exist, then both iterated limits exist and are
equal.

14.3.8. Proposition. Let f be a real valued function of two real variables. If the limit

l = lim
(x,y)→(a,b)

f(x, y)
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exists and if limx→a f(x, y) and limy→b f(x, y) exist for all y and x, respectively, then the iterated
limits

lim
x→a

(
lim
y→b

f(x, y)
)

and lim
y→b

(
lim
x→a

f(x, y)
)

both exist and are equal to l.

Proof. Exercise. Hint. Let g(x) = limy→b f(x, y) for all x ∈ R. We wish to show that
limx→a g(x) = l. The quantity |g(x) − l| is small whenever both |g(x) − f(x, y)| and |f(x, y) − l|
are. Since lim(x,y)→(a,b) f(x, y) = l it is easy to make |f(x, y)− l| small: insist that (x, y) lie in some
sufficiently small open ball about (a, b) of radius, say, δ. This can be accomplished by requiring,
for example, that

|x− a| < δ/2 (14.2)

and that
|y − b| < δ/2. (14.3)

Since g(x) = limy→b f(x, y) for every x, we can make |g(x)−f(x, y)| small (for fixed x) by supposing
that

|y − b| < η (14.4)

for some sufficiently small η. So the proof is straightforward: require x to satisfy (14.2) and for
such x require y to satisfy (14.3) and (14.4). (Solution Q.14.10.)

It is sometimes necessary to show that certain limits do not exist. There is a rather simple
technique which is frequently useful for showing that the limit of a given real valued function does
not exist at a point a. Suppose we can find two numbers α 6= β such that in every neighborhood
of a the function f assumes (at points other than a) both the values α and β. (That is, for every
δ > 0 there exist points u and v in Bδ(a) distinct from a such that f(u) = α and f(v) = β.) Then
it is easy to see that f cannot have a limit as x approaches a. Argue by contradiction: suppose
limx→a f(x) = l. Let ε = |α − β|. Then ε > 0; so there exists δ > 0 such that |f(x) − l| < ε/2
whenever 0 < d(x, a) < δ. Let u and v be points in B∗δ (a) satisfying f(u) = α and f(v) = β. Since
|f(u)− l| < ε/2 and |f(v)− l| < ε/2, it follows that

ε = |α− β|
= |f(u)− f(v)|
≤ |f(u)− l|+ |l − f(v)|
< ε

which is an obvious contradiction.

14.3.9. Example. Let f(x, y) =
x2y2

x2y2 + (x+ y)4
if (x, y) 6= (0, 0). Then lim(x,y)→(0,0) f(x, y) does

not exist.

Proof. Exercise. (Solution Q.14.11.)

14.3.10. Example. The limit as (x, y)→ (0, 0) of
x3y3

x12 + y4
does not exist.

Proof. Problem.

14.3.11. Problem. Let f : A→ R where A ⊆ M and M is a metric space, and let a ∈ A′. Show
that

lim
x→a

f(x) = 0 if and only if lim
x→a
|f(x)| = 0 .

14.3.12. Problem. Let f , g, h : A → R where A ⊆ M and M is a metric space, and let a ∈ A′.
Show that if f ≤ g ≤ h and

lim
x→a

f(x) = lim
x→a

h(x) = l ,

then limx→a g(x) = l.
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14.3.13. Problem. Let M , N , and P be metric spaces, a ∈ A ⊆M , f : A→ N , and g : N → P .

(a) Show that if l = limx→a f(x) exists and g is continuous at l, then limx→a(g ◦ f)(x) exists
and is equal to g(l).

(b) Show by example that the following assertion need not be true: If l = limx→a f(x) exists
and limy→l g(y) exists, then limx→a(g ◦ f)(x) exists.

14.3.14. Problem. Let a be a point in a metric space. Show that

lim
x→a

d(x, a) = 0 .

14.3.15. Problem. In this problem Rn has its usual metric; in particular,

d(x, 0) =

( n∑
k=1

x2k

)1/2

for all x = (x1, . . . , xn) ∈ Rn.

(a) Show that

lim
x→0

xjxk
d(x, 0)

= 0

whenever 1 ≤ j ≤ n and 1 ≤ k ≤ n.

(b) For 1 ≤ k ≤ n show that limx→0
xk

d(x, 0)
does not exist.

14.3.16. Problem. Let f(x, y) =
x2 − y2

x2 + y2
for (x, y) 6= (0, 0). Find the following limits, if they

exist.

(a) lim(x,y)→(0,0) f(x, y)

(b) limx→0

(
limy→0 f(x, y)

)
(c) limy→0

(
limx→0 f(x, y)

)
14.3.17. Problem. Same as problem 14.3.16, but f(x, y) =

xy

x2 + y2
.

14.3.18. Problem. Same as problem 14.3.16, but f(x, y) =
x2y2

x2 + y2
.

14.3.19. Problem. Same as problem 14.3.16, but f(x, y) = y sin(1/x) if x 6= 0 and f(x, y) = 0 if
x = 0.



CHAPTER 15

COMPACT METRIC SPACES

15.1. DEFINITION AND ELEMENTARY PROPERTIES

15.1.1. Definition. Recall that a family U of sets is said to cover a set S if
⋃
U ⊇ S. The phrases

“U covers S”, “U is a cover for S”, and “U is a covering of S” are used interchangeably. If a cover
U for a metric space M consists entirely of open subsets of M , then U is an open cover for M .
If U is a family of sets which covers a set S and V is a subfamily of U which also covers S, then
V is a subcover of U for S. A metric space M is compact if every open cover of M has a finite
subcover.

We have just defined what we mean by a compact space. It will be convenient also to speak of
a compact subset of a metric space M . If A ⊆ M , we say that A is a compact subset of M if,
regarded as a subspace of M , it is a compact metric space.

Notice that the definition of compactness is identical to the one given for subsets of the real
line in definition 6.1.3. Recall also that we have proved that every closed bounded subset of R is
compact (see example 6.3.6).

Remark (A Matter of Technical Convenience). Suppose we wish to show that some particular
subset A of a metric space M is compact. Is it really necessary that we work with coverings made
up of open subsets of A (as the definition demands) or can we just as well use coverings whose
members are open subsets of M? Fortunately, either will do. This is an almost obvious consequence
of proposition 11.2.1. Nevertheless, providing a careful verification takes a few lines, and it is good
practice to attempt it.

15.1.2. Proposition. A subset A of a metric space M is compact if and only if every cover of A
by open subsets of M has a finite subcover.

Proof. Exercise. (Solution Q.15.1.)

An obvious corollary of the preceding proposition: If M1 is a subspace of a metric space M2

and K ⊆M1, then K is a compact subset of M1 if and only if it is a compact subset of M2.

15.1.3. Problem. Generalize the result of proposition 6.2.2 to metric spaces. That is, show that
every closed subset of a compact metric space is compact.

15.1.4. Definition. A subset of a metric space is bounded if it is contained in some open ball.

15.1.5. Problem. Generalize the result of proposition 6.2.3 to metric spaces. That is, show that
every compact subset of a metric space is closed and bounded.

As we will see, the converse of the preceding theorem holds for subsets of Rn under its usual
metric; this is the Heine-Borel theorem. It is most important to know, however, that this converse
is not true in arbitrary metric spaces, where sets which are closed and bounded may fail to be
compact.

15.1.6. Example. Consider an infinite set M under the discrete metric. Regarded as a subset of
itself M is clearly closed and bounded. But since the family U =

{
{x} : x ∈ M

}
is a cover for M

which has no proper subcover, the space M is certainly not compact.

15.1.7. Example. With its usual metric R2 is not compact.

83
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Proof. Problem.

15.1.8. Example. The open unit ball {(x, y, z) : x2 + y2 + z2 < 1} in R3 is not compact.

Proof. Problem.

15.1.9. Example. The strip {(x, y) : 2 ≤ y ≤ 5} in R2 is not compact.

Proof. Problem.

15.1.10. Example. The closed first quadrant {(x, y) : x ≥ 0 and y ≥ 0} in R2 is not compact.

Proof. Problem.

15.1.11. Problem. Show that the intersection of an arbitrary nonempty collection of compact
subsets of a metric space is itself compact.

15.1.12. Problem. Show that the union of a finite collection of compact subsets of a metric space
is itself compact. Hint. What about two compact sets? Give an example to show that the union
of an arbitrary collection of compact subsets of a metric space need not be compact.

15.2. THE EXTREME VALUE THEOREM

15.2.1. Definition. A real valued function f on a metric space M is said to have a (global)
maximum at a point a in M if f(a) ≥ f(x) for every x in M ; the number f(a) is the maximum
value of f . The function has a (global) minimum at a if f(a) ≤ f(x) for every x in M ; and in
this case f(a) is the minimum value of f . A number is an extreme value of f if it is either a
maximum or a minimum value. It is clear that a function may fail to have maximum or minimum
values. For example, on the open interval (0, 1) the function f : x 7→ x assumes neither a maximum
nor a minimum.

Our next goal is to show that every continuous function on a compact metric space attains
both a maximum and a minimum. This turns out to be an easy consequence of the fact that the
continuous image of a compact set is compact. All this works exactly as it did for R.

15.2.2. Problem. Generalize the result of theorem 6.3.2 to metric spaces. That is, show that if
M and N are metric spaces, if M is compact, and if f : M → N is continuous, then f→(M) is
compact.

15.2.3. Problem (The Extreme Value Theorem.). Generalize the result of theorem 6.3.3 to metric
spaces. That is, show that if M is a compact metric space and f : M → R is continuous, then f
assumes both a maximum and a minimum value on M .

In chapter 13 we defined the uniform metric on the family B(S,R) of all bounded real valued
functions on S and agreed to call convergence of sequences in this space “uniform convergence”.
Since S was an arbitrary set (not a metric space), the question of continuity of members of B(S,R)
is meaningless. For the moment we restrict our attention to functions defined on a compact metric
space, where the issue of continuity is both meaningful and interesting.

A trivial, but crucial, observation is that if M is a compact metric space, then the family
C(M) = C(M,R) of continuous real valued functions on M is a subspace of the metric space
B(M) = B(M,R). This is an obvious consequence of the extreme value theorem (15.2.3) which
says, in particular, that every continuous real valued function on M is bounded. Furthermore,
since the uniform limit of continuous functions is continuous (see proposition 14.2.15), it is clear
that C(M,R) is a closed subset of B(M,R) (see proposition 12.2.2 for the sequential characterization
of closed sets). For future reference we record this formally.

15.2.4. Proposition. If M is a compact metric space, then C(M) is a closed subset of B(M).

15.2.5. Example. The circle x2 + y2 = 1 is a compact subset of R2.
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Proof. Problem. Hint. Parametrize.

15.2.6. Example. The ellipse
x2

16
+
y2

9
= 1 is a compact subset of R2.

Proof. Problem.

15.2.7. Example. Regard R2 as a metric space under the uniform metric (see example 9.2.12).
Then the boundary of the unit ball in this space is compact.

Proof. Problem.

15.2.8. Problem. Let f : M → N be a continuous bijection between metric spaces.

(a) Show by example that f need not be a homeomorphism.
(b) Show that if M is compact, then f must be a homeomorphism.

15.3. DINI’S THEOREM

15.3.1. Definition. A family F of sets is said to have the finite intersection property if
every finite subfamily of F has nonempty intersection.

15.3.2. Problem. Show that a metric space M is compact if and only if every family of closed
subsets of M having the finite intersection property has nonempty intersection.

15.3.3. Proposition (Dini’s Theorem). Let M be a compact metric space and (fn) be a sequence
of continuous real valued functions on M such that fn(x) ≥ fn+1(x) for all x in M and all n in
N. If the sequence (fn) converges pointwise on M to a continuous function g, then it converges
uniformly to g.

Proof. Problem. Hint. First establish the correctness of the assertion for the special case
where g = 0. For ε > 0 consider the sets An = fn

←([ε,∞)). Argue by contradiction to show that
∩∞n=1An is empty. Then use problem 15.3.2.

15.3.4. Example. Dini’s theorem (problem 15.3.3) is no longer true if we remove the hypothesis
that

(a) the sequence (fn) is decreasing;
(b) the function g is continuous; or
(c) the space M is compact.

Proof. Problem.

15.3.5. Example. On the interval [0, 1] the square root function x 7→
√
x is the uniform limit of

a sequence of polynomials.

Proof. Problem. Hint. Let p0 be the zero function on [0, 1], and for n ≥ 0 define pn+1 on
[0, 1] by

pn+1(t) = pn(t) + 1
2

(
t− (pn(t))2

)
,

and verify that

0 ≤
√
t− pn(t) ≤ 2

√
t

2 + n
√
t
≤ 2

n
for 0 ≤ t ≤ 1 and n ∈ N.





CHAPTER 16

SEQUENTIAL CHARACTERIZATION OF COMPACTNESS

We have previously characterized open sets, closed sets, closure, and continuity by means of
sequences. Our next goal is to produce a characterization of compactness in terms of sequences.
This is achieved in theorem 16.2.1 where it is shown that compactness in metric spaces is equivalent
to something called sequential compactness. For this concept we need to speak of subsequences
of sequences of points in a metric space. In 4.4.1 we defined “subsequence” for sequences of real
numbers. There is certainly no reason why we cannot speak of subsequences of arbitrary sequences.

16.1. SEQUENTIAL COMPACTNESS

16.1.1. Definition. If a is a sequence of elements of a set S and n : N→ N is strictly increasing,
then the composite function a ◦ n is a subsequence of the sequence a. (Notice that a ◦ n is itself
a sequence of elements of S since it maps N into S.) The kth term of a ◦ n is frequently written as
ank ; other acceptable notations are an(k) and a(n(k)).

Notice that it is possible for a sequence which fails to converge to have subsequences which do
converge. For example, if an = (−1)n + (1/n) for each n, then the subsequence (a2n) converges
while the sequence (an) itself does not.

16.1.2. Definition. A metric space M is sequentially compact if every sequence in M has a
convergent subsequence.

16.1.3. Example. It is important to understand that for a space to be sequentially compact the
preceding definition requires that every sequence in the space have a subsequence which converges
to a point in that space. It is not enough to find a subsequence which converges in some larger space.
For example, we know that the metric space (0, 1] regarded as a subspace of R is not sequentially
compact because the sequence

(
1
n

)
has no subsequence which converges to something in (0, 1]. That(

1
n

)
happens to converge to 0 in R is completely irrelevant.

A major goal of this chapter is to demonstrate that in metric spaces compactness and sequential
compactness are the same thing. This is done in theorem 16.2.1. Be aware however that in general
topological spaces this is not true. An essential ingredient of the proof is the following chain of
implications

sequentially compact =⇒ totally bounded =⇒ separable.

So the next order of business is to define the last two concepts and prove that the preceding
implications do hold.

16.1.4. Definition. A metric space M is totally bounded if for every ε > 0 there exists a
finite subset F of M such that for every a ∈ M there is a point x ∈ F such that d(x, a) < ε. This
definition has a more or less standard paraphrase: A space is totally bounded if it can be kept
under surveillance by a finite number of arbitrarily near-sighted policemen.

16.1.5. Proposition. Every totally bounded metric space is bounded.

Proof. Problem.

16.1.6. Example. The converse of the preceding proposition is false. Any infinite set with the
discrete metric is an example of a bounded metric space which is not totally bounded. (Why?)
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16.1.7. Proposition. Every sequentially compact metric space is totally bounded.

Proof. Exercise. Hint. Assume that a metric space M is not totally bounded. Inductively
construct a sequence in M no two terms of which are closer together than some fixed distance
ε > 0. (Solution Q.16.1.)

16.1.8. Definition. A metric space is separable if it possesses a countable dense subset.

16.1.9. Example. The space Rn is separable. The set of points (q1, . . . , qn) such that each coor-
dinate qk is rational is a countable dense subset of Rn.

16.1.10. Example. It follows easily from proposition 11.1.22 that the real line (or indeed any
uncountable set) with the discrete metric is not separable. (Consider the open balls of radius 1
about each point.)

16.1.11. Proposition. Every totally bounded metric space is separable.

Proof. Problem. Hint. Let M be a totally bounded metric space. For each n in N choose a
finite set Fn such that for each a ∈M the set Fn ∩B 1

n
(a) is nonempty.

16.1.12. Problem. The metric space Rd comprising the real numbers under the discrete metric
is not separable.

16.1.13. Corollary. Every sequentially compact metric space is separable.

Proof. Propositions 16.1.7 and 16.1.11. �

16.2. CONDITIONS EQUIVALENT TO COMPACTNESS

We are now ready for a major result of this chapter—a sequential characterization of compact-
ness. We show that a space M is compact if and only if every sequence in M has a convergent
subsequence. In other words, a space is compact if and only if it is sequentially compact. We will
see later in the section how useful this result is when we use it to prove that a finite product of
compact spaces is compact.

The following theorem also provides a second characterization of compactness: a space M is
compact if and only if every infinite subset of M has a point of accumulation in M . The proof
of the theorem is fairly straightforward except for one complicated bit. It is not easy to prove
that every sequentially compact space is compact. This part of the proof comes equipped with an
lengthy hint.

16.2.1. Theorem. If M is a metric space then the following are equivalent:

(1) M is compact;
(2) every infinite subset of M has an accumulation point in M ;
(3) M is sequentially compact.

Proof. Exercise. Hint. Showing that (3) implies (1) is not so easy. To show that a sequentially
compact metric space M is compact start with an arbitrary open cover U for M and show first that

(A) U has a countable subfamily V which covers M .

Then show that
(B) there is a finite subfamily of V which covers M .

The hard part is (A). According to corollary 16.1.13 we may choose a countable dense subset A of
M . Let B be the family of all open balls Br(a) such that

(i) a ∈ A;

(ii) r ∈ Q and;

(iii) Br(a) ⊆ U for some U ∈ U.
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For each B in B choose a set UB in U such that B ⊆ UB and let

V = {UB : B ∈ B}.
Then verify that V is a countable subfamily of U which covers M .

To show that V covers M , start with an arbitrary point x ∈ M and a set U ∈ U containing
x. All that is needed is to find an open ball Bs(a) in B such that x ∈ Bs(a) ⊆ U . In order to do
this the point a ∈ A must be taken sufficiently close to x so that it is possible to choose a rational
number s which is both

(i) small enough for Bs(a) to be a subset of U , and

(ii) large enough for Bs(a) to contain x.

To establish (B) let (V1, V2, V3, . . . ) be an enumeration of V and Wn = ∪nk=1Vk for each n ∈ N. If
no one set Wn covers M , then for every k ∈ N there is a point xk ∈Wk

c. (Solution Q.16.2.)

16.2.2. Problem. Use theorem 16.2.1 to give three different proofs that the metric space [0, 1)
(with the usual metric inherited from R) is not compact.

CAUTION. It is a common (and usually helpful) mnemonic device to reduce statements of compli-
cated theorems in analysis to brief paraphrases. In doing this considerable care should be exercised
so that crucial information is not lost. Here is an example of the kind of thing that can go wrong.

Consider the two statements:

(1) In the metric space R every infinite subset of the open unit interval has a point of accu-
mulation; and

(2) A metric space is compact if every infinite subset has a point of accumulation.

Assertion (1) is a special case of proposition 4.4.9; and (2) is just part of theorem 16.2.1. The
unwary tourist might be tempted to conclude from (1) and (2) that the open unit interval (0, 1) is
compact, which, of course, it is not. The problem here is that (1) is a correct assertion about (0, 1)
regarded as a subset of the space R; every infinite subset of (0, 1) does have a point of accumulation
lying in R.

If, however, the metric space under consideration is (0, 1) itself, then (1) is no longer true. For
example, the set of all numbers of the form 1/n for n ≥ 2 has no accumulation point in (0, 1).
When we use (2) to establish the compactness of a metric space M , what we must verify is that
every infinite subset of M has a point of accumulation which lies in M . Showing that these points
of accumulation exist in some space which contains M just does not do the job. The complete
statements of 4.4.9 and 16.2.1 make this distinction clear; the paraphrases (1) and (2) above do
not.

16.3. PRODUCTS OF COMPACT SPACES

It is possible using just the definition of compactness to prove that the product of two compact
metric spaces is compact. It is a pleasant reward for the effort put into proving theorem 16.2.1 that
it can be used to give a genuinely simple proof of this important result.

16.3.1. Theorem. If M1 and M2 are compact metric spaces, then so is M1 ×M2.

Proof. Problem.

16.3.2. Corollary. If M1, . . . ,Mn are compact metric spaces, then the product space M1×· · ·×Mn

is compact.

Proof. Induction. �

16.3.3. Problem. Let A and B be subsets of a metric space. Recall from definition 12.2.10 that
the distance between A and B is defined by

d(A,B) := inf{d(a, b) : a ∈ A and b ∈ B} .
Prove or disprove:
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(a) If A ∩B = ∅, then d(A,B) > 0.
(b) If A and B are closed and A ∩B = ∅, then d(A,B) > 0.
(c) If A is closed, B is compact, and A ∩B = ∅, then d(A,B) > 0. Hint. If d(A,B) = 0 then

there exist sequences a in A and b in B such that d(an, bn)→ 0.
(d) If A and B are compact and A ∩B = ∅, then d(A,B) > 0.

16.3.4. Problem. Let a, b > 0. The elliptic disk

D :=

{
(x, y) :

x2

a2
+
y2

b2
≤ 1

}
is a compact subset of R2. Hint. Write the disk as a continuous image of the unit square [0, 1]×[0, 1].

16.3.5. Problem. The unit sphere

S2 ≡ {(x, y, z) : x2 + y2 + z2 = 1}
is a compact subset of R3. Hint. Spherical coordinates.

16.3.6. Problem. Show that the interval [0,∞) is not a compact subset of R using each of the
following:

(a) The definition of compactness.
(b) Proposition 15.1.2.
(c) Proposition 15.1.5.
(d) The extreme value theorem (15.2.3).
(e) Theorem 16.2.1, condition (2).
(f) Theorem 16.2.1, condition (3).
(g) The finite intersection property. (See problem 15.3.2.)
(h) Dini’s theorem. (See problem 15.3.3.)

16.4. THE HEINE-BOREL THEOREM

We have seen in proposition 15.1.5 that in an arbitrary metric space compact sets are always
closed and bounded. Recall also that the converse of this is not true in general (see problem 6.3.9).
In Rn, however, the converse does indeed hold. This assertion is the Heine-Borel theorem. Notice
that in example 6.3.6 we have already established its correctness for the case n = 1. The proof of
the general case is now just as easy—we have done all the hard work in proving that the product
of finitely many compact spaces is compact (corollary 16.3.2).

16.4.1. Theorem (Heine-Borel Theorem). A subset of Rn is compact if and only if it is closed
and bounded.

Proof. Exercise. (Solution Q.16.3.)

16.4.2. Example. The triangular region T whose vertices are (0, 0), (1, 0), and (0, 1) is a compact
subset of R2.

Proof. Define functions f, g, h : R2 → R by f(x, y) = x, g(x, y) = y, and h(x, y) = x + y.
Each of these functions is continuous. Thus the sets

A := f←[0,∞) = {(x, y) : x ≥ 0},
B := g←[0,∞) = {(x, y) : y ≥ 0}, and

C := h←(−∞, 1] = {(x, y) : x+ y ≤ 1}
are all closed sets. Thus T = A ∩ B ∩ C is closed. It is bounded since it is contained in the open
ball about the origin with radius 2. Thus by the Heine-Borel theorem (16.4.1), T is compact. �

16.4.3. Problem. Do problem 16.3.4 again, this time using the Heine-Borel theorem.
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16.4.4. Problem (Bolzano-Weierstrass Theorem). Every bounded infinite subset of Rn has at
least one point of accumulation in Rn (compare proposition 4.4.9).

16.4.5. Problem (Cantor Intersection Theorem). If (An) is a nested sequence of nonempty closed
bounded subsets of Rn, then ∩∞n=1An is nonempty. Furthermore, if diamAn → 0, then ∩∞n=1An is
a single point.

16.4.6. Problem. Use the Cantor intersection theorem (problem 16.4.5) to show that the medians
of a triangle are concurrent.

16.4.7. Problem. Let m be the set of all bounded sequences of real numbers under the uniform
metric:

du(a, b) = sup{|an − bn| : n ∈ N}
whenever a, b ∈ m.

(a) Show by example that the Heine-Borel theorem (16.4.1) does not hold for subsets of m.
(b) Show by example that the Bolzano-Weierstrass theorem does not hold for subsets of m.

(See problem 16.4.4.)
(c) Show by example that the Cantor intersection theorem does not hold for subsets of m.

(See problem 16.4.5.)

16.4.8. Problem. Find a metric space M with the property that every infinite subset of M is
closed and bounded but not compact.

16.4.9. Problem. Prove or disprove: If both the interior and the boundary of a set A ⊆ R are
compact, then so is A.





CHAPTER 17

CONNECTEDNESS

In chapter 5 we discussed connected subsets of the real line. Although they are easily character-
ized (they are just the intervals), they possess important properties, most notably the intermediate
value property. Connected subsets of arbitrary metric spaces can be somewhat more complicated,
but they are no less important.

17.1. CONNECTED SPACES

17.1.1. Definition. A metric space M is disconnected if there exist disjoint nonempty open
sets U and V whose union is M . In this case we say that the sets U and V disconnect M . A
metric space is connected if it is not disconnected. A subset of a metric space M is connected
(respectively, disconnected) if it is connected (respectively, disconnected) as a subspace of M .
Thus a subset N of M is disconnected if there exist nonempty disjoint sets U and V open in the
relative topology on N whose union is N .

17.1.2. Example. Every discrete metric space with more than one point is disconnected.

17.1.3. Example. The set Q2 of points in R2 both of whose coordinates are rational is a discon-
nected subset of R2.

Proof. The subspace Q2 is disconnected by the sets {(x, y) ∈ Q2 : x < π} and {(x, y) ∈
Q2 : x > π}. (Why are these sets open in the relative topology on Q2?) �

17.1.4. Example. The following subset of R2 is not connected.

{(x, x−1) : x > 0} ∪ {(0, y) : y ∈ R}

Proof. Problem.

17.1.5. Proposition. A metric space M is disconnected if and only if there exists a continuous
surjection from M onto a two element discrete space, say {0, 1}. A metric space M is connected if
and only if every continuous function f from M into a two element discrete space is constant.

Proof. Problem.

Proposition 5.1.2 remains true for arbitrary metric spaces; and the same proof works.

17.1.6. Proposition. A metric space M is connected if and only if the only subsets of M which
are both open and closed are the null set and M itself.

Proof. Exercise. (Solution Q.17.1.)

Just as in chapter 5, dealing with the relative topology on a subset of a metric space can
sometimes be a nuisance. The remedy used there is available here: work with mutually separated
sets.

17.1.7. Definition. Two nonempty subsets C and D of a metric space M are said to be mutually
separated if

C ∩D = C ∩D = ∅ .

17.1.8. Proposition. A subset N of a metric space M is disconnected if and only if it is the union
of two nonempty sets mutually separated in M .
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Proof. Exercise. Hint. Make a few changes in the proof of proposition 5.1.7. (Solution Q.17.2.)

17.1.9. Proposition. If A is a connected subset of a metric space, then any set B satisfying
A ⊆ B ⊆ A is also connected.

Proof. Problem. Hint. Use proposition 17.1.8

If a metric space is disconnected, it is often a rather simple job to demonstrate this fact. All
one has to do is track down two subsets which disconnect the space. If the space is connected,
however, one is confronted with the unenviable task of showing that every pair of subsets fails for
some reason to disconnect the space. How, for example, does one go about showing that the unit
square [0, 1] × [0, 1] is connected? Or the unit circle? Or the curve y = sinx? In 17.1.10, 17.1.13,
and 17.2.2 we give sufficient conditions for a metric space to be connected. The first of these is
that the space be the continuous image of a connected space .

17.1.10. Theorem. A metric space N is connected if there exist a connected metric space M and
a continuous surjection from M onto N .

Proof. Change “R” to “M” in the proof of theorem 5.2.1. �

17.1.11. Example. The graph of the curve y = sinx is a connected subset of R2.

Proof. Exercise. (Solution Q.17.3.)

17.1.12. Example. The unit circle {(x, y) ∈ R2 : x2 + y2 = 1} is a connected subset of the plane.

Proof. Problem.

17.1.13. Proposition. A metric space is connected if it is the union of a family of connected
subsets with nonempty intersection.

Proof. Exercise. (Argue by contradiction. Use definition 17.1.1.) (Solution Q.17.4.)

17.1.14. Problem. Use proposition 17.1.5 to give a second proof of proposition 17.1.13.

17.1.15. Example. The closed unit square [0, 1]× [0, 1] in R2 is connected.

Proof. Exercise. (Solution Q.17.5.)

17.2. ARCWISE CONNECTED SPACES

A concept closely related to (but stronger than) connectedness is arcwise connectedness.

17.2.1. Definition. A metric space is arcwise connected (or path connected) if for every
x, y ∈ M there exists a continuous map f : [0, 1] → M such that f(0) = x and f(1) = y. Such a
function f is an arc (or path , or curve) connecting x to y. It is very easy to prove that arcwise
connected spaces are connected (proposition 17.2.2). The converse is false (example 17.2.7). If,
however, we restrict our attention to open subsets of Rn, then the converse does hold (proposi-
tion 17.2.8).

17.2.2. Proposition. If a metric space is arcwise connected, then it is connected.

Proof. Problem.

17.2.3. Example. The following subset of R2 is not connected.

{(x, y) : (x− 1)2 + (y − 1)2 < 4} ∪ {(x, y) : x < 0}
∪ {(x, y) : (x− 10)2 + (y − 1)2 < 49}

Proof. Problem.
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17.2.4. Example. The following subset of R2 is connected.

{(x, y) : (x− 1)2 + (y − 1)2 < 4} ∪ {(x, y) : y < 0}
∪ {(x, y) : (x− 10)2 + (y − 1)2 < 49}

Proof. Problem.

17.2.5. Example. The following subset of R2 is connected.

{(x, x3 + 2x) : x ∈ R} ∪ {(x, x2 + 56): x ∈ R}
Proof. Problem.

17.2.6. Example. Every open ball in Rn is connected. So is every closed ball.

Proof. Problem.

17.2.7. Example. Let B = {(x, sinx−1) : 0 < x ≤ 1}. Then B is a connected subset of R2 but is
not arcwise connected.

Proof. Exercise. Hint. Let M = B. To show that M is not arcwise connected argue by
contradiction. Assume there exists a continuous function f : [0, 1] → M such that f(1) ∈ B and
f(0) /∈ B. Prove that f2 = π2 ◦ f is discontinuous at the point t0 = sup f←(M \ B). To this
end show that t0 ∈ f←(M \ B). Then, given δ > 0, choose t1 in [0, 1] so that t0 < t1 < t0 + δ.
Without loss of generality one may suppose that f2(t0) ≤ 0. Show that

(
f1
)→

[t0, t1] is an interval

containing 0 and f1(t1) (where f1 = π1 ◦ f). Find a point t in [t0, t1] such that 0 < f1(t) < f1(t1)
and f2(t) = 1. (Solution Q.17.6.)

17.2.8. Proposition. Every connected open subset of Rn is arcwise connected.

Proof. Exercise. Hint. Let A be a connected open subset of Rn and a ∈ A. Let U be the set
of all points in A which can be joined to a by an arc in A. Show that A \ U is empty by showing
that U and A \ U disconnect A. (Solution Q.17.7.)

17.2.9. Problem. Does there exist a continuous bijection from a closed disk in R2 to its circum-
ference? Does there exist a continuous bijection from the interval [0, 1] to the circumference of a
disk in R2?

17.2.10. Problem. Let x be a point in a metric space M . Define the component of M containing
x to be the largest connected subset of M which contains x. Discover as much about components
of metric spaces as you can. First, of course, you must make sure that the definition just given
makes sense. (How do we know that there really is a “largest” connected set containing x?)

Here are some more things to think about.

(1) The components of a metric space are a disjoint family whose union is the whole space.
(2) It is fairly clear that the components of a discrete metric space are the points of the space.

If the components are points must the space be discrete?
(3) Components of a metric space are closed sets; must they be open?
(4) Distinct components of a metric space are mutually separated.
(5) If a metric space M is the union of two mutually separated sets C and D and if points x

and y belong to the same component of M , then both points are in C or both are in D.
What about the converse? Suppose x and y are points in M such that whenever M is
written as the union of two mutually separated sets C and D, both points lie in C or both
lie in D. Must x and y lie in the same component?

17.2.11. Problem. A function f in C(M,R), where M is a metric space, is idempotent if
(f(x))2 = f(x) for all x ∈ M . The constant functions 0 and 1 are the trivial idempotents of
C(M,R). Show that C(M,R) possesses a nontrivial idempotent if and only if the underlying metric
space is disconnected. (This is one of a large number of results which link algebraic properties of
C(M,R) to topological properties of the underlying space M .)





CHAPTER 18

COMPLETE SPACES

18.1. CAUCHY SEQUENCES

18.1.1. Definition. A sequence (xn) in a metric space is a Cauchy sequence if for every ε > 0
there exists n0 ∈ N such that d(xm, xn) < ε wheneverm, n ≥ n0. This condition is often abbreviated
as follows: d(xm, xn)→ 0 as m, n→∞ (or limm,n→∞ d(xm, xn) = 0).

18.1.2. Example. In the metric space R the sequence (1/n) is Cauchy.

Proof. Given ε > 0 choose n0 > 2/ε. If m, n > n0, then d(1/m, 1/n) = |(1/m) − (1/n)| ≤
(1/m) + (1/n) ≤ 2/n0 < ε. Notice that in R this sequence is also convergent. �

18.1.3. Example. In the metric space R\{0} the sequence (1/n) is Cauchy. (The proof is exactly
the same as in the preceding example.) Notice, however, that this sequence does not converge in
R \ {0}.

18.1.4. Proposition. In a metric space every convergent sequence is Cauchy.

Proof. Exercise. (Solution Q.18.1.)

18.1.5. Proposition. Every Cauchy sequence which has a convergent subsequence is itself conver-
gent (and to the same limit as the subsequence).

Proof. Exercise. (Solution Q.18.2.)

18.1.6. Proposition. Every Cauchy sequence is bounded.

Proof. Exercise. (Solution Q.18.3.)

Although every convergent sequence is Cauchy (proposition 18.1.4), the converse need not be
true (example 18.1.3). Those spaces for which the converse is true are said to be complete.

18.2. COMPLETENESS

18.2.1. Definition. A metric space M is complete if every Cauchy sequence in M converges to
a point of M .

18.2.2. Example. The metric space R is complete.

Proof. Let (xn) be a Cauchy sequence in R. By proposition 18.1.6 the sequence (xn) is
bounded; by corollary 4.4.4 it has a convergent subsequence; and so by proposition 18.1.5 it con-
verges. �

18.2.3. Example. If (xn) and (yn) are Cauchy sequences in a metric space, then
(
d
(
xn, yn

))∞
n=1

is a Cauchy sequence in R.

Proof. Problem. Hint. Proposition 9.2.17.

18.2.4. Example. The set Q of rational numbers (regarded as a subspace of R) is not complete.

Proof. Problem.

18.2.5. Proposition. Every compact metric space is complete.
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Proof. Problem. Hint. Theorem 16.2.1 and proposition 18.1.5.

18.2.6. Problem. Let M be a metric space with the discrete metric.

(a) Which sequences in M are Cauchy?
(b) Show that M is complete.

18.2.7. Problem. Show that completeness is not a topological property.

18.2.8. Proposition. Let M be a complete metric space and M0 be a subspace of M . Then M0 is
complete if and only if it is a closed subset of M .

Proof. Problem.

18.2.9. Proposition. The product of two complete metric spaces is complete.

Proof. Exercise. (Solution Q.18.4.)

18.2.10. Proposition. If d and ρ are strongly equivalent metrics on a set M , then the space (M,d)
is complete if and only if (M,ρ) is.

Proof. Exercise. (Solution Q.18.5.)

18.2.11. Example. With its usual metric the space Rn is complete.

Proof. Since R is complete (18.2.2), proposition 18.2.9 and induction show that Rn is complete
under the metric d1 (defined in 9.2.10). Since the usual metric is strongly equivalent to d1, we may
conclude from proposition 18.2.10 that Rn is complete under its usual metric. �

Here is one more example of a complete metric space.

18.2.12. Example. If S is a set, then the metric space B(S,R) is complete.

Proof. Exercise. (Solution Q.18.6.) �

18.2.13. Example. If M is a compact metric space, then C(M,R) is a complete metric space.

Proof. Problem.

18.2.14. Problem. Give examples of metric spaces M and N , a homeomorphism f : M → N , and
a Cauchy sequence (xn) in M such that the sequence

(
f(xn)

)
is not Cauchy in N .

18.2.15. Problem. Show that if D is a dense subset of a metric space M and every Cauchy
sequence in D converges to a point of M , then M is complete.

18.3. COMPLETENESS VS. COMPACTNESS

In proposition 18.2.5 we saw that every compact metric space is complete. The converse of
this is not true without additional assumptions. (Think of the reals.) In the remainder of this
chapter we show that adding total boundedness to completeness will suffice. For the next problem
we require the notion of the “diameter” of a set in a metric space.

18.3.1. Definition. The diameter of a subset A of a metric space is defined by

diamA := sup{d(x, y) : x, y ∈ A}
if this supremum exists. Otherwise diamA :=∞.

18.3.2. Problem. Show that diamA = diamA for every subset A of a metric space.

18.3.3. Proposition. In a metric space M the following are equivalent:

(1) M is complete.
(2) Every nested sequence of nonempty closed sets in M whose diameters approach 0 has

nonempty intersection.
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Proof. Problem. Hint. For the definition of “nested” see 4.4.5. To show that (1) implies (2),
let (Fk) be a nested sequence of nonempty closed subsets of M . For each k choose xk ∈ Fk. Show
that the sequence (xk) is Cauchy. To show that (2) implies (1), let (xk) be a Cauchy sequence
in M . Define An = {xk : k ≥ n} and Fn = An. Show that (Fn) is a nested sequence of closed
sets whose diameters approach 0 (see the preceding problem). Choose a point a in ∩Fn. Find a
subsequence (xnk) of (xn) such that d (a, xnk) < 2−k.

18.3.4. Problem. Since R is complete, the preceding problem tells us that every nested sequence
of nonempty closed subsets of R whose diameters approach 0 has nonempty intersection.

(a) Show that this statement is no longer correct if the words “whose diameters approach 0”
are deleted.

(b) Show that the statement is no longer correct if the word “closed” is deleted.

18.3.5. Proposition. In a totally bounded metric space every sequence has a Cauchy subsequence.

Proof. Problem. Hint. Let (xn) be a sequence in a totally bounded metric space M . For
every n ∈ N the space M can be covered by a finite collection of open balls of radius 1/n. Thus,
in particular, there is an open ball of radius 1 which contains infinitely many of the terms of the
sequence (xn). Show that it is possible inductively to choose subsets N1, N2, . . . of N such that for
every m,n ∈ N

(i) n > m implies Nn ⊆ Nm,
(ii) Nn is infinite, and
(iii) {xk : k ∈ Nn} is contained in some open ball of radius 1/n.

Then show that we may choose (again, inductively) n1, n2, . . . in N such that for every j, k ∈ N
(iv) k > j implies nk > nj , and
(v) nk ∈ Nk.

Finally, show that the sequence (xn) is Cauchy.

18.3.6. Proposition. A metric space is compact if and only if it is complete and totally bounded.

Proof. Problem.

18.3.7. Problem. Let (xn) be a sequence of real numbers with the property that each term of
the sequence (from the third term on) is the average of the two preceding terms. Show that the
sequence converges and find its limit. Hint. Proceed as follows.

(a) Compute the distance between xn+1 and xn in terms of the distance between xn and xn−1.
(b) Show (inductively) that

|xn+1 − xn| = 21−n|x2 − x1| .
(c) Prove that (xn) has a limit by showing that for m < n

|xn − xm| ≤ 22−m|x2 − x1| .
(d) Show (again inductively) that 2xn+1 + xn = 2x2 + x1.

18.3.8. Problem. Show that if (xn) is a sequence lying in the interval [−1, 1] which satisfies

|xn+1 − xn| ≤ 1
4 |x

2
n − x2n−1| for n ≥ 2 ,

then (xn) converges.





CHAPTER 19

APPLICATIONS OF A FIXED POINT THEOREM

We now have enough information about metric spaces to consider some interesting applications.
We will first prove a result known as the contractive mapping theorem and then use it to find
solutions to systems of simultaneous linear equations and to certain integral equations. Since
this chapter contains mostly examples, we will make liberal use of computations from beginning
calculus. Although it would perhaps be more logical to defer these matters until we have developed
the necessary facts concerning integrals, derivatives, and power series, there is nevertheless much
to be said for presenting some nontrivial applications relatively early.

19.1. THE CONTRACTIVE MAPPING THEOREM

19.1.1. Definition. A mapping f : M → N between metric spaces is contractive if there exists
a constant c such that 0 < c < 1 and

d(f(x), f(y)) ≤ c d(x, y)

for all x, y ∈M . Such a number c is a contraction constant for f . A contractive map is also
called a contraction.

19.1.2. Exercise. Show that every contractive map is continuous. (Solution Q.19.1.)

19.1.3. Example. The map f : R2 → R3 defined by

f(x, y) =
(
1− 1

3x, 1 + 1
3y, 2 + 1

3x−
1
3y
)

is a contraction.

Proof. Exercise. (Solution Q.19.2.)

19.1.4. Example. The map

f : R2 → R2 : (x, y) 7→
(
1
2(1 + y), 12(3− x)

)
is a contraction on R2, where R2 has its usual (Euclidean) metric.

Proof. Problem.

The next theorem is the basis for a number of interesting applications. Also it will turn out
to be a crucial ingredient of the extremely important inverse function theorem (in chapter 29).
Although the statement of theorem 19.1.5 is important in applications, its proof is even more so.
The theorem guarantees the existence (and uniqueness) of solutions to certain kinds of equations; its
proof allows us to approximate these solutions as closely as our computational machinery permits.
Recall from chapter 5 that a fixed point of a mapping f from a set S into itself is a point p ∈ S
such that f(p) = p.

19.1.5. Theorem (Contractive Mapping Theorem). Every contraction from a complete metric
space into itself has a unique fixed point.

Proof. Exercise. Hint. Let M be a complete metric space and f : M → M be contractive.
Start with an arbitrary point x0 in M . Obtain a sequence (xn)∞n=0 of points in M by letting
x1 = f(x0), x2 = f(x1), and so on. Show that this sequence is Cauchy. (Solution Q.19.3.) �
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19.1.6. Example. We use the contractive mapping theorem to solve the following system of equa-
tions {

9x− 2y = 7

3x+ 8y = 11 .
(19.1)

Define
S : R2 → R2 : (x, y) 7→ (9x− 2y, 3x+ 8y) .

The system (19.1) may be written as a single equation

S(x, y) = (7, 11) ,

or equivalently as
(x, y)− S(x, y) + (7, 11) = (x, y) . (19.2)

[Definition. Addition and subtraction on R2 are defined coordinatewise. That is, if (x, y) and (u, v)
are points in R2, then (x, y) + (u, v) := (x+ u, y + v) and (x, y)− (u, v) := (x− u, y − v). Similar
definitions hold for Rn with n > 2.] Let T (x, y) be the left hand side of (19.2); that is, define

T : R2 → R2 : (x, y) 7→ (x, y)− S(x, y) + (7, 11) .

With this notation (19.2) becomes
T (x, y) = (x, y) .

Thus, and this is the crucial point, to solve (19.1) we need only find a fixed point of the mapping T .
If T is contractive, then the preceding theorem guarantees that T has a unique fixed point and
therefore that the system of equations (19.1) has a unique solution.

Unfortunately, as things stand, T is not contractive with respect to the product metric on R2. (It
is for convenience that we use the product metric d1 on R2 rather than the usual Euclidean metric.
Square roots are a nuisance.) To see that T is not contractive notice that d1

(
(1, 0), (0, 0)

)
= 1

whereas d1
(
T (1, 0), T (0, 0)

)
= d1

(
(−1, 8), (7, 11)

)
= 11. All is not lost however. One simple-

minded remedy is to divide everything in (19.1) by a large constant c. A little experimentation
shows that c = 10 works. Instead of working with the system (19.1) of equations, consider the
system {

0.9x− 0.2y = 0.7

0.3x+ 0.8y = 1.1
(19.3)

which obviously has the same solutions as (19.1). Redefine S and T in the obvious fashion. Let

S : R2 → R2 : (x, y) 7→ (0.9x− 0.2y, 0.3x+ 0.8y)

and
T : R2 → R2 : (x, y) 7→ (x, y)− S(x, y) + (0.7, 1.1) .

Thus redefined, T is contractive with respect to the product metric. Proof: Since

T (x, y) = (0.1x+ 0.2y + 0.7,−0.3x+ 0.2y + 1.1) (19.4)

for all (x, y) ∈ R2, we see that

d1
(
T (x, y), T (u, v)

)
= 10−1

(
|(x+ 2y)− (u+ 2v)|+ |(−3x+ 2y)− (−3u+ 2v)|

)
≤ 10−1

(
|x− u|+ 2|y − v|+ 3|x− u|+ 2|y − v|

)
= 0.4 (|x− u|+ |y − v|)
= 0.4 d1

(
(x, y), (u, v)

)
(19.5)

for all points (x, y) and (u, v) in R2.
Now since T is contractive and R2 is complete (with respect to the product metric—see 18.2.9),

the contractive mapping theorem (19.1.5) tells us that T has a unique fixed point. But a fixed point
of T is a solution for the system (19.3) and consequently for (19.1).

The construction used in the proof of 19.1.5 allows us to approximate the fixed point of T to
any desired degree of accuracy. As in that proof choose x0 to be any point whatever in R2. Then
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the points x0, x1, x2, . . . (where xn = T
(
xn−1

)
for each n) converge to the fixed point of T . This is

a technique of successive approximation.
For the present example let x0 = (0, 0). (The origin is chosen just for convenience.) Now use

(19.4) and compute.

x0 = (0, 0)

x1 = T (0, 0) = (0.7, 1.1)

x2 = T (x1) = (1.021, 1.025)

x3 = T (x2) = (1.0071, 0.9987)

...

It is reasonable to conjecture that the system (19.1) has a solution consisting of rational numbers
and then to guess that the points x0, x1, x2, . . . as computed above are converging to the point (1, 1)
in R2. Putting x = 1 and y = 1 in (19.4), we see that the point (1, 1) is indeed the fixed point of
T and therefore the solution to (19.1).

In the preceding example we discovered an exact solution to a system of equations. In general,
of course, we cannot hope that a successive approximation technique will yield exact answers.
In those cases in which it does not, it is most important to have some idea how accurate our
approximations are. After n iterations, how close to the true solution are we? How many iterations
must be computed in order to achieve a desired degree of accuracy? The answer to these questions
in an easy consequence of the proof of theorem 19.1.5.

19.1.7. Corollary. Let the space M , the mapping f , the sequence (xn), the constant c, and the
point p be as in theorem 19.1.5 and its proof. Then for every m ≥ 0

d(xm, p) ≤ d(x0, x1)
cm

(1− c)
.

Proof. Inequality (Q.11) in the proof of 19.1.5 says that for m < n

d(xm, xn) ≤ d(x0, x1)c
m(1− c)−1 .

Take limits as n→∞. �

19.1.8. Definition. Notation as in the preceding corollary. If we think of the point xn as being
the nth approximation to p, then the distance d(xn, p) between xn and p is the error associated
with the nth approximation.

Notice that because the product metric d1 was chosen for R2 in example 19.1.6, the word
“error” there means the sum of the errors in x and y. Had we wished for “error” to mean the
maximum of the errors in x and y, we would have used the uniform metric du on R2. Similarly,
if root-mean-square “error” were desired (that is, the square root of the sum of the squares of the
errors in x and y), then we would have used the usual Euclidean metric on R2.

19.1.9. Exercise. Let (xn) be the sequence of points in R2 considered in example 19.1.6. We
showed that (xn) converges to the point p = (1, 1).

(a) Use corollary 19.1.7 to find an upper bound for the error associated with the approxima-
tion x4.

(b) What is the actual error associated with x4?
(c) According to 19.1.7 how many terms of the sequence (xn) should we compute to be sure

of obtaining an approximation which is correct to within 10−4?

(Solution Q.19.4.)

19.1.10. Problem. Show by example that the conclusion of the contractive mapping theorem fails
if:
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(a) the contraction constant is allowed to have the value 1; or
(b) the space is not complete.

19.1.11. Problem. Show that the map

g : [0,∞)→ [0,∞) : x 7→ 1

x+ 1

is not a contraction even though

d
(
g(x), g(y)

)
< d(x, y)

for all x, y ≥ 0 with x 6= y.

19.1.12. Problem. Let f(x) = (x/2) + (1/x) for x ≥ 1.

(a) Show that f maps the interval [1,∞) into itself.
(b) Show that f is contractive.
(c) Let x0 = 1 and for n ≥ 0 let

xn+1 =
xn
2

+
1

xn
.

Show that the sequence (xn) converges.
(d) Find limn→∞ xn.
(e) Show that the distance between xn and the limit found in (d) is no greater than 2−n.

19.1.13. Problem. Solve the system of equations

9x −y +2z = 37

x+10y −3z = −69

−2x +3y+11z = 58

following the procedure of example 19.1.6. Hint. As in 19.1.6 divide by 10 to obtain a contractive
mapping. Before guessing at a rational solution, compute 10 or 11 successive approximations.
Since this involves a lot of arithmetic, it will be helpful to have some computational assistance—a
programmable calculator, for example.

19.1.14. Problem. Consider the following system of equations.

75x+16y−20z = 40

33x+80y+30z = −48

−27x+32y+80z = 36

(a) Solve the system following the method of example 19.1.6. Hint. Because the contraction
constant is close to 1, the approximations converge slowly. It may take 20 or 30 iterations
before it is clear what the exact (rational) solutions should be. So as in the preceding
example, it will be desirable to use computational assistance.

(b) Let (xn) be the sequence of approximations in R3 converging to the solution of the system
in (a). Use corollary 19.1.7 to find an upper bound for the error associated with the
approximation x25.

(c) To 4 decimal places, what is the actual error associated with x25?
(d) According to 19.1.7, how many terms must be computed to be sure that the error in our

approximation is no greater than 10−3?

19.1.15. Problem. Let f : R2 → R2 be the rotation of the plane about the point (0, 1) through
an angle of π radians. Let g : R2 → R2 be the map which takes the point (x, y) to the midpoint of
the line segment connecting (x, y) and (1, 0).

(a) Prove that g ◦ f is a contraction on R2 (with its usual metric).
(b) Find the unique fixed point of g ◦ f .
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(c) Let (x0, y0) = (0, 1) and define (as in the proof of 19.1.5)(
xn+1, yn+1

)
= (g ◦ f)

(
xn, yn

)
for all n ≥ 0. For each n compute the exact Euclidean distance between (xn, yn) and the
fixed point of g ◦ f .

19.2. APPLICATION TO INTEGRAL EQUATIONS

19.2.1. Exercise. Use theorem 19.1.5 to solve the integral equation

f(x) = 1
3x

3 +

∫ x

0
t2f(t) dt . (19.6)

Hint. We wish to find a continuous function f which satisfies (19.6) for all x ∈ R. Consider the
mapping T which takes each continuous function f into the function Tf whose value at x is given
by

Tf(x) = 1
3x

3 +

∫ x

0
t2f(t) dt .

[It is important to keep in mind that T acts on functions, not on numbers. Thus Tf(x) is to be
interpreted as (T (f))(x) and not T (f(x)).] In order to make use of theorem 19.1.5, the mapping
T must be contractive. One way to achieve this is to restrict our attention to continuous functions
on the interval [0, 1] and use the uniform metric on C([0, 1],R). Once a continuous function f is
found such that (19.6) is satisfied for all x in [0, 1], it is a simple matter to check whether (19.6)
holds for all x in R. Consider then the map

T : C([0, 1],R)→ C([0, 1],R) : f 7→ Tf

where

Tf(x) := 1
3x

3 +

∫ x

0
t2f(t) dt

for all x ∈ [0, 1]. The space C([0, 1],R) is complete. (Why?) Show that T is contractive by
estimating |Tf(x) − Tg(x)|, where f and g are continuous functions on [0, 1], and taking the
supremum over all x in [0, 1]. What can be concluded from theorem 19.1.5 about (19.6)?

To actually find a solution to (19.6), use the proof of 19.1.5 (that is, successive approximations).
For simplicity start with the zero function in C([0, 1],R): let g0(x) = 0 for 0 ≤ x ≤ 1. For n ≥ 0 let
gn+1(x) = Tgn(x) for 0 ≤ x ≤ 1. Compute g1, g2, g3, and g4. You should be able to guess what gn
will be. (It is easy to verify the correctness of your guess by induction, but it is not necessary to do
this.) Next, let f be the function which is the uniform limit of the sequence (gn). That is, f is the
function whose power series expansion has gn as its nth partial sum. This power series expansion
should be one with which you are familiar from beginning calculus; what elementary function does
it represent?

Finally, show by direct computation that this elementary function does in fact satisfy (19.6)
for all x in R. (Solution Q.19.5.)

19.2.2. Problem. Give a careful proof that there exists a unique continuous real valued function
f on [0, 1] which satisfies the integral equation

f(x) = x2 +

∫ x

0
t2f(t) dt .

(You are not asked to find the solution.)

19.2.3. Problem. Use theorem 19.1.5 to solve the integral equation

f(x) = x+

∫ x

0
f(t) dt .

Hint. Follow the procedure of exercise 19.2.1. Keep in mind that the only reason for choosing the
particular interval [0, 1] in 19.2.1 was to make the map T contractive.



106 19. APPLICATIONS OF A FIXED POINT THEOREM

19.2.4. Problem. For every f in C([0, π/4],R) define

Tf(x) = x2 − 2−
∫ x

0
f(t) dt

where 0 ≤ x ≤ π/4. Show that T is a contraction. Find the fixed point of T . What integral
equation have you solved?



CHAPTER 20

VECTOR SPACES

Most introductory calculus texts, for pedagogical reasons, do calculus twice, once for a single
variable and then for either two or three variables, leaving the general finite dimensional and infinite
dimensional cases for future courses. It is our goal eventually (in chapter 25) to develop differential
calculus in a manner that is valid for any number of variables (even infinitely many).

A certain amount of algebra always underlies analysis. Before one studies the calculus of a
single variable, a knowledge of arithmetic in R is required. For the calculus of a finite number of
variables it is necessary to know something about Rn. In this chapter and the next we lay the
algebraic foundations for the differential calculus of an arbitrary number of variables; we study
vector spaces and the operation preserving maps between them, called linear transformations.

20.1. DEFINITIONS AND EXAMPLES

20.1.1. Definition. A (real) vector space is a set V together with a binary operation (x, y) 7→
x+ y (called addition) from V ×V into V and a mapping (α, x) 7→ αx (called scalar multipli-
cation) from R× V into V satisfying the following conditions:

(1) Addition is associative. That is,

x+ (y + z) = (x+ y) + z for all x, y, z ∈ V .
(2) In V there is an element 0 (called the zero vector) such that

x+ 0 = x for all x ∈ V .
(3) For each x in V there is a corresponding element −x (the additive inverse of x) such

that
x+ (−x) = 0 .

(4) Addition is commutative. That is,

x+ y = y + x for all x, y ∈ V .
(5) If α ∈ R and x, y ∈ V , then

α(x+ y) = (αx) + (αy) .

(6) If α, β ∈ R and x ∈ V , then

(α+ β)x = (αx) + (βx) .

(7) If α, β ∈ R and x ∈ V , then

α(βx) = (αβ)x .

(8) If x ∈ V , then
1 · x = x .

An element of V is a vector; an element of R is, in this context, often called a scalar.
Concerning the order of performing operations, we agree that scalar multiplication takes precedence
over addition. Thus, for example, condition (5) above may be unambiguously written as

α(x+ y) = αx+ αy .

(Notice that the parentheses on the left may not be omitted.)

107
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If x and y are vectors, we define x− y to be x+ (−y). If A and B are subsets of a vector space,
we define

A+B := {a+ b : a ∈ A, b ∈ B} ;

and if α ∈ R,
αA := {αa : a ∈ A} .

Condition (3) above is somewhat optimistic. No uniqueness is asserted in (2) for the zero vector
0, so one may well wonder whether (3) is supposed to hold for some zero vector 0 or for all such
vectors. Fortunately, the problem evaporates since we can easily show that the zero vector is in
fact unique.

20.1.2. Exercise. A vector space has exactly one zero vector. That is, if 0 and 0′ are members of a
vector space V which satisfy x+0 = x and x+0′ = x for all x ∈ V , then 0 = 0′. (Solution Q.20.1.)

In a vector space not only is the zero vector unique but so are additive inverses.

20.1.3. Problem. For every vector x in a vector space V there exists only one vector −x such
that

x+ (−x) = 0 .

In 20.1.4 to 20.1.7 we state four useful, if elementary, facts concerning the arithmetic of vectors.

20.1.4. Exercise. If x is a vector (in some vector space) and x+ x = x, then x = 0. Hint. Add 0
to x; then write 0 as x+ (−x). (Solution Q.20.2.)

20.1.5. Exercise. Let x be a vector (in a some vector space) and let α be a real number. Then
αx = 0 if and only if x = 0 or α = 0. Hint. Show three things:

(a) α0 = 0,
(b) 0x = 0, and
(c) If α 6= 0 and αx = 0, then x = 0.

(If it is not clear to you that proving (a), (b), and (c) is the same thing as proving 20.1.5, see the
remark following this hint.) To prove (a) write 0 + 0 = 0, multiply by α, and use 20.1.4. For (c)
use the fact that if α ∈ R is not zero, it has a reciprocal. What happens if we multiply the vector
αx by the scalar 1/α? (Solution Q.20.3.)

Remark. It should be clear that proving (a) and (b) of the preceding hint proves that:

if x = 0 or α = 0, then αx = 0.

What may not be clear is that proving (c) is enough to establish:

if αx = 0, then either x = 0 or α = 0. (20.1)

Some students feel that in addition to proving (c) it is also necessary to prove that:

if x 6= 0 and αx = 0, then α = 0.

To see that this is unnecessary recognize that there are just two possible cases: either α is equal
to zero, or it is not. In case α is equal to zero, then the conclusion of (20.1) is certainly true. The
other case, where α is not zero, is dealt with by (c).

20.1.6. Exercise. If x is a vector, then −(−x) = x. Hint. Show that (−x) + x = 0. What does
20.1.3 say about x? (Solution Q.20.4.)

20.1.7. Problem. If x is a vector, then (−1)x = −x. Hint. Show that x+ (−1)x = 0. Use 20.1.3.

20.1.8. Problem. Using nothing about vector spaces other than the definitions, prove that if x is
a vector, then 3x−x = x+x. Write your proof using at most one vector space axiom (or definition)
at each step.

We now give some examples of vector spaces.
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20.1.9. Example. Let V = Rn. We make a standard notational convention. If x belongs to Rn,
then x is an n-tuple whose coordinates are x1, x2, . . . , xn; that is,

x = (x1, x2, . . . , xn) .

It must be confessed that we do not always use this convention. For example, the temptation to
denote a member of R3 by (x, y, z), rather than by (x1, x2, x3), is often just too strong to resist.
For n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in V define

x+ y := (x1 + y1, x2 + y2, . . . , xn + yn) .

Accordingly we say that addition in Rn is defined coordinatewise. Scalar multiplication is also
defined in a coordinatewise fashion. That is, if x = (x1, x2, . . . , xn) ∈ V and α ∈ R, then we define

αx := (αx1, αx2, . . . , αxn) .

Under these operations Rn becomes a vector space.

Proof. Problem. Hint. Just verify conditions (1)–(8) of definition 20.1.1.

20.1.10. Problem. Let s be the family of all sequences of real numbers. Explain how to define
addition and scalar multiplication on s in such a way that it becomes a vector space.

20.1.11. Example. Here is one of the ways in which we construct new vector spaces from old
ones. Let V be an arbitrary vector space and S be a nonempty set. Let F(S, V ) be the family of all
V valued functions defined on S. That is, F(S, V ) is the set of all functions f such that f : S → V .
We make F(S, V ) into a vector space by defining operations in a pointwise fashion. For functions
f , g ∈ F(S, V ) define

(f + g)(x) := f(x) + g(x) for all x ∈ S.
It should be clear that the two “+” signs in the preceding equation denote operations in different
spaces. The one on the left (which is being defined) represents addition in the space F(S, V ); the
one on the right is addition in V . Because we specify the value of f + g at each point x by adding
the values of f and g at that point, we say that we add f and g pointwise.

We also define scalar multiplication to be a pointwise operation. That is, if f ∈ F(S, V ) and
α ∈ R, then we define the function αf by

(αf)(x) := α(f(x)) for every x ∈ S.
Notice that according to the definitions above, both f + g and αf belong to F(S, V ). Under these
pointwise operations F(S, V ) is a vector space. (Notice that the family of real valued functions on
a set S is a special case of the preceding. Just let V = R.)

Proof. Problem

Most of the vector spaces we encounter in the sequel are subspaces of F(S, V ) for some appro-
priate set S and vector space V : so we now take up the topic of subspaces of vector spaces.

20.1.12. Definition. A subset W of a vector space V is a subspace of V if it is itself a vector
space under the operations it inherits from V . In subsequent chapters we will regularly encounter
objects which are simultaneously vector spaces and metric spaces. (One obvious example is Rn).
We will often use the term vector subspace (or linear subspace) to distinguish a subspace of
a vector space from a metric subspace. (Example: the unit circle {(x, y) : x2 + y2 = 1} is a metric
subspace of R2 but not a vector subspace thereof.)

Given a subset W of a vector space V we do not actually need to check all eight vector space
axioms to establish that it is a subspace of V . We need only know that W is nonempty and that
it is closed under addition and scalar multiplication.

20.1.13. Proposition. Let W be a subset of a vector space V . Then W is a subspace of V provided
that
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(a) W 6= ∅,
(b) x+ y ∈W whenever x ∈W and y ∈W , and
(c) αx ∈W whenever x ∈W and α ∈ R.

Proof. Exercise. (Solution Q.20.5.)

20.1.14. Example. Let S be a nonempty set. Then the family B(S,R) of all bounded real valued
functions on S is a vector space because it is a subspace of F(S,R).

Proof. That it is a subspace of F(S,R) is clear from the preceding proposition: every constant
function is bounded, so the set B(S,R) is nonempty; that it is closed under addition and scalar
multiplication was proved in proposition 13.1.2. �

20.1.15. Example. The x-axis (that is, {(x, 0, 0) : x ∈ R}) is a subspace of R3. So is the xy-plane
(that is, {(x, y, 0) : x, y ∈ R}). In both cases it is clear that the set in question is nonempty and is
closed under addition and scalar multiplication.

20.1.16. Example. Let M be a metric space. Then the set C(M,R) of all continuous real valued
functions on M is a vector space.

Proof. Problem.

20.1.17. Problem. Let a < b and F be the vector space of all real valued functions on the interval
[a, b]. Consider the following subsets of F :

K = {f ∈ F : f is constant}
D = {f ∈ F : f is differentiable}
B = {f ∈ F : f is bounded}
P3 = {f ∈ F : f is a polynomial of degree 3}
Q3 = {f ∈ F : f is a polynomial of degree less than or equal to 3}
P = {f ∈ F : f is a polynomial}
C = {f ∈ F : f is continuous}

Which of these are subspaces of which? Hint. There is a ringer in the list.

20.1.18. Example. The family of all solutions of the differential equation

xy′′ + y′ + xy = 0

is a subspace of C(R,R).

Proof. Problem.

Let A be a subset of a vector space V . Question: What is meant by the phrase “the smallest
subspace of V which contains A”? Answer: The intersection of all the subspaces of V which contain
A. It is important to realize that in order for this answer to make sense, it must be known that the
intersection of the family of subspaces containing A is itself a subspace of V . This is an obvious
consequence of the fact (proved below) that the intersection of any family of subspaces is itself a
subspace.

20.1.19. Proposition. Let S be a nonempty family of subspaces of a vector space V . Then
⋂

S
is a subspace of V .

Proof. Exercise. Hint. Use 20.1.13. (Solution Q.20.6.)

20.1.20. Example. Let V and W be vector spaces. If addition and scalar multiplication are
defined on V ×W by

(v, w) + (x, y) := (v + x,w + y)
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and
α(v, w) := (αv, αw)

for all v, x ∈ V , all w, y ∈ W , and all α ∈ R, then V ×W becomes a vector space. (This is called
the product or (external) direct sum of V and W . It is frequently denoted by V ⊕W .)

Proof. Problem.

20.2. LINEAR COMBINATIONS

20.2.1. Definition. Let V be a vector space. A linear combination of a finite set {x1, . . . , xn}
of vectors in V is a vector of the form

∑n
k=1 αkxk where α1, . . . , αn ∈ R. If α1 = α2 = · · · =

αn = 0, then the linear combination is trivial; if at least one αk is different from zero, the linear
combination is nontrivial.

20.2.2. Exercise. Find a nontrivial linear combination of the following vectors in R3 which equals
zero: (1, 0, 0), (1, 0, 1), (1, 1, 1), and (1, 1, 0). (Solution Q.20.7.)

20.2.3. Problem. Find, if possible, a nontrivial linear combination of the following vectors in R3

which equals zero: (4, 1, 3), (−1, 1,−7), and (1, 2,−8).

20.2.4. Problem. Find, if possible, a nontrivial linear combination of the following vectors in R3

which equals zero: (1, 2,−3), (1,−1, 4), and (5, 4,−1).

20.2.5. Problem. Find a nontrivial linear combination of the polynomials p1, p2, p3, and p4 which
equal zero, where

p1(x) = x+ 1

p2(x) = x3 − 1

p3(x) = 3x3 + 2x− 1

p4(x) = −x3 + x .

20.2.6. Example. Define vectors e1, . . . , en in Rn by

e1 := (1, 0, 0, . . . , 0)

e2 := (0, 1, 0, . . . , 0)

...

en := (0, 0, . . . , 0, 1).

In other words, for 1 ≤ j ≤ n and 1 ≤ k ≤ n, the kth coordinate of the vector ej (denote it by (ej)k
or ejk) is 1 if j = k and 0 if j 6= k. The vectors e1, . . . , en are the standard basis vectors in Rn.
(Note that the superscripts here have nothing to do with powers.) In R3 the three standard basis
vectors are often denoted by i, j, and k rather than e1, e2, and e3, respectively.

Every vector in Rn is a linear combination of the standard basis vectors in that space. In fact,
if x = (x1, . . . , xn) ∈ Rn, then

x =

n∑
k=1

xke
k .

Proof. The proof is quite easy:

x = (x1, x2, . . . , xn)

= (x1, 0, . . . , 0) + (0, x2, . . . , 0) + · · ·+ (0, 0, . . . , xn)

= x1e
1 + x2e

2 + · · ·+ xne
n

=
n∑
k=1

xke
k . �
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20.2.7. Definition. A subset A (finite or not) of a vector space is linearly dependent if the
zero vector 0 can be written as a nontrivial linear combination of elements of A; that is, if there
exist vectors x1, . . . ,xn ∈ A and scalars α1, . . . , αn, not all zero, such that

∑n
k=1 αkxk = 0. A

subset of a vector space is linearly independent if it is not linearly dependent.

20.2.8. Definition. A set A of vectors in a vector space V spans the space if every member of V
can be written as a linear combination of members of A.

20.2.9. Problem. Let e1, e2, . . . en be the standard basis vectors in Rn (see example 20.2.6).

(a) Show that the set of standard basis vectors in Rn is a linearly independent set.
(b) Show that the standard basis vectors span Rn.
(c) Show that in part (b) the representation of a vector in Rn as a linear combination of

standard basis vectors is unique. (That is, show that if x =
∑n

k=1 αke
k =

∑n
k=1 βke

k,
then αk = βk for each k.)

20.3. CONVEX COMBINATIONS

20.3.1. Definition. A linear combination
∑n

k=1 αkxk of the vectors x1, . . . , xn is a convex com-
bination if αk ≥ 0 for each k (1 ≤ k ≤ n) and if

∑n
k=1 αk = 1.

20.3.2. Exercise. Write the vector (2, 1/4) in R2 as a convex combination of the vectors (1, 0),
(0, 1) , and (3, 0). (Solution Q.20.8.)

20.3.3. Problem. Write the vector (1, 1) as a convex combination of the vectors (−2, 2), (2, 2),
and (3,−3) in R2.

20.3.4. Definition. If x and y are vectors in the vector space V , then the closed segment
between x and y, denoted by [x, y], is {(1− t)x+ ty : 0 ≤ t ≤ 1}. (Note: In the vector space R this
is the same as the closed interval [x, y] provided that x ≤ y. If x > y, however, the closed segment
[x, y] contains all numbers z such that y ≤ z ≤ x, whereas the closed interval [x, y] is empty.)

A set C ⊆ V is convex if the closed segment [x, y] is contained in C whenever x, y ∈ C.

20.3.5. Example. A disk is a convex subset of R2. The set {(x, y) : 1 ≤ x2 + y2 ≤ 2} is not a
convex subset of R2.

Proof. Problem.

20.3.6. Example. Every subspace of a vector space is convex.

Proof. Problem.

20.3.7. Example. The set

{(x, y) ∈ R2 : x ≥ 0, y ≥ 0, and x+ y ≤ 1}
is a convex subset of R2.

Proof. Problem.

20.3.8. Example. Every convex subset of Rn is connected.

Proof. Problem.

20.3.9. Definition. Let A be a subset of a vector space V . The convex hull of A is the smallest
convex set containing A; that is, it is the intersection of the family of all convex subsets of V which
contain A.

20.3.10. Exercise. What fact must we know about convex sets in order for the preceding definition
to make sense? Prove this fact. Hint. Review proposition 20.1.19 and the discussion which precedes
it. (Solution Q.20.9.)
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20.3.11. Problem. Consider the following subsets of R2:

A = {(x, y) : x ≥ 0}
B = {(x, y) : 0 ≤ y ≤ 2}
C = {(x, y) : x+ y ≤ 4}
D = A ∩B ∩ C.

The set D can be described as the convex hull of four points. Which four?

20.3.12. Problem. The concepts of convex combination and convex hull have been introduced.
The point of this problem is to explain the way in which these two ideas are related. Start with
a set A. Let C be the set of all convex combinations of elements of A. Let H be the convex hull
of A. What relation can you find between A and H. It might not be a bad idea to experiment a
little; see what happens in some very simple concrete cases. For example, take A to be a pair of
points in R3. Eventually you will have to consider the following question: Are convex sets closed
under the taking of convex combinations?





CHAPTER 21

LINEARITY

21.1. LINEAR TRANSFORMATIONS

Linear transformations are central to our study of calculus. Functions are differentiable, for
example, if they are smooth enough to admit decent approximation by (translates of) linear trans-
formations. Thus before tackling differentiation (in chapter 25) we familiarize ourselves with some
elementary facts about linearity.

21.1.1. Definition. A function T : V →W between vector spaces is linear if

T (x+ y) = Tx+ Ty for all x, y ∈ V (21.1)

and

T (αx) = αTx for all x ∈ V and α ∈ R. (21.2)

A linear function is most commonly called a linear transformation, sometimes a linear
mapping. If the domain and codomain of a linear transformation are the same vector space, then
it is often called a linear operator, and occasionally a vector space endomorphism. The
family of all linear transformations from V into W is denoted by L(V,W ). Two oddities of notation
concerning linear transformations deserve comment. First, the value of T at x is usually written
Tx rather than T (x). Naturally the parentheses are used whenever their omission would create
ambiguity. For example, in (21.1) above Tx+y is not an acceptable substitute for T (x+y). Second,
the symbol for composition of two linear transformations is ordinarily omitted. If S ∈ L(U, V ) and
T ∈ L(V,W ), then the composite of T and S is denoted by TS (rather than by T ◦ S). This will
cause no confusion since we will define no other “multiplication” of linear maps. As a consequence
of this convention if T is a linear operator, then T ◦ T is written as T 2, T ◦ T ◦ T as T 3, and so on.
One may think of condition (21.1) in the definition of linearity in the following fashion. Let T × T
be the mapping from V × V into W ×W defined by

(T × T )(x, y) = (Tx, Ty).

Then condition (21.1) holds if and only if the diagram

V W
T

//

V × V

V

+

��

V × V W ×W
T×T // W ×W

W

+

��

commutes. (The vertical maps are addition in V and in W .)
Condition (21.2) of the definition can similarly be thought of in terms of a diagram. For each

scalar a define the function Mα, multiplication by α, from a vector space into itself by

Mα(x) = αx .

115
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(We use the same symbol for multiplication by α in both of the spaces V and W .) Then condition
(21.2) holds if and only if for every scalar α the following diagram commutes.

V W
T

//

V

V

Mα

��

V W
T // W

W

Mα

��

21.1.2. Example. If T : R3 → R2 : x 7→ (x1 + x3, x1 − 2x2), then T is linear.

Proof. Exercise. (Solution Q.21.1.)

21.1.3. Problem. Let T : R2 → R4 be defined by

T (x, y) = (x+ 2y, 3x− y,−2x,−x+ y).

Show that T is linear.

21.1.4. Exercise. Let T : R3 → R3 be a linear transformation which satisfies T (e1) = (1, 0, 1),
T (e2) = (0, 2,−1), and T (e3) = (−4,−1, 3) (where e1, e2, and e3 are the standard basis vectors for
R3 defined in example 20.2.6). Find T (2, 1, 5). Hint. Use problem 20.2.9. (Solution Q.21.2.)

21.1.5. Problem. Suppose that T ∈ L(R3,R3) satisfies

Te1 = (1, 2,−3)

Te2 = (1,−1, 0)

Te3 = (−2, 0, 1)

Find T (3,−2, 1).

21.1.6. Proposition. Let T : V →W be a linear transformation between two vector spaces. Then

(a) T (0) = 0.
(b) T (x− y) = Tx− Ty for all x, y ∈ V .

Proof. Exercise. (Solution Q.21.3.)

21.1.7. Example. The identity map from a vector space into itself is linear.

Proof. Obvious. �

21.1.8. Example. Each coordinate projection defined on Rn

πk : Rn → R : x 7→ xk

is linear.

Proof. For 1 ≤ k ≤ n, we have πk(x+y) = πk(x1 +y1, . . . , xn+yn) = xk +yk = πk(x) +πk(y)
and πk(αx) = πk(αx1, . . . , αxn) = αxk = απk(x). �

21.1.9. Example. Let F = F((a, b),R) be the family of all real valued functions defined on the
open interval (a, b) and let D = D((a, b),R) be the set of all members of F which are differentiable
at each point of (a, b). Then D is a vector subspace of F and that the differentiation operator

D : D → F : f 7→ f ′

(where f ′ is the derivative of f) is linear.

Proof. We know from example 20.1.11 that F is a vector space. To show that D is a vector
subspace of F use proposition 20.1.13. That D is nonempty is clear since constant functions are
differentiable. That the space D of differentiable functions is closed under addition and scalar
multiplication and that the operation D of differentiation is linear (that is, D(αf) = αDf and
D(f + g) = Df +Dg) are immediate consequences of propositions 8.4.10 and 8.4.11. �
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21.1.10. Example. We have not yet discussed integration of continuous functions, but recalling a
few basic facts about integration from beginning calculus shows us that this is another example of
a linear transformation. Let C = C([a, b],R) be the family of all members of F = F([a, b],R) which
are continuous. We know from beginning calculus that any continuous function on a closed and
bounded interval is (Riemann) integrable, that∫ b

a
αf(x) dx = α

∫ b

a
f(x) dx

where α ∈ R and f ∈ C, and that∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

where f, g ∈ C. It then follows easily (again from 20.1.13) that C is a vector subspace of F and

that the function K : C → R : f 7→
∫ b
a f(x) dx is linear.

An important observation is that the composite of two linear transformations is linear.

21.1.11. Proposition. Let U , V , and W be vector spaces. If S ∈ L(U, V ) and T ∈ L(V,W ) then
TS ∈ L(U,W ).

Proof. Problem.

21.1.12. Definition. If T : V → W is a linear transformation between vector spaces, then the
kernel (or null space) of T , denoted by kerT , is T←{0}. That is,

kerT := {x ∈ V : Tx = 0}.

21.1.13. Exercise. Let T ∈ L(R3,R3) satisfy

Te1 = (1,−2, 3)

Te2 = (0, 0, 0)

Te3 = (−2, 4,−6)

where e1, e2, and e3 are the standard basis vectors in R3. Find and describe geometrically both
the kernel of T and the range of T . (Solution Q.21.4.)

21.1.14. Problem. Let T be the linear transformation of example 21.1.2. Find and describe
geometrically the kernel and the range of T .

21.1.15. Problem. Let D be the linear transformation defined in 21.1.9. What is the kernel of D?

It is useful to know that the kernel of a linear transformation is always a vector subspace of
its domain, that its range is a vector subspace of its codomain, and that a necessary and sufficient
condition for a linear transformation to be injective is that its kernel contain only the zero vector.

21.1.16. Proposition. If T : V →W is a linear transformation between vector spaces, then kerT
is a subspace of V .

Proof. Problem. Hint. Use proposition 20.1.13.

21.1.17. Proposition. If T : V →W is a linear transformation between vector spaces, then ranT
is a subspace of W .

Proof. Exercise. Hint. Use proposition 20.1.13. (Solution Q.21.5.)

21.1.18. Proposition. A linear transformation T is injective if and only if ker T = {0}.

Proof. Problem. Hint. First show that if T is injective and x ∈ kerT , then x = 0. For the
converse, suppose that kerT = {0} and that Tx = Ty. Show that x = y.

21.1.19. Problem. Let W be a vector space.
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(a) Show that a linear transformation T : Rn → W is completely determined by its values on
the standard basis vectors e1, . . . en of Rn. Hint. Use problem 20.2.9(b).

(b) Show that if S, T ∈ L(Rn,W ) and Sek = Tek for 1 ≤ k ≤ n, then S = T .
(c) Let w1, . . . , wn ∈ W . Show that there exists a unique T ∈ L(Rn) such that Tek = wk for

1 ≤ k ≤ n.

Injective linear mappings take linearly independent sets to linearly independent sets

21.1.20. Proposition. If T ∈ L(V,W ) is injective and A is a linearly independent subset of V ,
then T→(A) is a linearly independent set in W .

Proof. Problem. Hint. Start with vectors y1, . . . yn in T→(A) and suppose that some linear
combination of them

∑n
k=1 αkx

k is 0. Show that all the scalars αk are 0. Use proposition 21.1.18.

Linear mappings take convex sets to convex sets.

21.1.21. Proposition. If V and W are vector spaces, C is a convex subset of V , and T : V →W
is linear, then T→(C) is a convex subset of W .

Proof. Problem. Hint. Let u, v ∈ T→(C) and 0 ≤ t ≤ 1. Show that (1− t)u+ tv ∈ T→(C).

21.1.22. Problem. Let T ∈ L(R3,R3) satisfy :

Te1 = (0, 1, 0)

Te2 = (0, 0, 1)

Te3 = (3,−2, 0)

Show that T is bijective. Hint. To show that T is injective use proposition 21.1.18.

21.1.23. Problem. Let C1 = C1([a, b],R) be the set of all functions f in F = F([a, b],R) such that
f ′ exists on [a, b] in the usual sense of having one-sided derivatives at a and b) and is continuous. (A
function belonging to C1 is said to be continuously differentiable.) It is easy to see that the
set of all C1 functions is a vector subspace of F . Let C = C([a, b],R) be the family of all continuous
members of F . For every f ∈ C and every x ∈ [a, b] let

(Jf)(x) :=

∫ x

a
f(t) dt .

(a) Why does Jf belong to C1?
(b) Show that the map J : C → C1 : f 7→ Jf is linear.

21.1.24. Problem. (Products) Recall (see Appendix N) that for every pair of functions f1 : T → S1
and f2 : T → S2 having the same domain there exists a unique map, namely f = (f1, f2), mapping
T into the product space S1 × S2 which satisfies π1 ◦ f = f1 and π2 ◦ f = f2. (See in particular
exercise N.1.4.) Now suppose that T , S1, and S2 are vector spaces and that f1 and f2 are linear.
Then S1×S2 is a vector space (see example 20.1.20). Show that the function f = (f1, f2) is linear.

21.2. THE ALGEBRA OF LINEAR TRANSFORMATIONS

The set L(V,W ) of linear transformations between two vector spaces is contained in the vector
space F(V,W ) of all W -valued functions whose domain is V . (That F is a vector space was proved
in example 20.1.11.) It is easy to show that L(V,W ) is a vector space; just show that it is a subspace
of F(V,W ).

21.2.1. Proposition. Let V and W be vector spaces. Then L(V,W ) with pointwise operations of
addition and scalar multiplication is a vector space.

Proof. Exercise. Hint. Use example 20.1.11 and proposition 20.1.13. (Solution Q.21.6.)
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Let T : V → W be a function between two sets. We say that T is invertible if there exists
a function T−1 mapping W to V such that T ◦ T−1 is the identity function on V and T−1 ◦ T is
the identity function on W . (For details about this see appendix M.) Now, suppose that V and
W are vector spaces and that T : V → W is a linear transformation. In this context what do we
mean when we say that T is invertible? For a linear transformation to be invertible we will require
two things: the transformation must possess an inverse function, and this function must itself be
linear. It is a pleasant fact about linear transformations that the second condition is automatically
satisfied whenever the first is.

21.2.2. Proposition. If T ∈ L(V,W ) is bijective, then its inverse T−1 : W → V is linear.

Proof. Exercise (Solution Q.21.7.)

21.2.3. Definition. A linear transformation T : V →W is invertible (or is an isomorphism) if
there exists a linear transformation T−1 such that T−1 ◦ T = IV and T ◦ T−1 = IW .

The point of the preceding proposition is that this definition is somewhat redundant. In partic-
ular, the following are just different ways of saying the same thing about a linear transformation T .

(a) T is invertible.
(b) T is an isomorphism.
(c) As a function T has an inverse.
(d) T is bijective.

21.2.4. Definition. Vector spaces V and W are isomorphic if there exists an isomorphism from
V onto W .

21.2.5. Problem. Let s be the set of all sequences of real numbers. Regard s as a vector space
under pointwise operations. That is,

x+ y := (x1 + y1, x2 + y2, . . . )

αx := (αx1, αx2, . . . )

whenever x = (x1, x2, . . . ) and y = (y1, y2, . . . ) belong to s and α is a scalar. Define the unilateral
shift operator U : s→ s by

U(x1, x2, x3, . . . ) := (0, x1, x2, . . . ).

(a) Show that U ∈ L(s, s).
(b) Does U have a right inverse? If so, what is it?
(c) Does U have a left inverse? If so, what is it?

21.2.6. Definition. Suppose that a vector space V is equipped with an additional operation
(x, y) 7→ xy from V × V into V (we will call it multiplication) which satisfies

(a) x(y + z) = xy + xz,
(b) (x+ y)z = xz + yz,
(c) (xy)z = x(yz), and
(d) α(xy) = x(αy)

whenever x, y, z ∈ V and α ∈ R. Then V is an algebra. (Sometimes it is called a linear
associative algebra.) If an algebra possesses a multiplicative identity (that is, a vector 1 such
that 1x = x1 = x for all x ∈ V ), then it is a unital algebra. A subset of an algebra A which is
closed under the operations of addition, multiplication, and scalar multiplication is a subalgebra
of A. If A is a unital algebra and B is a subalgebra of A which contains the multiplicative identity
of A, then B is a unital subalgebra of A.

21.2.7. Example. If M is a compact metric space, then the vector space B(M,R) of bounded
functions on M is a unital algebra under pointwise operations. (The constant function 1 is its
multiplicative identity.) We have already seen in chapter 15 that the space C(M,R) of continuous
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functions on M is a vector subspace of B(M,R). Since the product of continuous functions is
continuous (and constant functions are continuous) C(M,R) is a unital subalgebra of B(M,R).

21.2.8. Problem. It has already been shown (in proposition 21.2.1) that if V is a vector space,
then so is L(V, V ). Show that with the additional operation of composition serving as multiplication
L(V, V ) is a unital algebra.

21.2.9. Problem. If T ∈ L(V,W ) is invertible, then so is T−1 and
(
T−1)

)−1
= T .

21.2.10. Problem. If S ∈ L(U, V ) and T ∈ L(V,W ) are both invertible, then so is TS and
(TS)−1 = S−1T−1.

21.2.11. Problem. If T ∈ L(V, V ) satisfies the equation

T 2 − T + I = 0

then it is invertible. What is T−1?

21.2.12. Problem. Let V be a vector space; let W be a set which is provided with operations
(u, v) 7→ u+ v from W ×W into W and (α, u) 7→ αu from R×W into W ; and let T : V → W . If
T is bijective and it preserves operations (that is, T (x + y) = Tx + Ty and T (αx) = αTx for all
x, y ∈ V and α ∈ R), then W is a vector space which is isomorphic to V . Hint. Verify the eight
defining axioms for a vector space. The first axiom is associativity of addition. Let u, v, w ∈ W .
Write (u+ v) +w as

(
T (T−1u) + T (T−1v)

)
+ T (T−1w) and use the hypothesis that T is operation

preserving.

21.2.13. Problem. Let V be a vector space, W be a set, and T : V →W be a bijection. Explain
carefully how W can be made into a vector space isomorphic to V . Hint. Use problem 21.2.12.

21.3. MATRICES

The purpose of this section and the next two is almost entirely computational. Many (but
by no means all!) of the linear transformations we will consider in the sequel are maps between
various Euclidean spaces; that is, between Rn and Rm where m, n ∈ N. Such transformations may
be represented by matrices. This of great convenience in dealing with specific examples because
matrix computations are so very simple. We begin by reviewing a few elementary facts about
matrices and matrix operations.

For each n ∈ N let Nn be {1, . . . , n}. An m × n (read “m by n”) matrix is a function whose
domain is Nm × Nn. We deal here only with matrices of real numbers; that is, with real valued
functions on Nm×Nn. If a : Nm×Nn → R is an m×n matrix, its value at (i, j) ∈ Nm×Nn will be
denoted by aij . (Occasionally we use the notation aij instead.) The matrix a itself may be denoted

by
[
aij
]m
i=1

n

j=1
, by [aij ], or by a rectangular array whose entry in row i and column j is aij .

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


In light of this notation it is reasonable to refer to the index i in the expression aij as the row!index

and to call j the column index. (If you are accustomed to thinking of a matrix as being a
rectangular array, no harm will result. The reason for defining a matrix as a function is to make
good on the boast made in appendix B that everything in the sequel can be defined ultimately in
terms of sets.) We denote the family of all m× n matrices of real numbers by Mm×n. For families
of square matrices we shorten Mn×n to Mn.

Two m× n matrices a and b may be added. Addition is done pointwise. The sum a+ b is the
m× n matrix whose value at (i, j) is aij + bij , That is,

(a+ b)ij = aij + bij
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for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Scalar multiplication is also defined pointwise. If a is an m × n
matrix and α ∈ R, then αa is the m× n matrix whose value at (i, j) is αaij . That is,

(αa)ij = αaij

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. We may also subtract matrices. By −b we mean (−1)b, and by a− b
we mean a+ (−b).

21.3.1. Exercise. Let[
4 2 0 −1
−1 −3 1 5

]
and

[
1 −5 3 −1
3 1 0 −1

]
.

Find a+ b, 3a, and a− 2b. (Solution Q.21.8.)

If a is an m × n matrix and b is an n × p matrix, the product of a and b is the m × p matrix
whose value at (i, j) is

∑n
k=1 a

i
kb
k
j . That is,

(ab)ij =
n∑
k=1

aikb
k
j

for 1 ≤ i ≤ m and 1 ≤ j ≤ p. Notice that in order for the product ab to be defined the number
of columns of a must be the same as the number of rows of b. Here is a slightly different way of
thinking of the product of a and b. Define the inner product (or dot product) of two n-tuples
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) to be

∑n
k=1 xkyk. Regard the rows of the matrix a as n-tuples

(read from left to right) and the columns of b as n-tuples (read from top to bottom). Then the
entry in the ith row and jth column of the product ab is the dot product of the ith row of a and the
jth column of b.

21.3.2. Example. Matrix multiplication is not commutative. If a is a 2×3 matrix and b is a 3×4
matrix, then ab is defined but ba is not. Even in situations where both products ab and ba are

defined, they need not be equal. For example, if a =

[
1 2
1 0

]
and b =

[
−1 1
2 3

]
, then ab =

[
3 7
−1 1

]
whereas ba =

[
0 −2
5 4

]
.

21.3.3. Exercise. Let a =

[
2 3 −1
0 1 4

]
and b =

1 0
2 −1
1 −

. Find ab. (Solution Q.21.9.)

21.3.4. Problem. Let a =

4 3 1 2
0 −1 −1 1
2 0 1 3

 and b =


2 −1
0 1
1 0
−3 2

.

(a) Find the product ab (if it exists).
(b) Find the product ba (if it exists).

21.3.5. Definition. Let a be an m× n matrix. The transpose of a, denoted by at, is the n×m
matrix obtained by interchanging the rows and columns of a. That is, if b = at, then bij = aji for
1 ≤ i ≤ n and 1 ≤ j ≤ m.

21.3.6. Example. Let a =

[
1 2 0 −4
3 0 −1 5

]
. Then at =


1 3
2 0
0 −1
−4 5

.

For material in the sequel the most important role played by matrices will be as (representations
of) linear transformations on finite dimensional vector spaces. Here is how it works.
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21.3.7. Definition. We define the action of a matrix on a vector. If a ∈ Mm×n and x ∈ Rn,
then ax, the result of a acting on x, is defined to be the vector in Rm whose jth coordinate is∑n

k=1 a
j
kxk (this is just the dot product of the jth row of a with x). That is,

(ax)j :=
n∑
k=1

ajkxk

for 1 ≤ j ≤ m. Here is another way of saying the same thing: Regard x as an n× 1 matrix
x1
x2
...
xn


(sometimes called a column vector). Now multiply the m× n matrix a by the n× 1 matrix x.
The result will be an m× 1 matrix (another column vector), say

y1
y2
...
ym

 .
Then ax is the m-tuple (y1, . . . , ym). Thus a may be thought of as a mapping from Rn into Rm.

21.3.8. Exercise. Let a =

3 0 −1 −4
2 1 −1 −2
1 −3 0 2

 and x = (2, 1,−1, 1). Find ax. (Solution Q.21.10.)

21.3.9. Problem. Let a =

2 0
1 −3
5 1

 and x = (1,−2). Find ax.

From the definition of the action of a matrix on a vector, we derive several formulas which will
be useful in the sequel. Each is a simple computation.

21.3.10. Proposition. Let a, b ∈Mm×n; c ∈Mn×p; x, y ∈ Rn; z ∈ Rp; and α ∈ R. Then

(a) a(x+ y) = ax+ ay;
(b) a(αx) = α(ax);
(c) (a+ b)x = ax+ bx;
(d) (αa)x = α(ax);
(e) (ac)z = a(cz).

Proof. Part (a) is an exercise. (Solution Q.21.11.) Parts (b)–(e) are problems.

Next we show that a sufficient (and obviously necessary) condition for two m × n matrices to
be equal is that they have the same action on the standard basis vectors in Rn.

21.3.11. Proposition. Let a and b be m×n matrices and, as usual, let e1, . . . , en be the standard
basis vectors in Rn. If aek = bek for 1 ≤ k ≤ n, then a = b.

Proof. Problem. Hint. Compute (aek)j and (bek)j for 1 ≤ j ≤ m and 1 ≤ k ≤ n. Remember

that (ek)l = 0 if k 6= l and that (ek)k = 1.

Remark. The definition 21.3.7 of the action of a matrix on a vector technically requires us to
think of vectors as “column vectors”. It is probably more likely that most of us think of vectors in
Rn as “row vectors”, that is, as n-tuples or as 1× n matrices. Then for the matrix multiplication
ax to make sense and for the result to again be a “row vector” we really should write(

a(xt)
)t
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for the action of the matrix a ∈ Mm×n on the vector x ∈ Rn. We won’t do this. We will regard
vectors as “row vectors” or “column vectors” as convenience dictates.

21.3.12. Definition. In our later work we will have occasion to consider the action of a square
matrix (one with the same number of rows as columns) on a pair of vectors. Let a ∈ Mn and

x, y ∈ Rn. We denote by xay the number
∑n

j,k=1 a
j
kxjyk.

Since
n∑

j,k=1

ajkxjyk =
n∑
j=1

xj

n∑
k=1

ajkyk

and since
∑n

k=1 a
j
kyk is just (ay)j , we may write

xay =

n∑
j=1

xj(ay)j .

In other words xay is just the dot product of the vectors x and ay. If we identify n-tuples (row
vectors) with 1× n matrices, then xay is the product of the three matrices x, a, and yt. That is,

xay =
[
x1 . . . xn

] a
1
1 . . . a1n
...

. . .
...

an1 . . . ann


y1...
yn

 .
21.3.13. Exercise. Let a =

1 3 −1
0 2 4
1 −1 1

, x = (1,−2, 0), and y = (3, 0, 1). Find the action of a

on the pair of vectors x and y; that is, find xay. (Solution Q.21.12.)

21.3.14. Problem. Let a =


1 2 0 −1
3 −3 1 0
2 0 1 −4
−1 1 −1 1

, x = (1,−1, 0, 2), and y = (1, 0, 3, 1). Find xay.

21.3.15. Definition. The main (or principal) diagonal of a square matrix is the diagonal
running from the upper left corner to the lower right corner. That is, it consists of all the elements
of the form akk. If each entry on the main diagonal of an n× n matrix is 1 and all its other entries
are 0, then the matrix is the n× n identity matrix. This matrix is denoted by In (or just by I
if no confusion will result). If c is a real number, it is conventional to denote the matrix cIn by c.
It is clear that a In = In a = a for every n × n matrix a. The m × n zero matrix is the m × n
matrix all of whose entries are 0. It is denoted by 0m×n or just by 0. Certainly 0 + a = a+ 0 = a
for every m× n matrix a.

21.3.16. Definition. A square matrix a in Mn×n is invertible if there exists an n× n matrix a−1

such that
aa−1 = a−1a = In .

The matrix a−1 is the inverse of a.

21.3.17. Proposition. An n× n-matrix has at most one inverse.

Proof. Exercise. (Solution Q.21.13.)

21.3.18. Exercise. Show that the matrix b =

−1/2 1/2 3/2
1/4 1/4 −1/4
3/4 −1/4 −3/4

 is the inverse of the matrix

a =

1 0 2
0 3 −1
1 −1 1

 . (Solution Q.21.14.)
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21.3.19. Problem. Show that the matrix a =

1 3 −1
0 2 1
1 −2 1

 satisfies the equation

a3 − 4a2 + 8a− 9 = 0.

Use this fact to find the inverse of a.

21.4. DETERMINANTS

A careful development of the properties of the determinant function on n × n matrices is not
a central concern of this course. In this section we record without proof some of its elementary
properties. (Proofs of these facts can be found in almost any linear algebra text. Two elegant (if
not entirely elementary) presentations can be found in [4] and [6].)

21.4.1. Fact. Let n ∈ N. There is exactly one function

det : Mn×n → R : a 7→ det a

which satisfies

(a) det In = 1.
(b) If a ∈Mn×n and a′ is the matrix obtained by interchanging two rows of a, then det a′ =
−det a.

(c) If a ∈Mn×n, c ∈ R, and a′ is the matrix obtained by multiplying each element in one row
of a by c, then det a′ = cdet a.

(d) If a ∈Mn×n, c ∈ R, and a′ is the matrix obtained from a by multiplying one row of a by

c and adding it to another row of a (that is, choose i, j ∈ Nn with i 6= j and replace ajk by

ajk + caik for each k in Nn), then det a′ = det a.

21.4.2. Definition. The unique function det : Mn×n → R described above is the n× n determi-
nant function.

21.4.3. Fact. If a ∈ R ( = M1×1), then det a = a; if a ∈M2×2, then det a = a11a
2
2 − a12a21.

21.4.4. Fact. If a, b ∈Mn×n, then det(ab) = (det a)(det b).

21.4.5. Fact. If a ∈ Mn×n, then det at = det a. (An obvious corollary of this: in conditions (b),
(c), and (d) of fact 21.4.1 the word “columns” may be substituted for the word “rows”.)

21.4.6. Definition. Let a be an n× n matrix. The minor of the element ajk, denoted by M j
k , is

the determinant of the (n− 1)× (n− 1) matrix which results from the deletion of the jth row and

kth column of a. The cofactor of the element ajk, denoted by Cjk is defined by

Cjk := (−1)j+kM j
k .

21.4.7. Fact. If a ∈Mn×n and 1 ≤ j ≤ n, then

det a =

n∑
k=1

ajkC
j
k .

This is the (Laplace) expansion of the determinant along the jth row.

In light of fact 21.4.5, it is clear that expansion along columns works as well as expansion along
rows. That is,

det a =
n∑
j=1

ajkC
j
k

for any k between 1 and n. This is the (Laplace) expansion of the determinant along the kth

column.
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21.4.8. Fact. An n× n matrix a is invertible if and only if det a 6= 0. If a is invertible, then

a−1 = (det a)−1Ct

where C =
[
Cjk
]

is the matrix of cofactors of elements of a.

21.4.9. Exercise. Let a =

1 0 2
0 3 −1
1 −1 1

. Use the preceding facts to show that a is invertible and

to compute the inverse of a. (Solution Q.21.15.)

21.4.10. Problem. Let a be the matrix given in problem 21.3.19. Use the facts stated in sec-
tion 21.4 to show that a is invertible and to compute a−1.

21.5. MATRIX REPRESENTATIONS OF LINEAR TRANSFORMATIONS

We are now in a position to represent members of L(Rn,Rm) by means of matrices. This will
simplify computations involving such linear transformations.

21.5.1. Definition. If T ∈ L(Rn,Rm), we define [T ] to be the m×n matrix whose entry in the jth

row and kth column is (Tek)j , the jth component of the vector Tek in Rm. That is, if a = [T ], then

ajk = (Tek)j . The matrix [T ] is the matrix representation of T (with respect to the standard
bases in Rn and Rm).

21.5.2. Example. Let T : R4 → R3 : (w, x, y, z) 7→ (w+2x+3y, 5w+6x+7y+8z,−2x−3y−4z).
Then T is linear and

Te1 = T (1, 0, 0, 0) = (1, 5, 0)

Te2 = T (0, 1, 0, 0) = (2, 6,−2)

Te3 = T (0, 0, 1, 0) = (3, 7,−3)

Te4 = T (0, 0, 0, 1) = (0, 8,−4).

Having computed Te1, . . . , T e4, we use these as the successive columns of [T ]. Thus

T =

1 2 3 0
5 6 7 8
0 −2 −3 −4

 .
21.5.3. Example. If I : Rn → Rn is the identity map on Rn, then its matrix representation [I] is
just the n× n identity matrix In.

21.5.4. Exercise. Let T : R2 → R4 : (x, y) 7→ (x − 3y, 7y, 2x + y,−4x + 5y). Find [T ]. (Solu-
tion Q.21.16.)

The point of the representation just defined is that if we compute the action of the matrix [T ] on
a vector x (as defined in 21.3.7), what we get is the value of T at x. Moreover, this representation
is unique; that is, two distinct matrices cannot represent the same linear map.

21.5.5. Proposition. If T ∈ L(Rn,Rm), then for all x in Rn

Tx = [T ]x .

Furthermore, if a is any m× n matrix which satisfies

Tx = ax for all x ∈ Rn,
then a = [T ].

Proof. Exercise. Hint. For simplicity of notation let b = [T ]. The map S : Rn → Rm : x 7→ bx
is linear. Why? To show that Sx = Tx for all x in Rn it suffices to show that (Sek)j = (Tek)j for
1 ≤ k ≤ n and 1 ≤ j ≤ m. Why? (Solution Q.21.17.)



126 21. LINEARITY

21.5.6. Proposition. Let m, n ∈ N. The map T 7→ [T ] from L(Rn,Rm) into Mm×n is a bijection.

Proof. Exercise. (Solution Q.21.18.)

21.5.7. Proposition. Let m, n ∈ N; let S, T ∈ L(Rn,Rm); and let α ∈ R. Then

(a) [S + T ] = [S] + [T ], and
(b) [αT ] = α[T ].

Proof. Exercise. Hint. For (a) use propositions 21.3.11, 21.5.5, and 21.3.10(c). (Solu-
tion Q.21.19.)

21.5.8. Theorem. Under the operations of addition and scalar multiplication (defined in sec-
tion 21.3) Mm×n is a vector space and the map T 7→ [T ], which takes a linear transformation to
its matrix representation, is an isomorphism between L(Rn,Rm) and Mm×n.

Proof. Problem. Hint. Use problem 21.2.12.

21.5.9. Problem. Define T : R3 → R4 by

T (x, y, z) = (x− 2y, x+ y − 3z, y + 4z, 3x− 2y + z) .

Find [T ].

21.5.10. Problem. Define T : R4 → R3 by

T (w, x, y, z) = (w − 3x+ z, 2w + x+ y − 4z, w + y + z) .

(a) Find [T ].
(b) Use proposition 21.5.5 to calculate T (4, 0,−3, 1).

21.5.11. Problem. Let f : R2 → R4 be defined by

f(x) = (x1x2, (x1)
2 − 4(x2)

2, (x1)
3, x1 sin(πx2))

for all x = (x1, x2) in R2, and let T : R2 → R4 be the linear transformation whose matrix represen-
tation is 

4 0
2 −1
5 −8
−1 2

 .
Find f(a+ h)− f(a)− Th when a = (−2, 1/2) and h = (−1, 1).

21.5.12. Proposition. If S ∈ L(Rp,Rn) and T ∈ L(Rn,Rm), then

[TS] = [T ][S] .

Proof. Problem. Hint. Why does it suffice to show that [TS]x = ([T ][S])x for all x in Rp?
Use propositions 21.5.5 and 21.3.10(e).

21.5.13. Problem. Let

T : R3 → R4 : (x, y, z) 7→ (2x+ y, x− z, y + z, 3x)

and

S : R4 → R3 : (w, x, y, z) 7→ (x− y, y + z, z − w).

(a) Use proposition 21.5.12 to find [TS].
(b) Use proposition 21.5.12 to find [ST ].

21.5.14. Problem. Show that matrix multiplication is associative; that is, show that if a ∈Mm×n,
b ∈ Mn×p, and c ∈ Mp×r, then (ab)c = a(bc). Hint. Don’t make a complicated and messy
computation of this by trying to prove it directly. Use propositions L.2.3, 21.5.6, and 21.5.12.
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21.5.15. Problem. Show that Mn×n is a unital algebra. Hint. Use the definition 21.2.6. Notice
that problem 21.5.14 establishes condition (c) of 21.5.14. Verify the other conditions in a similar
fashion.

21.5.16. Proposition. A linear map T ∈ L(Rn,Rn) is invertible if and only if det[T ] 6= 0. If T is
invertible, then [T−1] = [T ]−1.

Proof. Problem. Hint. Show that T is invertible if and only if its matrix representation is.
Then use 21.4.8.

21.5.17. Problem. Let T : R3 → R3 : (x, y, z) 7→ (x+ 2z, y − z, x+ y).

(a) Compute [T ] by calculating T and then writing down its matrix representation.
(b) Use proposition 21.5.16 to find [T ].

21.5.18. Problem. Let P4 be the family of all polynomial functions on R with degree (strictly)
less than 4.

(a) Show that (under the usual pointwise operations) P4 is a vector space which is isomorphic
to R4. Hint. Problem 21.2.12.

(b) Let D : P4 → P4 : f 7→ f ′ (where f ′ is the derivative of f). Using part (a) to identify the
spaces P4 and R4, find a matrix representation for the (obviously linear) differentiation
operator D.

(c) Use your answer to part (b) to differentiate the polynomial 7x3 − 4x2 + 5x− 81.

21.5.19. Problem. Let P4 be as in problem 21.5.18. Consider the map

K : P4 → R : f 7→
∫ 1

0
f(x) dx .

(a) Show that K is linear.
(b) Find a way to represent K as a matrix. Hint. Use problem 21.5.18(a).
(c) Use your answer to part (b) to integrate the polynomial 8x3 − 5x2 − 4x + 6 over the

interval [0, 1].
(d) Let D be as in problem 21.5.18. Find [KD] by two different techniques.

21.5.20. Problem. Let T ∈ L(R4,R4) satisfy:

Te1 = (1, 2, 0,−1)

Te2 = (1, 0,−3, 2)

Te3 = (1,−1,−1, 1)

Te4 = (0, 2,−1, 0).

Also let x = (1,−2, 3,−1) and y = (0, 1, 2, 1). Find x[T ]y.





CHAPTER 22

NORMS

22.1. NORMS ON LINEAR SPACES

The last two chapters have been pure algebra. In order to deal with topics in analysis (e.g.
differentiation, integration, infinite series) we need also a notion of convergence; that is, we need
topology as well as algebra. As in earlier chapters we consider only those topologies generated by
metrics, in fact only those which arise from norms on vector spaces. Norms, which we introduce
in this chapter, are very natural objects; in many concrete situations they abound. Furthermore,
they possess one extremely pleasant property: a norm on a vector space generates a metric on
the space, and this metric is compatible with the algebraic structure in the sense that it makes
the vector space operations of addition and scalar multiplication continuous. Just as metric is a
generalization of ordinary Euclidean distance, the concept of norm generalizes on vector spaces the
idea of length.

22.1.1. Definition. Let V be a vector space. A function ‖ ‖ : V → R : x 7→ ‖x‖ is a norm on V
if

(1) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V ,
(2) ‖αx‖ = |α| ‖x‖ for all x ∈ V and α ∈ R, and
(3) If ‖x‖ = 0, then x = 0.

The expression ‖x‖ may be read as “the norm of x” or “the length of x”. A vector space on which
a norm has been defined is a normed linear space (or normed vector space). A vector in a
normed linear space which has norm 1 is a unit vector.

22.1.2. Example. The absolute value function is a norm on R.

22.1.3. Example. For x = (x1, . . . , xn) ∈ Rn let ‖x‖ =
(∑n

k=1 xk
2
)1/2

. The only nonobvious part
of the proof that this defines a norm on Rn is the verification of the triangle inequality (that
is, condition (1) in the preceding definition). But we have already done this: it is just Minkowski’s
inequality 9.2.7. This is the usual norm (or Euclidean norm) on Rn; unless the contrary is
explicitly stated, Rn when regarded as a normed linear space will always be assumed to possess
this norm.

22.1.4. Example. For x = (x1, . . . , xn) ∈ Rn let ‖x‖1 =
∑n

k=1|xk|. The function x 7→ ‖x‖1 is
easily seen to be a norm on Rn. It is sometimes called the 1-norm on Rn.

22.1.5. Example. For x = (x1, . . . , xn) ∈ Rn let ‖x‖u = max{|xk| : 1 ≤ k ≤ n}. Again it is easy
to see that this defines a norm on Rn; it is the uniform norm on Rn.

22.1.6. Exercise. Let f : R3 → R4 : (x, y, z) 7→ (xz, x2 + 3y,−x + y2 − 3z, xyz −
√

2x). Find
‖f(a+ λh)‖ when a = (4, 2,−4), h = (2, 4,−4), and λ = −1/2. (Solution Q.22.1.)

22.1.7. Exercise. Let f : R3 → R2 : x 7→ (3x1
2, x1x2 − x3) and let m =

[
6 0 0
0 1 −1

]
. Find

‖f(a+ h)− f(a)−mh‖ when a = (1, 0,−2) and h is an arbitrary vector in R3. (Solution Q.22.2.)

22.1.8. Problem. Let f : R3 → R3 be defined by

f(x, y, z) = (xy3 + yz2, x sin(3πy), 2z) .

Find ‖f(a)‖ when a = (16, 1/2, 2).

129
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22.1.9. Example. Let S be a nonempty set. For f in B(S,R) let

‖f‖u := sup{|f(x)| : x ∈ S} .
This is the uniform norm on B(S,R). Notice that example 22.1.5 is a special case of this one.
[An n-tuple may be regarded as a function on the set {1, . . . , n}. Thus Rn = B(S,R) where
S = {1, . . . , n}.]

22.1.10. Exercise. Define f , g : [0, 2π] → R by f(x) = sinx and g(x) = cosx. Find ‖f + g‖u.
(Solution Q.22.3.)

22.1.11. Problem. Let f(x) = x+ x2 − x3 for 0 ≤ x ≤ 3. Find ‖f‖u.

The following proposition lists some almost obvious properties of norms.

22.1.12. Proposition. If V is a normed linear space, then

(a) ‖0‖ = 0;
(b) ‖−x‖ = ‖x‖ for all x ∈ V ; and
(c) ‖x‖ ≥ 0 for all x ∈ V .

Proof. Exercise. Hint. For part (a) use proposition 20.1.5. For part (b) use proposition 20.1.7;
and for (c) use (a) and (b) together with the fact that x+ (−x) = 0. (Solution Q.22.4.)

22.2. NORMS INDUCE METRICS

We now introduce a crucial fact: every normed linear space is a metric space. That is, the norm
on a normed linear space induces a metric d defined by d(x, y) = ‖x − y‖. The distance between
two vectors is the length of their difference.

y
//

??

x

__

x−y

If no other metric is specified we always regard a normed linear space as a metric space under this
induced metric. Thus the concepts of compactness, open sets, continuity, completeness, and so on,
make sense on any normed linear space.

22.2.1. Proposition. Let V be a normed linear space. Define d : V ×V → R by d(x, y) = ‖x−y‖.
Then d is a metric on V .

Proof. Problem.

The existence of a metric on a normed linear space V makes it possible to speak of neighborhoods
of points in V . These neighborhoods satisfy some simple algebraic properties.

22.2.2. Proposition. Let V be a normed linear space, x ∈ V , and r, s > 0. Then

(a) Br(0) = −Br(0),
(b) Brs(0) = r Bs(0),
(c) x+Br(0) = Br(x), and
(d) Br(0) +Br(0) = 2Br(0).

Proof. Part (a) is an exercise. (Solution Q.22.5.) Parts (b), (c), and (d) are problems. Hint.
For (d) divide the proof into two parts: Br(0) +Br(0) ⊆ 2Br(0) and the reverse inclusion. For the
first, suppose x belongs to Br(0) +Br(0). Then there exist u, v ∈ Br(0) such that x = u+ v. Show
that x = 2w for some w in Br(0). You may wish to use problem 22.2.5.)

22.2.3. Proposition. If V is a normed linear space then the following hold.

(a)
∣∣ ‖x‖ − ‖y‖ ∣∣ ≤ ‖x− y‖ for all x, y ∈ V .
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(b) The norm x 7→ ‖x‖ is a continuous function on V .
(c) If xn → a in V , then ‖xn‖ → ‖a‖.
(d) xn → 0 in V if and only if ‖xn‖ → 0 in R.

Proof. Problem.

22.2.4. Problem. Give an example to show that the converse of part (c) of proposition 22.2.3
does not hold.

22.2.5. Problem. Prove that in a normed linear space every open ball is a convex set. And so is
every closed ball.

22.3. PRODUCTS

In this and the succeeding three sections we substantially increase our store of examples of
normed linear spaces by creating new spaces from old ones. In particular, we will show that each
of the following can be made into a normed linear space:

(i) a vector subspace of a normed linear space,
(ii) the product of two normed linear spaces,
(iii) the set of bounded functions from a nonempty set into a normed linear space, and
(iv) the set of continuous linear maps between two normed linear spaces.

It is obvious that (i) is a normed linear space: if V is a normed linear space with norm ‖ ‖
and W is a vector subspace of V , then the restriction of ‖ ‖ to W is a norm on W . Now
consider (ii). Given normed linear spaces V and W , we wish to make the product vector space (see
example 20.1.20) into a normed linear space. As a preliminary we discuss equivalent norms.

22.3.1. Definition. Two norms on a vector space are equivalent if they induce equivalent
metrics. If two norms on a vector space V are equivalent, then, since they induce equivalent
metrics, they induce identical topologies on V . Thus properties such as continuity, compactness,
and connectedness are unaltered when norms are replaced by equivalent ones (see proposition 11.2.3
and the discussion preceding it). In the next proposition we give a very simple necessary and
sufficient condition for two norms to be equivalent.

22.3.2. Proposition. Two norms ‖ ‖1 and ‖ ‖2 on a vector space V are equivalent if and only
if there exist numbers α, β > 0 such that

‖x‖1 ≤ α‖x‖2 and ‖x‖2 ≤ β‖x‖1

for all x ∈ V .

Proof. Exercise. (Solution Q.22.6.)

If V and W are normed linear spaces with norms ‖ ‖
V

and ‖ ‖
W

respectively, how do we
provide the product vector space V ×W (see example 20.1.20) with a norm? There are at least
three more or less obvious candidates: for v ∈ V and w ∈W let

‖(v, w)‖ :=
(
‖v‖

V

2 + ‖w‖
W

2)1/2,
‖(v, w)‖1 := ‖v‖

V
+ ‖w‖

W
, and

‖(v, w)‖u := max{‖v‖
V
, ‖w‖

W
}.

First of all, are these really norms on V ×W? Routine computations show that the answer is yes.
By way of illustration we write out the three verifications required for the first of the candidate
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norms. If v, x ∈ V , if w, y ∈W , and if α ∈ R, then

(a) ‖(v, w) + (x, y)‖ = ‖(v + x,w + y)‖

=
(
‖v + x‖

V

2 + ‖w + y‖
W

2)1/2
≤
(
(‖v‖

V
+ ‖x‖

V
)2 + (‖w‖

W
+ ‖y‖

W
)2
)1/2

≤
(
‖v‖

V

2 + ‖w‖
W

2)1/2 +
(
‖x‖

V

2 + ‖y‖
W

2)1/2
= ‖(v, w)‖+ ‖(x, y)‖.

The last inequality in this computation is, of course, Minkowski’s inequality 9.2.7.

(b) ‖α(v, w)‖ = ‖(αv, αw)‖

=
(
‖αv‖

V

2 + ‖αw‖
W

2)1/2
=
((
|α| ‖v‖

V

)2
+
(
|α| ‖w‖

W

)2)1/2
= |α|

(
‖v‖

V

2 + ‖w‖
W

2)1/2
= |α| ‖(v, w)‖.

(c) If ‖(v, w)‖ = 0, then ‖v‖
V

2 + ‖w‖
W

2 = 0. This implies that ‖v‖
V

and ‖w‖
W

are both zero.
Thus v is the zero vector in V and w is the zero vector in W ; so (v, w) = (0, 0), the zero vector in
V ×W .

Now which of these norms should we choose to be the product norm on V ×W? The next
proposition shows that at least as far as topological considerations (continuity, compactness, con-
nectedness, etc.) are concerned, it really doesn’t matter.

22.3.3. Proposition. The three norms on V ×W defined above are equivalent.

Proof. Notice that the norms ‖ ‖, ‖ ‖1, and ‖ ‖u defined above induce, respectively, the
metrics d, d1, and du defined in chapter 9. In proposition 9.3.2 we proved that these three metrics
are equivalent. Thus the norms which induce them are equivalent. �

22.3.4. Definition. Since d1 was chosen (in 12.3.3) as our “official” product metric, we choose
‖ ‖1, which induces d1, as the product norm on V ×W . In proposition 22.3.8 you are asked to
show that with this definition of the product norm, the operation of addition on a normed linear
space is continuous. In the next proposition we verify that scalar multiplication (regarded as a map
from R× V into V ) is also continuous.

22.3.5. Proposition. If V is a normed linear space, then the mapping (β, x) 7→ βx from R × V
into V is continuous.

Proof. Exercise. Hint. To show that a map f : U → W between two normed linear space is
continuous at a point a in U , it must be shown that for every ε > 0 there exists δ > 0 such that
‖u− a‖

U
< δ implies ‖f(u)− f(a)‖

W
< ε. (Solution Q.22.7.)

22.3.6. Corollary. Let (βn) be a sequence of real numbers and (xn) be a sequence of vectors in a
normed linear space V . If βn → α in R and xn → a in V , then βnxn → αa in V .

Proof. Exercise. (Solution Q.22.8.)

22.3.7. Corollary. If V is a normed linear space and α is a nonzero scalar, the map

Mα : V → V : x 7→ αx

is a homeomorphism.

Proof. Problem.
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22.3.8. Proposition. Let V be a normed linear space. The operation of addition

A : V × V → V : (x, y) 7→ x+ y

is continuous.

Proof. Problem.

22.3.9. Problem. Let V be a normed linear space. Prove the following:

(a) If xn → a and yn → b in V , then xn + yn → a+ b.
(b) If S is a vector subspace of V , then so is S.

22.3.10. Problem. If K and L are compact subsets of a normed linear space, then the set

K + L := {k + l : k ∈ K and l ∈ L}
is compact. Hint. Let A be as in proposition 22.3.8. What is A→(K × L)?

22.3.11. Problem. Let B and C be subsets of a normed linear space and α ∈ R. Prove the
following:

(a) αB = αB.
(b) B + C ⊆ B + C.
(c) B + C need not be closed even if B and C are; thus equality need not hold in (b). Hint.

In R2 try part of the curve y = 1/x and the negative x-axis.

22.3.12. Problem. Show that a linear bijection f : V → W between normed linear spaces is an
isometry if and only if it is norm preserving (that is, if and only if ‖f(x)‖W = ‖x‖V for all x ∈ V ).

22.3.13. Definition. Let a be a vector in a vector space V . The map

Ta : V → V : x 7→ x+ a

is called translation by a.

22.3.14. Problem. Show that every translation map on a normed linear space is an isometry and
therefore a homeomorphism.

22.3.15. Problem. Let U be a nonempty open set in a normed linear space. Then U −U contains
a neighborhood of 0. (By U − U we mean {u− v : u, v ∈ U}.) Hint. Consider the union of all sets
of the form

(
T−v

)→
(U) where v ∈ U . (As in problem 22.3.14 T−v is a translation map.)

22.3.16. Problem. Show that if B is a closed subset of a normed linear space V and C is a
compact subset of V , then B + C is closed. (Recall that part (c) of problem 22.3.11 showed that
this conclusion cannot be reached by assuming only that B and C are closed.) Hint. Use the
sequential characterization of “closed” given in proposition 12.2.2. Let (an) be a sequence in B+C
which converges to a point in V . Write an = bn + cn where bn ∈ B and cn ∈ C. Why does (cn)
have a subsequence

(
cnk
)

which converges to a point in C? Does
(
bnk
)

converge?

22.3.17. Problem. Let V and W be normed linear spaces, A ⊆ V , a ∈ A′, α ∈ R, and f, g : A→
W . Prove the following:

(a) If the limits of f and g exist as x approaches a, then so does the limit of f + g and

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) .

(b) If the limit of f exists as x approaches a, then so does the limit of αf and

lim
x→a

(αf)(x) = α lim
x→a

f(x) .

22.3.18. Problem. Let V and W be normed linear spaces, A ⊆ V , a ∈ A′, and f : A→W . Show
that

(a) limx→a f(x) = 0 if and only if limx→a‖f(x)‖ = 0; and



134 22. NORMS

(b) limh→0 f(a+ h) = limx→a f(x).

Hint. These require only the most trivial modifications of the solutions to problem 14.3.11 and
proposition 14.3.5.

22.3.19. Problem. Let V and W be normed linear spaces, A ⊆ V , and f : A→W . Suppose that
a is an accumulation point of A and that l = limx→a f(x) exists in W .

(a) Show that if the norm on V is replaced by an equivalent one, then a is still an accumulation
point of A.

(b) Show that if both the norm on V and the one on W are replaced by equivalent ones, then
it is still true that f(x)→ l as x→ a.

22.3.20. Problem. Let f : U ×V →W where U , V , and W are normed linear spaces. If the limit

l := lim
(x,y)→(a,b)

f(x, y)

exists and if limx→a f(x, y) and limy→b f(x, y) exist for all y ∈ V and x ∈ U , respectively, then the
iterated limits

lim
x→a

(
lim
y→b

f(x, y)
)

and lim
y→b

(
lim
x→a

f(x, y)
)

exist and are equal to l.

22.3.21. Problem. All norms on Rn are equivalent. Hint. It is enough to show that an arbitrary
norm ||| ||| on Rn is equivalent to ‖ ‖1 (where ‖x‖1 =

∑n
k=1|xk|). Use proposition 22.3.2. To find

α > 0 such that |||x||| ≤ α‖x‖1 for all x write x =
∑n

k=1 xke
k (where e1, . . . , en are the standard

basis vectors on Rn). To find β > 0 such that ‖x‖1 ≤ β|||x||| let Rn1 be the normed linear space Rn
under the norm ‖ ‖1. Show that the function x 7→ |||x||| from Rn1 into R is continuous. Show that
the unit sphere S = {x ∈ Rn : ‖x‖1 = 1} is compact in Rn1 .

22.4. THE SPACE B(S, V )

Throughout this section S will be a nonempty set and V a normed linear space. In the first
section of this chapter we listed B(S,R) as an example of a normed linear space. Here we do little
more than observe that the fundamental facts presented in chapter 13 concerning pointwise and
uniform convergence in the space B(S,R) all remain true when the set R is replaced by an arbitrary
normed linear space. It is very easy to generalize these results: replace absolute values by norms.

22.4.1. Definition. Let S be a set and V be a normed linear space. A function f : S → V is
bounded if there exists a number M > 0 such that

‖f(x)‖ ≤M
for all x in S. We denote by B(S, V ) the family of all bounded V valued functions on S.

22.4.2. Exercise. Under the usual pointwise operations B(S, V ) is a vector space. (Solution Q.22.9.)

22.4.3. Definition. Let S be a set and V be a normed linear space. For every f in B(S, V ) define

‖f‖u := sup{‖f(x)‖ : x ∈ S} .
The function f 7→ ‖f‖u is called the uniform norm on B(S, V ). This is the usual norm on B(S, V ).

In the following problem you are asked to show that this function really is a norm. The metric
du induced by the uniform norm ‖ ‖u on B(S, V ) is the uniform metric on B(S, V ).

22.4.4. Problem. Show that the uniform norm defined in 22.4.3 is in fact a norm on B(S, V ).

22.4.5. Definition. Let (fn) be a sequence of functions in F(S, V ). If there is a function g in
F(S, V ) such that

sup{‖fn(x)− g(x)‖ : x ∈ S} → 0 as n→∞,

then we say that the sequence (fn) converges uniformly to g and write fn → g (unif). The
function g is the uniform limit of the sequence (fn). Notice that if g and all the fn’s belong to
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B(S, V ), then uniform convergence of (fn) to g is just convergence of (fn) to g with respect to the
uniform metric. Notice also that the preceding repeats verbatim definition 13.1.12, except that R
has been replaced by V and absolute values by norms. We may similarly generalize definition 13.2.1.

22.4.6. Definition. Let (fn) be a sequence in F(S, V ). If there is a function g such that

fn(x)→ g(x) for all x ∈ S,
then (fn) converges pointwise to g. In this case we write

fn → g (ptws).

The function g is the pointwise limit of the fn’s. Problem 22.4.7 repeats proposition 13.2.2—
uniform convergence implies pointwise convergence—except that it now holds for V valued functions
(not just real valued ones). Problem 22.4.8 generalizes proposition 13.2.4(a).

22.4.7. Problem. If a sequence (fn) in F(S, V ) converges uniformly to a function g in F(S, V ),
then fn → g (ptws).

22.4.8. Problem. Let fn) be a sequence in B(S, V ) and g be a member of F(S, V ). If fn → g (unif),
then g is bounded.

22.4.9. Problem. Define

f(t) =


(t, 0), if 0 ≤ t ≤ 1;

(1, t− 1) if 1 < t ≤ 2;

(3− t, 1) if 2 < t ≤ 3;

(0, 4− t) if 3 < t ≤ 4.

Regarding f as a member of the space B([0, 4],R2) find ‖f‖u.

22.4.10. Example. If M is a compact metric space, then the family C(M,V ) of all continuous
V -valued functions on M is a normed linear space.

Proof. Problem.

22.4.11. Problem. Let M be a compact metric space. Show that the family C(M,R) of all
continuous real valued functions on M is a unital algebra and that ‖fg‖u ≤ ‖f‖u‖g‖u. Show also
that if A is a subalgebra of C(M,R), then so is A.

22.4.12. Proposition. If (fn) is a sequence of continuous V valued functions on a metric space
M and if this sequence converges uniformly to a V valued function g on M , then g is continuous.

Proof. Problem. Hint. Modify the proof of proposition 14.2.15.





CHAPTER 23

CONTINUITY AND LINEARITY

23.1. BOUNDED LINEAR TRANSFORMATIONS

Normed linear spaces have both algebraic and topological structure. It is therefore natural to be
interested in those functions between normed linear spaces which preserve both types of structure,
that is, which are both linear and continuous. In this section we study such functions.

23.1.1. Definition. A linear transformation T : V →W between normed linear spaces is bounded
if there exists a number M > 0 such that

‖Tx‖ ≤M‖x‖
for all x ∈ V . The family of all bounded linear transformations from V into W is denoted
by B(V,W ).

CAUTION. There is a possibility of confusion. Here we have defined bounded linear transforma-
tions; in section 22.4 we gave a quite different definition for “bounded” as it applies to arbitrary
vector valued functions; and certainly linear transformations are such functions. The likelihood of
becoming confused by these two different notions of boundedness is very small once one has made
the following observation: Except for the zero function, it is impossible for a linear transformation
to be bounded in the sense of section 22.4. (Proof. Let T : V → W be a nonzero linear transfor-
mation between normed linear spaces. Choose a in V so that Ta 6= 0. Then ‖Ta‖ > 0, so that by
the Archimedean principle (proposition J.4.1) the number ‖T (na)‖ = n‖Ta‖ can be made as large
as desired by choosing n sufficiently large. Thus there is certainly no M > 0 such that ‖Tx‖ ≤M
for all x.) Since nonzero linear transformations cannot be bounded in the sense of section 22.4, an
assertion that a linear map is bounded should always be interpreted in the sense of boundedness
introduced in this section.

A function f : S → W , which maps a set S into a normed linear space W , is bounded if and
only if it maps every subset of S into a bounded subset of W . However, a linear map T : V → W
from one normed linear space into another is bounded if and only if it maps every bounded subset
of V into a bounded subset of W .

23.1.2. Proposition. A linear transformation T : V →W between normed linear spaces is bounded
if and only if T→(A) is a bounded subset of W whenever A is a bounded subset of V .

Proof. Problem.

23.1.3. Example. Let T : R2 → R3 : (x, y) 7→ (3x+ y, x− 3y, 4y). It is easily seen that T is linear.
For all (x, y) in R2

‖T (x, y)‖ = ‖(3x+ y, x− 3y, 4y)‖

=
(
(3x+ y)2 + (x− 3y)2 + (4y)2

) 1
2

= (10x2 + 26y2)
1
2

≤
√

26(x2 + y2)
1
2

=
√

26‖(x, y)‖ .
So the linear transformation T is bounded.

137
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Why is boundedness of linear transformations an important concept? Because it turns out to
be equivalent to continuity and is usually easier to establish.

23.1.4. Proposition. Let T : V → W be a linear transformation between normed linear spaces.
The following are equivalent:

(a) T is continuous.
(b) There is at least one point at which T is continuous.
(c) T is continuous at 0.
(d) T is bounded.

Proof. Exercise. Hint. To prove that (c) implies (d) argue by contradiction. Show that for

each n there exists xn in V such that ‖Txn‖ > n‖xn‖. Let yn =
(
n‖xn‖

)−1
xn. Give one argument

to show that the sequence (Tyn) converges to zero as n → ∞. Give another to show that it does
not. (Solution Q.23.1.)

23.1.5. Definition. Let T ∈ B(V,W ) where V and W are normed linear spaces. Define

‖T‖ := inf{M > 0: ‖Tx‖ ≤M‖x‖for all x ∈ V }.
This number is called the norm of T . We show in proposition 23.1.14 that the map T 7→ ‖T‖
really is a norm on B(V,W ).

There are at least four ways to compute the norm of a linear transformation T . Use the
definition or any of the three formulas given in the next lemma.

23.1.6. Lemma. Let T be a bounded linear map between nonzero normed linear spaces. Then

‖T‖ = sup{‖x‖−1 ‖Tx‖ : x 6= 0}
= sup{‖Tu‖ : ‖u‖ = 1}
= sup{‖Tu‖ : ‖u‖ ≤ 1}.

Proof. Exercise. Hint. To obtain the first equality, use the fact that if a subset A of R is
bounded above then supA = inf{M : M is an upper bound for A}. (Solution Q.23.2.)

23.1.7. Corollary. If T ∈ B(V,W ) where V and W are normed linear spaces, then

‖Tx‖ ≤ ‖T‖ ‖x‖
for all x in V .

Proof. By the preceding lemma ‖T‖ ≥ ‖x‖−1‖Tx‖ for all x 6= 0. Thus ‖Tx‖ ≤ ‖T‖ ‖x‖ for
all x. �

The following example shows how to use lemma 23.1.6 (in conjunction with the definition) to
compute the norm of a linear transformation.

23.1.8. Example. Let T be the linear map defined in example 23.1.3. We have already seen that
‖T (x, y)‖ ≤

√
26‖(x, y)‖ for all (x, y) in R2. Since ‖T‖ is defined to be the infimum of the set of all

numbers M such that ‖T (x, y)‖ ≤ M‖(x, y)‖ for all (x, y) ∈ R2, and since
√

26 is such a number,
we know that

‖T‖ ≤
√

26 (23.1)

On the other hand lemma 23.1.6 tells us that ‖T‖ is the supremum of the set of all numbers ‖Tu‖
where u is a unit vector. Since (0, 1) is a unit vector and ‖T (0, 1)‖ = ‖(1,−3, 4)‖ =

√
26, we

conclude that
‖T‖ ≥

√
26 (23.2)

Conditions (23.1) and (23.2) imply that ‖T‖ =
√

26.

23.1.9. Problem. Let T : R2 → R3 be the linear transformation defined by T (x, y) = (3x, x +
2y, x− 2y). Find ‖T‖.
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23.1.10. Problem. Let T : R3 → R4 : x 7→ (x1 − 4x2, 2x1 + 3x3, x1 + 4x2, x1 − 6x3). Find ‖T‖.

23.1.11. Exercise. Find the norm of each of the following.

(a) The identity map on a normed linear space.
(b) The zero map in B(V,W ).
(c) A coordinate projection πk : V1 × V2 → Vk (k = 1, 2) where V1 and V2 are nontrivial

normed linear spaces (that is, normed linear spaces which contain vectors other than the
zero vector.)

(Solution Q.23.3.)

23.1.12. Exercise. Let C = C([a, b],R). Define J : C → R by

Jf =

∫ b

a
f(x) dx .

Show that J ∈ B(C,R) and find ‖J‖. (Solution Q.23.4.)

23.1.13. Problem. Let C1 and C be as in problem 21.1.23. Let D be the differentiation operator

D : C1 → C : f 7→ f ′

(where f ′ is the derivative of f). Let both C1 and C have the uniform norm. Is the linear transfor-
mation D bounded? Hint. Let [a, b] = [0, 1] and consider the functions fn(x) = xn for n ∈ N and
0 ≤ x ≤ 1.

Next we show that the set B(V,W ) of all bounded linear transformations between two normed
linear spaces is itself a normed linear space.

23.1.14. Proposition. If V and W are normed linear spaces then under pointwise operations
B(V,W ) is a vector space and the map T 7→ ‖T‖ from B(V,W ) into R defined above is a norm on
B(V,W ).

Proof. Exercise. (Solution Q.23.5.)

One obvious fact that we state for future reference is that the composite of bounded linear
transformations is bounded and linear.

23.1.15. Proposition. If S ∈ B(U, V ) and T ∈ B(V,W ), then TS ∈ B(U,W ) and ‖TS‖ ≤
‖T‖ ‖S‖

Proof. Exercise. (Solution Q.23.6.)

In propositions 21.1.16 and 21.1.17 we saw that the kernel and range of a linear map T are
vector subspaces, respectively, of the domain and codomain of T . It is interesting to note that the
kernel is always a closed subspace while the range need not be.

23.1.16. Proposition. If V and W are normed linear spaces and T ∈ B(V,W ), then kerT is a
closed linear subspace of V .

Proof. Problem.

23.1.17. Example. Let c0 be the vector space of all sequences x of real numbers (with pointwise
operations) which converge to zero. Give c0 the uniform norm (see example 22.1.9 so that for every
x ∈ c0

‖x‖u = sup{xk : k ∈ N} .
The family l of sequences of real numbers which have only finitely many nonzero coordinates is a
vector subspace of c0, but it is not a closed subspace. Thus the range of the inclusion map of l into
c0 does not have closed range.

Proof. Problem.
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In general the calculus of infinite dimensional spaces is no more complicated than calculus on
Rn. One respect in which the Euclidean spaces Rn turn out to be simpler, however, is the fact that
every linear map from Rn into Rm is automatically continuous. Between finite dimensional spaces
there are no discontinuous linear maps. And this is true regardless of the particular norms placed
on these spaces.

23.1.18. Proposition. Let Rn and Rm have any norms whatever. If T : Rn → Rm is linear, then
it is continuous.

Proof. Problem. Hint. Let
[
tjk
]

= [T ] be the matrix representation of T and

M = max{
∣∣tjk∣∣ : 1 ≤ j ≤ m and 1 ≤ k ≤ n} .

Let Rmu be Rm provided with the uniform norm

‖x‖u := max{|xk| : 1 ≤ k ≤ m}

and Rn1 be Rn equipped with the norm

‖x‖1 :=
n∑
k=1

|xk| .

Show that T regarded as a map from Rn1 to Rmu is bounded (with ‖T‖ ≤ M). Then use prob-
lem 22.3.21.

23.1.19. Problem. Let V and W be normed linear spaces and x ∈ V . Define a map Ex (called
evaluation at x) by

Ex : B(V,W )→W : T 7→ Tx .

Show that Ex ∈ B
(
B(V,W ),W

)
and that ‖Ex‖ ≤ ‖x‖.

23.1.20. Problem. What changes in the preceding problem if we let M be a compact metric
space and W be a nonzero normed linear space and consider the evaluation map Ex : C(M,W )→
W : f 7→ f(x)?

23.1.21. Problem. Let S be a nonempty set and T : V →W be a bounded linear transformation
between normed linear spaces. Define a function CT on the normed linear space B(S, V ) by

CT (f) := T ◦ f

for all f in B(S, V ).

(a) Show that CT (f) belongs to B(S,W ) whenever f is a member of B(S, V ).
(b) Show that the map CT : B(S, V )→ B(S,W ) is linear and continuous.
(c) Find ‖CT ‖.
(d) Show that if fn → g (unif) in B(S, V ), then T ◦ fn → T ◦ g (unif) in B(S,W ).
(e) Show that CT is injective if and only if T is.

23.1.22. Problem. Let M and N be compact metric spaces and φ : M → N be continuous. Define
Tφ on C(N,R) by

Tφ(g) := g ◦ φ
for all g in C(N,R).

(a) Tφ maps C(N,R) into C(M,R).
(b) Tφ is a bounded linear transformation.
(c) ‖Tφ‖ = 1.
(d) If φ is surjective, then Tφ is injective.
(e) If Tφ is injective, then φ is surjective. Hint. Suppose φ is not surjective. Choose y in

N \ ranφ. Show that problem 14.1.31 can be applied to the sets {y} and ranφ.
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(f) If Tφ is surjective, then φ is injective. Hint. Here again problem 14.1.31 is useful. [It is
also true that if φ is injective, then Tφ is surjective. But more machinery is needed before
we can prove this.]

23.1.23. Problem. Let (Sk) be a sequence in B(V,W ) and U be a member of B(W,X) where
V , W , and X are normed linear spaces. If Sk → T in B(V,W ), then USk → UT . Also, state and
prove a similar result whose conclusion is, “then SkU → TU .”

23.1.24. Definition. A family T of linear maps from a vector space into itself is a commuting
family if ST = TS for all S, T ∈ T.

23.1.25. Problem (Markov-Kakutani Fixed Point Theorem). Prove: If T is a commuting family
of bounded linear maps from a normed linear space V into itself and K is a nonempty convex
compact subset of V which is mapped into itself by every member of T, then there is at least one
point in K which is fixed under every member of T. Hint. For every T in T and n in N define

Tn = n−1
n−1∑
j=0

T j

(where T 0 := I). Let U = {Tn : T ∈ T and n ∈ N}. Show that U is a commuting family of bounded
linear maps on V each of which maps K into itself and that if U1, . . . , Un ∈ U, then

(U1 . . . Un)→(K) ⊆
n⋂
j=1

U→j (K) .

Let C = {U→(K) : U ∈ U} and use problem 15.3.2 to show that
⋂
C 6= ∅.

Finally, show that every element of
⋂
C is fixed under each T in T; that is, if a ∈

⋂
C and

T ∈ T, then Ta = a. To this end argue that for every n ∈ N there exists cn ∈ K such that a = Tncn
and therefore Ta− a belongs to n−1(K −K) for each n. Use problems 22.3.10 and 15.1.5 to show
that every neighborhood of 0 contains, for sufficiently large n, sets of the form n−1(K −K). What
do these last two observations say about Ta− a?

23.2. THE STONE-WEIERSTRASS THEOREM

In example 15.3.5 we found that the square root function can be uniformly approximated on
[0, 1] by polynomials. In this section we prove the remarkable Weierstrass approximation theorem
which says that every continuous real valued function can be uniformly approximated on compact
intervals by polynomials. We will in fact prove an even stronger result due to M. H. Stone which
generalizes the Weierstrass theorem to arbitrary compact metric spaces.

23.2.1. Proposition. Let A be a subalgebra of C(M,R) where M is a compact metric space. If
f ∈ A, then |f | ∈ A.

Proof. Exercise. Hint. Let (pn) be a sequence of polynomials converging uniformly on [0, 1]
to the square root function. (See 15.3.5.) What can you say about the sequence (pn ◦ g2) where
g = f/‖f‖ ? (Solution Q.23.7.)

23.2.2. Corollary. If A is a subalgebra of C(M,R) where M is a compact metric space, and if f ,
g ∈ A, then f ∨ g and f ∧ g belong to A.

Proof. As in the solution to problem 14.2.10, write f ∨ g = 1
2(f + g + |f − g|) and f ∧ g =

1
2(f + g − |f − g|); then apply the preceding proposition. �

23.2.3. Definition. A family F of real valued functions defined on a set S is a separating family
if corresponding to every pair of distinct points x and y and S there is a function f in F such that
f(x) 6= f(y). In this circumstance we may also say that the family F separates points of S.
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23.2.4. Proposition. Let A be a separating unital subalgebra of C(M,R) where M is a compact
metric space. If a and b are distinct points in M and α, β ∈ R, then there exists a function f ∈ A
such that f(a) = α and f(b) = β.

Proof. Problem. Hint. Let g be any member of A such that g(a) 6= g(b). Notice that if k
is a constant, then the function f : x 7→ α + k(g(x) − g(a)) satisfies f(a) = α. Choose k so that
f(b) = β.

Suppose that M is a compact metric space. The Stone-Weierstrass theorem says that any
separating unital subalgebra of the algebra of continuous real valued functions on M is dense.
That is, if A is such a subalgebra, then we can approximate each function f ∈ C(M,R) arbitrarily
closely by members of A. The proof falls rather naturally into two steps. First (in lemma 23.2.5)
we find a function in A which does not exceed f by much; precisely, given a ∈ M and ε > 0 we
find a function g in A which agrees with f at a and satisfies g(x) < f(x) + ε elsewhere. Then (in
theorem 23.2.6) given ε > 0 we find h ∈ A such that f(x)− ε < h(x) < f(x) + ε.

23.2.5. Lemma. Let A be a unital separating subalgebra of C(M,R) where M is a compact metric
space. For every f ∈ C(M,R), every a ∈ M , and every ε > 0 there exists a function g ∈ A such
that g(a) = f(a) and g(x) < f(x) + ε for all x ∈M .

Proof. Exercise. Hint. For each y ∈ M find a function φy which agrees with f at a and at
y. Then φy(x) < f(x) + ε for all x in some neighborhood Uy of y. Find finitely many of these
neighborhoods Uy1 , . . . , Uyn which cover M . Let g = φy1 ∧ · · · ∧ φyn . (Solution Q.23.8.)

23.2.6. Theorem (Stone-Weierstrass Theorem). Let A be a unital separating subalgebra of C(M,R)
where M is a compact metric space. Then A is dense in C(M,R).

Proof. All we need to show is that C(M,R) ⊆ A. So we choose f ∈ C(M,R) and try to
show that f ∈ A. It will be enough to show that for every ε > 0 we can find a function h ∈ A
such that ‖f − h‖u < ε. [Reason: then f belongs to A (by proposition11.1.22) and therefore to A
(by 10.3.2(b)).]

Let ε > 0. For each x ∈M we may, according to lemma 23.2.5, choose a function gx ∈ A such
that gx(x) = f(x) and

gx(y) < f(y) + ε (23.3)

for every y ∈M . Since both f and gx are continuous and they agree at x, there exists an open set
Ux containing x such that

f(y) < gx(y) + ε (23.4)

for every y ∈ Ux. (Why?)
Since the family {Ux : x ∈ M} covers M and M is compact, there exist points x1, . . . , xn in

M such that {Ux1 , . . . Uxn} covers M . Let h = gx1 ∨ · · · ∨ gxn . We know from 22.4.11 that A is a

subalgebra of C(M,R). So according to corollary 23.2.2, h ∈ A = A.
By inequality (23.3)

gxk(y) < f(y) + ε

holds for all y ∈M and 1 ≤ k ≤ n. Thus

h(y) < f(y) + ε (23.5)

for all y ∈M . Each y ∈M belongs to at least one of the open sets Uxk . Thus by (23.4)

f(y) < gxk(y) + ε < h(y) + ε (23.6)

for every y ∈M . Together (23.5) and (23.6) show that

−ε < f(y)− h(y) < ε

for all y ∈M . That is, ‖f − h‖u < ε. �
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23.2.7. Problem. Give the missing reason for inequality (23.4) in the preceding proof.

23.2.8. Theorem (Weierstrass Approximation Theorem). Every continuous real valued function
on [a, b] can be uniformly approximated by polynomials.

Proof. Problem.

23.2.9. Problem. Let G be the set of all functions f in C
(

[0, 1]
)

such that f is differentiable on

(0, 1) and f ′(12) = 0. Show that G is dense in C
(

[0, 1]
)
.

23.2.10. Proposition. If M is a closed and bounded subset of R, then the normed linear space
C(M,R) is separable.

Proof. Problem.

23.3. BANACH SPACES

23.3.1. Definition. A Banach space is a normed linear space which is complete with respect to
the metric induced by its norm.

23.3.2. Example. In example 18.2.2 we saw that R is complete; so it is a Banach space.

23.3.3. Example. In example 18.2.11 it was shown that the space Rn is complete with respect to
the Euclidean norm. Since all norms on Rn are equivalent (problem 22.3.21) and since completeness
of a space is not affected by changing to an equivalent metric (proposition 18.2.10), we conclude
that Rn is a Banach space under all possible norms.

23.3.4. Example. If S is a nonempty set, then (under the uniform norm) B(S,R) is a Banach
space (see example 18.2.12).

23.3.5. Example. If M is a compact metric space, then (under the uniform norm) C(M,R) is a
Banach space (see example 18.2.13).

At the beginning of section 22.3 we listed 4 ways of making new normed linear spaces from old
ones. Under what circumstances do these new spaces turn out to be Banach spaces?

(i) A closed vector subspace of a Banach space is a Banach space. (See proposition 18.2.8.)
(ii) The product of two Banach space is a Banach space. (See proposition 18.2.9.)
(iii) If S is a nonempty set and E is a Banach space, then B(S,E) is a Banach space. (See

problem 23.3.7.)
(iv) If V is a normed linear space and F is a Banach space, then B(V, F ) is a Banach space.

(See the following proposition.)

23.3.6. Proposition. Let V and W be normed linear spaces. Then B(V,W ) is complete if W is.

Proof. Exercise. Hint. Show that if (Tn) is a Cauchy sequence in B(V,W ), then lim
n→∞

Tnx

exists for every x in V . Let Sx = lim
n→∞

Tnx. Show that the map S : x 7→ Sx is linear. If ε > 0 then

for m and n sufficiently large ‖Tm − Tn‖ < 1
2ε. For such m and n show that

‖Sx− Tnx‖ ≤ ‖Sx− Tmx‖+ 1
2ε‖x‖

and conclude from this that S is bounded and that Tn → S in B(V,W ). (Solution Q.23.9.)

23.3.7. Problem. Let S be a nonempty set and V be a normed linear space. If V is complete, so
is B(S, V ). Hint. Make suitable modifications in the proof of example 18.2.12.

23.3.8. Problem. Let M be a compact metric space and V be a normed linear space. If V is
complete so is C(M,V ). Hint. Use proposition 22.4.12.
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23.3.9. Problem. Let m be the set of all bounded sequences of real numbers. (That is, a sequence
(x1, x2, . . . ) of real numbers belongs to m provided that there exists a constant M > 0 such that
|xk| ≤M for all k ∈ N.) If x = (xk) and y = (yk) belong to m and α is a scalar define

x+ y = (x1 + y1, x2 + y2, . . . )

and
αx = (αx1, αx2, . . . ) .

Also, for each sequence x in m define

‖x‖u = sup{|xk| : k ∈ N} .
(a) Show that m is a Banach space. Hint. The proof should be very short. This is a special

case of a previous example.
(b) The space m is not separable.
(c) The closed unit ball of the space m is closed and bounded but not compact.

23.4. DUAL SPACES AND ADJOINTS

In this section U , V , and W are normed linear spaces.

Particularly important among the spaces of bounded linear transformations introduced in sec-
tion 23.1 are those consisting of maps from a space V into its scalar field R. The space B(V,R) is
the dual space of V and is usually denoted by V ∗. Members of V ∗ are called bounded linear
functionals. (When the word “function” is given the suffix “al” we understand that the function
is scalar valued.)

23.4.1. Example. Let f : R3 → R : (x, y, z) 7→ x + y + z. Then f is a member of (R3)∗. (It is
obviously linear and is bounded by proposition 23.1.18.)

23.4.2. Example. The familiar Riemann integral of beginning calculus is a bounded linear func-
tional on the space C = C([a, b],R). That is, the functional J defined in exercise 23.1.12 belongs
to C∗.

23.4.3. Example. Let M be a compact metric space and C = C(M,R). For each x in M the
evaluation functional Ex : f 7→ f(x) belongs to C∗. (Take W = R in problem 23.1.20.)

23.4.4. Definition. Let T ∈ B(V,W ). Define T ∗ by T ∗(g) = g ◦ T for every g in W ∗. The map
T ∗ is the adjoint of T . In the next two propositions and problem 23.4.7 we state only the most
elementary properties of the adjoint map T 7→ T ∗. We will see more of it later.

23.4.5. Proposition. If T ∈ B(V,W ), then T ∗ maps W ∗ into V ∗. Furthermore, if g ∈W ∗, then
‖T ∗g‖ ≤ ‖T‖ ‖g‖.

Proof. Exercise. (Solution Q.23.10.)

23.4.6. Proposition. Let S ∈ B(U, V ), T ∈ B(V,W ), and IV be the identity map on V . Then

(a) T ∗ belongs to B(W ∗, V ∗) and ‖T ∗‖ ≤ ‖T‖;
(b) (IV )∗ is IV ∗, the identity map on V ∗; and
(c) (TS)∗ = S∗T ∗.

Proof. Problem.

23.4.7. Problem. The adjoint map T 7→ T ∗ from B(V,W ) into B(W ∗, V ∗) is itself a bounded
linear transformation, and it has norm not exceeding 1.



CHAPTER 24

THE CAUCHY INTEGRAL

In this chapter we develop a theory of integration for vector valued functions. In one way our
integral, the Cauchy integral, will be more general and in another way slightly less general than
the classical Riemann integral, which is presented in beginning calculus. The Riemann integral is
problematic: the derivation of its properties is considerably more complicated than the correspond-
ing derivation for the Cauchy integral. But very little added generality is obtained as a reward
for the extra work. On the other hand the Riemann integral is not nearly general enough for
advanced work in analysis; there the full power of the Lebesgue integral is needed. Before starting
our discussion of integration we derive some standard facts concerning uniform continuity.

24.1. UNIFORM CONTINUITY

24.1.1. Definition. A function f : M1 → M2 between metric spaces is uniformly continuous
if for every ε > 0 there exists δ > 0 such that d(f(x), f(y)) < ε whenever d(x, y) < δ.

Compare the definitions of “continuity” and “uniform continuity”. A function f : M1 →M2 is
continuous if

∀a ∈M1 ∀ε > 0 ∃δ > 0 ∀x ∈M1 d(x, a) < δ =⇒ d(f(x), f(a)) < ε .

We may just as well write this reversing the order of the first two (universal) quantifiers.

∀ε > 0 ∀a ∈M1 ∃δ > 0 ∀x ∈M1 d(x, a) < δ =⇒ d(f(x), f(a)) < ε .

The function f is uniformly continuous if

∀ε > 0 ∃δ > 0 ∀a ∈M1 ∀x ∈M1 d(x, a) < δ =⇒ d(f(x), f(a)) < ε .

Thus the difference between continuity and uniform continuity is the order of two quantifiers. This
makes the following result obvious.

24.1.2. Proposition. Every uniformly continuous function between metric spaces is continuous.

24.1.3. Example. The function f : R→ R : x 7→ 3x− 4 is uniformly continuous.

Proof. Given ε > 0, choose δ = ε/3. If |x−y| < δ, then |f(x)−f(y)| = |(3x−4)− (3y−4)| =
3|x− y| < 3δ = ε. �

24.1.4. Example. The function f : [1,∞)→ R : x 7→ x−1 is uniformly continuous.

Proof. Exercise. (Solution Q.24.1.)

24.1.5. Example. The function g : (0, 1]→ R : x 7→ x−1 is not uniformly continuous.

Proof. Exercise. (Solution Q.24.2.)

24.1.6. Problem. Let M be an arbitrary positive number. The function

f : [0,M ]→ R : x 7→ x2

is uniformly continuous. Prove this assertion using only the definition of “uniform continuity”.

24.1.7. Problem. The function
g : [0,∞)→ R : x 7→ x2

is not uniformly continuous.

145
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24.1.8. Proposition. Norms on vector spaces are always uniformly continuous.

Proof. Problem.

We have already seen in proposition 24.1.2 that uniform continuity implies continuity. Ex-
ample 24.1.5 shows that the converse is not true in general. There are however two special (and
important!) cases where the concepts coincide. One is linear maps between normed linear spaces,
and the other is functions defined on compact metric spaces.

24.1.9. Proposition. A linear transformation between normed linear spaces is continuous if and
only if it is uniformly continuous.

Proof. Problem.

Of course, the preceding result does not hold in general metric spaces (where “linearity” makes
no sense). The next proposition, for which we give a preparatory lemma, is a metric space result.

24.1.10. Lemma. Let (xn) and (yn) be sequences in a compact metric space. If d(xn, yn)→ 0 as
n→∞, then there exist convergent subsequences of (xn) and (yn) which have the same limit.

Proof. Exercise. (Solution Q.24.3.)

24.1.11. Proposition. Let M1 be a compact metric space and M2 be an arbitrary metric space.
Every continuous function f : M1 →M2 is uniformly continuous.

Proof. Exercise. (Solution Q.24.4.)

In section 24.3 of this chapter, where we define the Cauchy integral, an important step in the
development is the extension of the integral from an exceedingly simple class of functions, the step
functions, to a class of functions large enough to contain all the continuous functions. The two
basic ingredients of this extension are the density of the step functions in the large class and the
uniform continuity of the integral. Theorem 24.1.15 below is the crucial result which allows this
extension. First, two preliminary results.

24.1.12. Proposition. If f : M1 →M2 is a uniformly continuous map between two metric spaces
and (xn) is a Cauchy sequence in M1, then

(
f(xn)

)
is a Cauchy sequence in M2.

Proof. Problem.

24.1.13. Problem. Show by example that proposition 24.1.12 is no longer true if the word “uni-
formly” is deleted .

24.1.14. Lemma. Let M1 and M2 be metric spaces, S ⊆ M1, and f : S → M2 be uniformly
continuous. If two sequences (xn) and (yn) in S converge to the same limit in M1 and if the
sequence

(
f(xn)

)
converges, then the sequence

(
f(yn)

)
converges and lim f(xn) = lim f(yn).

Proof. Exercise. Hint. Consider the “interlaced” sequence

(x1, y1, x2, y2, x3, y3, . . . ) .

(Solution Q.24.5.)

We are now in a position to show that a uniformly continuous map f from a subset of a metric
space into a complete metric space can be extended in a unique fashion to a continuous function
on the closure of the domain of f .

24.1.15. Theorem. Let M1 and M2 be metric spaces, S a subset of M1, and f : S → M2. If f
is uniformly continuous and M2 is complete, then there exists a unique continuous extension of f
to S. Furthermore, this extension is uniformly continuous.

Proof. Problem. Hint. Define g : S →M2 by g(a) = lim f(xn) where (xn) is a sequence in S
converging to a. First show that g is well defined. To this end you must show that
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(i) lim f(xn) does exist, and
(ii) the value assigned to g at a does not depend on the particular sequence (xn) chosen. That

is, if xn → a and yn → a, then lim f(xn) = lim f(yn).

Next show that g is an extension of f .
To establish the uniform continuity of g, let a and b be points in S. If (xn) is a sequence in

S converging to a, then f(xn) → g(a). This implies that both d(xj , a) and d
(
f(xj), g(a)

)
can be

made as small as we please by choosing j sufficiently large. A similar remark holds for a sequence
(yn) in S which converges to b. From this show that xj is arbitrarily close to yk (for large j and k)
provided we assume that a is sufficiently close to b. Use this in turn to show that g(a) is arbitrarily
close to g(b) when a and b are sufficiently close.

The uniqueness argument is very easy.

24.1.16. Proposition. Let f : M → N be a continuous bijection between metric spaces. If M is
complete and f−1 is uniformly continuous, then N is complete.

Proof. Problem.

24.2. THE INTEGRAL OF STEP FUNCTIONS

Throughout this section E is a Banach space.

24.2.1. Definition. An (n+ 1)-tuple (t0, t1, . . . , tn) of real numbers is a partition of the interval
[a, b] in R provided that

(i) t0 = a,
(ii) tn = b, and
(iii) tk−1 < tk for 1 ≤ k ≤ n.

If P = (s0, . . . , sm) and Q = (t0, . . . , tn) are partitions of the same interval [a, b] and if

{s0, . . . , sm} ⊆ {t0, . . . , tn}

then we say that Q is a refinement of P and we write P � Q.
Let P = (s0, . . . , sm), Q = (t0, . . . , tn), and R = (u0, . . . , up) be partitions of [a, b] ⊆ R. If

{u0, . . . , up} = {s0, . . . , sm} ∪ {t0, . . . , tn}

then R is the smallest common refinement of P and Q and is denoted by P ∨ Q. It is clear
that P ∨Q is the partition with fewest points which is a refinement of both P and Q.

24.2.2. Exercise. Consider partitions P =
(
0, 14 ,

1
3 ,

1
2 ,

2
3 ,

3
4 , 1
)

and Q =
(
0, 15 ,

1
3 ,

2
3 ,

5
6 , 1
)

of [0, 1].
Find P ∨Q. (Solution Q.24.6.)

24.2.3. Definition. Let S be a set and A be a subset of S. We define χ
A

: S → R, the charac-
teristic function of A, by

χ
A

(x) =

{
1, if x ∈ A
0, if x ∈ Ac.

If E is a Banach space, then a function σ : [a, b] → E is an E valued step function on the
interval [a, b] if

(i) ranσ is finite and
(ii) for every x ∈ ranσ the set σ←({x}) is the union of finitely many subintervals of [a, b].

We denote by S([a, b], E) the family of all E valued step functions defined on [a, b]. Notice that
S([a, b], E) is a vector subspace of B([a, b], E).
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It is not difficult to see that σ : [a, b]→ E is a step function if and only if there exists a partition
(t0, . . . , tn) of [a, b] such that σ is constant on each of the open subintervals (tk−1, tk). If, in addition,
we insist that σ be discontinuous at each of the points t1, . . . , tn−1, then this partition is unique.
Thus we speak of the partition associated with (or induced by) a step function σ.

24.2.4. Notation. Let σ be a step function on [a, b] and P = (t0, . . . , tn) be a partition of [a, b]
which is a refinement of the partition associated with σ. We define

σP = (x1, . . . , xn)

where xk is the value of σ on the open interval (tk−1, tk) for 1 ≤ k ≤ n.

24.2.5. Exercise. Define σ : [0, 5]→ R by

σ = χ
[1,4]
− χ

(2,5]
− χ{4} − 2χ

[2,3)
− χ

[1,2)
+ χ

[4,5)
.

(a) Find the partition P associated with σ.
(b) Find σQ where Q = (0, 1, 2, 3, 4, 5).

(Solution Q.24.7.)

24.2.6. Definition. Let σ be an E valued step function on [a, b] and (t0, . . . , tn) be the partition
associated with σ. For 1 ≤ k ≤ n let ∆tk = tk − tk−1 and xk be the value of σ on the subinterval
(tk−1, tk). Define ∫

σ :=

n∑
k=1

(∆tk)xk .

The vector
∫
σ is the integral of σ over [a, b]. Other standard notations for

∫
σ are

∫ b
a σ

and
∫ b
a σ(t) dt.

24.2.7. Exercise. Find
∫ 5
0 σ where σ is the step function given in exercise 24.2.5. (Solution Q.24.8.)

24.2.8. Problem. Let σ : [0, 10]→ R be defined by

σ = 2χ
[1,5)
− 3χ

[2,8)
− 5χ{6} + χ

[4,10]
+ 4χ

[9,10]
.

(a) Find the partition associated with σ.
(b) If Q = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), what is σQ?
(c) Find

∫
σ.

The next lemma is essentially obvious, but it is good practice to write out a proof anyway. It
says that in computing the integral of a step function σ it doesn’t matter whether we work with
the partition induced by σ or with a refinement of that partition.

24.2.9. Lemma. Let σ be an E valued step function on [a, b]. If Q = (u0, . . . , um) is a refinement
of the partition associated with σ and if σQ = (y1, . . . , ym), then∫

σ =
n∑
k=1

(∆uk)yk .

Proof. Exercise. (Solution Q.24.9.)

It follows easily from the preceding lemma that changing the value of a step function at a finite
number of points does not affect the value of its integral. Next we show that for a given interval
the integral is a bounded linear transformation on the family of all E valued step functions on the
interval.
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24.2.10. Proposition. The map ∫
: S([a, b], E)→ E

is bounded and linear with ‖
∫
‖ = b− a. Furthermore,∥∥∥∥∫ σ(t) dt

∥∥∥∥ ≤ ∫ ‖σ(t)‖ dt

for every E valued step function σ on [a, b].

Proof. Problem. Hint. To show that
∫

(σ + τ) =
∫
σ +

∫
τ , let P and Q be the partitions

associated with σ and τ , respectively. Define the partition R = (t0, . . . , tn) to be P ∨Q. Clearly R is
a refinement of the partition associated with σ+τ . Suppose σR = (x1, . . . , xn) and τR = (y1, . . . , yn).
Use lemma 24.2.9 to compute

∫
(σ+ τ). To find ‖

∫
‖ use the definition of the norm of a linear map

and lemma 23.1.6.

We now show that in the case of real valued step functions the integral is a positive linear
functional; that is, it takes positive functions to positive numbers.

24.2.11. Proposition. If σ is a real valued step function on [a, b] and if σ(t) ≥ 0 for all t in [a, b],
then

∫
σ ≥ 0.

Proof. Problem.

24.2.12. Corollary. If σ and τ are real valued step functions on [a, b] and if σ(t) ≤ τ(t) for all t
in [a, b], then

∫
σ ≤

∫
τ .

Proof. Apply the preceding proposition to τ−σ. Then (by 24.2.10)
∫
τ−
∫
σ =

∫
(τ − σ) ≥ 0.

�

Finally we prepare the ground for piecing together and integrating two functions on adjoining
intervals.

24.2.13. Proposition. Let c be an interior point of the interval [a, b]. If τ and ρ are E valued
step functions on the intervals [a, c] and [c, b], respectively, define a function σ : [a, b]→ E by

σ(t) =

{
τ(t), if a ≤ t ≤ c
ρ(t), if c < t ≤ b.

Then σ is an E valued step function on [a, b] and∫ b

a
σ =

∫ c

a
τ +

∫ b

c
ρ .

Proof. Exercise. (Solution Q.24.10.)

Notice that if σ is a step function on [a, b], then τ := σ|[a,c] and ρ := σ|[c,b] are step functions
and by the preceding proposition ∫ b

a
σ =

∫ c

a
τ +

∫ b

c
ρ .

In this context one seldom distinguishes notationally between a function on an interval and the
restriction of that function to a subinterval. Thus (24.2) is usually written∫ b

a
σ =

∫ c

a
σ +

∫ b

c
σ.

24.2.14. Problem. Let σ : [a, b] → E be a step function and T : E → F be a bounded linear
transformation from E into another Banach space F . Then T ◦ σ is an F -valued step function on
[a, b] and ∫

(T ◦ σ) = T
(∫

σ
)
.
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24.3. THE CAUCHY INTEGRAL

We are now ready to extend the integral from the rather limited family of step functions to a
class of functions large enough to contain all continuous functions (in fact, all piecewise continuous
functions).

Following Dieudonné[3] we will call members of this larger class regulated functions.

In this section E will be a Banach space, and a and b real numbers with a < b.

24.3.1. Definition. Recall that the family S = S([a, b], E) of E valued step functions on [a, b] is a
subspace of the normed linear space B = B([a, b], E) of bounded E-valued functions on [a, b]. The
closure S of S in B is the family of regulated functions on [a, b].

It is an interesting fact that the regulated functions on an interval turn out to be exactly those
functions which have one-sided limits at every point of the interval. We will not need this fact, but
a proof may be found in Dieudonné[3].

According to problem22.3.9(b) the set S is a vector subspace of the Banach space B. Since it is
closed in B it is itself a Banach space. It is on this Banach space that we define the Cauchy integral.
The Cauchy integral is not as general as the Riemann integral because the set S is not quite as
large as the set of functions on which the Riemann integral is defined. We do not prove this; nor
do we prove the fact that when both integrals are defined, they agree. What we are interested in
proving is that every continuous function is regulated; that is, every continuous function on [a, b]
belongs to S.

24.3.2. Proposition. Every continuous E-valued function on [a, b] is regulated.

Proof. Exercise. Hint. Use proposition 24.1.11. (Solution Q.24.11.)

It is not difficult to modify the preceding proof to show that every piecewise continuous function
on [a, b] is regulated. (Definition: A function f : [a, b]→ E is piecewise continuous if there exists
a partition (t0, . . . , tn) of [a, b] such that f is continuous on each subinterval (tk−1, tk).)

24.3.3. Corollary. Every continuous E valued function on [a, b] is the uniform limit of a sequence
of step functions.

Proof. According to problem 12.2.5 a function f belongs to the closure of S if and only if
there is a sequence of step functions which converges (uniformly) to f . �

Now we are ready to define the Cauchy integral of a regulated function.

24.3.4. Definition. Recall that S = S([a, b], E) is a subset of the Banach space B([a, b], E). In
the preceding section we defined the integral of a step function. The map∫

: S → E

was shown to be bounded and linear [proposition 24.2.10]; therefore it is uniformly continuous
[proposition 24.1.9]. Thus [theorem 24.1.15] it has a unique continuous extension to S. This
extension, which we denote also by

∫
, and which is, in fact, uniformly continuous, is the Cauchy

(or Cauchy-Bochner) integral. For f in S we call
∫
f the integral of f (over [a, b]). As

with step functions we may wish to emphasize the domain of f or the role of a particular variable,

in which case we may write
∫ b
a f or

∫ b
a f(t) dt for

∫
f .

24.3.5. Problem. Use the definition of the Cauchy integral to show that
∫ 1
0 x

2 dx = 1/3. Hint.

Start by finding a sequence of step functions which converges uniformly to the function x 7→ x2.
The proof of proposition 24.3.2 may help; so also may problem I.1.15.
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Most of the properties of the Cauchy integral are derived from the corresponding properties of
the integral of step functions by taking limits. In the remainder of this section it is well to keep
in mind one aspect of theorem 24.1.15 (and its proof): When a uniformly continuous function f is
extended from a set S to a function g on its closure S, the value of g at a point a in S is the limit
of the values f(xn) where (xn) is any sequence in S which converges to a. What does this say in
the present context? If h is a regulated function, then there exists a sequence (σn) of step functions
converging uniformly to h and furthermore∫

h = lim
n→∞

∫
σn .

We use this fact repeatedly without explicit reference.
One more simple fact is worthy of notice. Following lemma 24.2.9 we remarked that changing

the value of a step function at finitely many points does not affect the value of its integral. The
same is true of regulated functions. [Proof. Certainly it suffices to show that changing the value
of a regulated function f at a single point c does not alter the value of

∫
f . Suppose (σn) is a

sequence of step functions converging uniformly to f . Also suppose that g differs from f only at c.
Replace each step function σn by a function τn which is equal to σn at each point other than c and
whose value at c is g(c). Then τn → g (unif) and (by the comment in the preceding paragraph)∫
g = lim

∫
τn = lim

∫
σn =

∫
f.]

The following theorem (and proposition 24.3.10) generalize proposition 24.2.10.

24.3.6. Theorem. The Cauchy integral is a bounded linear transformation which maps the space
of E valued regulated functions on [a, b] into the space E.

Proof. Exercise. (Solution Q.24.12.)

Next we show that for real valued functions the Cauchy integral is a positive linear functional.
This generalizes proposition 24.2.11.

24.3.7. Proposition. Let f be a regulated real valued function on [a, b]. If f(t) ≥ 0 for all t in
[a, b], then

∫
f ≥ 0.

Proof. Problem. Hint. Suppose that f(t) ≥ 0 for all t in [a, b] and that (σn) is a sequence of
real valued step functions converging uniformly to f . For each n ∈ N define

σ+n : [a, b]→ R : t 7→ max{σn(t), 0} .
Show that (σ+n ) is a sequence of step functions converging uniformly to f . Then use proposi-
tion 24.2.11.

24.3.8. Corollary. If f and g are regulated real valued functions on [a, b] and if f(t) ≤ g(t) for all
t in [a, b], then

∫
f ≤

∫
g.

Proof. Problem.

24.3.9. Proposition. Let f : [a, b]→ E be a regulated function and (σn) be a sequence of E-valued
step functions converging uniformly to f . Then∥∥∥∥∫ f

∥∥∥∥ = lim

∥∥∥∥∫ σn

∥∥∥∥ .
Furthermore, if g(t) = ‖f(t)‖ for all t in [a, b] and τn(t) = ‖σn(t)‖ for all n in N and t in [a, b], then
(τn) is a sequence of real valued step functions which converges uniformly to g and

∫
g = lim

∫
τn.

Proof. Problem.

24.3.10. Proposition. Let f be a regulated E valued function on [a, b]. Then∥∥∥∥∫ f

∥∥∥∥ ≤ ∫ ‖f(t)‖ dt
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and therefore ∥∥∥∥∫ f

∥∥∥∥ ≤ (b− a)‖f‖u .

Thus ∥∥∥∥∫ ∥∥∥∥ = b− a

where
∫

: S → E is the Cauchy integral and S is the family of regulated E valued functions on the
interval [a, b].

Proof. Problem.

24.3.11. Problem. Explain in one or two brief sentences why the following is obvious: If (fn)
is a sequence of E-valued regulated functions on [a, b] which converges uniformly to g, then g is
regulated and

∫
g = lim

∫
fn.

24.3.12. Problem. Let σ, τ : [0, 3]→ R be the step functions defined by

σ = χ
[0,2]

and τ = χ
[0,2]

+ 2χ
(2,3]

.

Recall from appendix N that the function (σ, τ) : [0, 3] → R2 is defined by (σ, τ)(t) =
(
σ(t), τ(t)

)
for 0 ≤ t ≤ 3. It is clear that (σ, τ) is a step function.

(a) Find the partition R associated with (σ, τ). Find (σ, τ)R. Make a careful sketch of (σ, τ).
(b) Find

∫
(σ, τ).

24.3.13. Problem. Same as preceding problem except let σ = χ
[0,1]

.

We now generalize proposition 24.2.13 to regulated functions on adjoining intervals.

24.3.14. Proposition. Let c be an interior point of the interval [a, b]. If g and h are regulated
E-valued functions on the intervals [a, c] and [c, b], respectively, define a function f : [a, b]→ E by

f(t) =

{
g(t), if a ≤ c ≤ c
h(t), if c < t ≤ b.

Then f is a regulated function on [a, b] and∫ b

a
f =

∫ c

a
g +

∫ b

c
h .

Proof. Problem.

As was remarked after proposition 24.2.13 it is the usual practice to use the same name for a
function and for its restriction to subintervals. Thus the notation of the next corollary.

24.3.15. Corollary. If f : [a, b] → E is a regulated function and c is an interior point of the
interval [a, b], then ∫ b

a
f =

∫ c

a
f +

∫ b

c
f . (24.1)

Proof. Let g = f |[a,c] and h = f |[c,b]. Notice that g and h are regulated. [If, for example, (σn)
is a sequence of step functions converging uniformly on [a, b] to f , then the step functions σn|[a,c]
converge uniformly on [a, c] to g.] Then apply the preceding proposition. �

It is convenient for formula (24.1) to be correct when a, b, and c are not in increasing order or,
for that matter, even necessarily distinct. This can be achieved by means of a simple notational
convention.
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24.3.16. Definition. For a regulated function f on [a, b] (where a < b) define∫ a

b
f := −

∫ b

a
f .

Furthermore, if g is any function whose domain contains the point a, then∫ a

a
g := 0 .

24.3.17. Corollary. If f is an E valued regulated function whose domain contains an interval to
which the points a, b, and c belong, then∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Proof. The result is obvious if any two of the points a, b, and c coincide; so we suppose that
they are distinct. There are six possible orderings. We check one of these. Suppose c < a < b. By
corollary 24.3.15 ∫ b

c
f =

∫ a

c
f +

∫ b

a
f .

Thus ∫ b

a
f = −

∫ a

c
f +

∫ b

c
f =

∫ c

a
f +

∫ b

c
f .

The remaining five cases are similar. �

Suppose f is an E-valued regulated function and T is a bounded linear map from E into another
Banach space F . It is interesting and useful to know that integration of the composite function
T ◦ f can be achieved simply by integrating f and then applying T . This fact can be expressed
by means of the following commutative diagram. Notation: SE and SF denote, respectively, the
E valued and F valued regulated functions on [a, b]; and CT is the bounded linear transformation
discussed in problem 23.1.21. (CT (f) = T ◦ f for every f .)

SF F∫ //

SE

SF

CT

��

SE E

∫
// E

F

T

��

Alternatively it may be expressed by a formula, as in the next proposition.

24.3.18. Proposition. Let T : E → F be a bounded linear map between Banach spaces and f be
a regulated E valued function on the interval [a, b]. Then T ◦ f is a regulated F valued function on
[a, b] and ∫

(T ◦ f) = T

(∫
f

)
.

Proof. Exercise. Hint. Use problem 24.2.14. (Solution Q.24.13.)

24.3.19. Corollary. If E and F are Banach spaces and

T : [a, b]→ B(E,F ) : t 7→ Tt

is continuous, then for every x in E ∫
Tt(x) dt =

(∫
T

)
(x) .
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Proof. Problem. Hint. For x in E let Ex : B(E,F )→ F be the map (evaluation at x) defined
in problem 23.1.19. Write Tt(x) as (Ex ◦ T )(t) and apply proposition 24.3.18.

24.3.20. Proposition. Let f : [a, b] → R be a regulated function and x ∈ E. For all t in [a, b] let
g(t) = f(t)x. Then g is a regulated E-valued function and

∫
g =

(∫
f
)
x.

Proof. Problem. Hint. Prove the result first for the case f is a step function. Then take
limits. �

24.3.21. Proposition. If f : [a, b]→ E and g : [a, b]→ F are regulated functions whose ranges lie
in Banach spaces, then the function

(f, g) : [a, b]→ E × F : t 7→
(
f(t), g(t)

)
is regulated and ∫

(f, g) =

(∫
f,

∫
g

)
.

Proof. Problem. Hint. Write
∫
f as

∫ (
π1◦(f, g)

)
where π1 : E×F → E is the usual coordinate

projection. Write
∫
g in a similar fashion. Use proposition 24.3.18. Keep in mind that if p is a

point in the product E × F , then p =
(
π1(p), π2(p)

)
.

24.3.22. Proposition. Suppose h : [a, b]→ E×F is a regulated function from [a, b] into the product
of two Banach spaces. Then the components h1 and h2 are regulated functions and∫

h =

(∫
h1,

∫
h2

)
.

Proof. Problem.

24.3.23. Problem. Suppose f : [a, b] → Rn is a regulated function. Express the integral of f in
terms of the integrals of its components f1, . . . , fn. Justify your answer carefully. Hint. When
Rn appears (without further qualification) its norm is assumed to be the usual Euclidean norm.
This is not the product norm. What needs to be done to ensure that the results of the preceding
problem will continue to be true if the product norm on E ×F is replaced by an equivalent norm?

24.3.24. Problem. Suppose T : [0, 1] → B(R2,R2) : t 7→ Tt) is continuous, and suppose that for
each t in [0, 1] the matrix representation of Tt is given by[

Tt
]

=

[
1 t
t2 t3

]
.

Find
[∫
T
]

the matrix representation of
∫
T . Hint. Use 24.3.19, 24.3.20, and 24.3.23.

24.3.25. Problem. For every f in C([a, b], E) define

‖f‖1 =

∫ b

a
‖f(t)‖ dt .

(a) Show that ‖ ‖1 is a norm on C([a, b], E). Hint. In showing that ‖f‖1 = 0 implies f = 0,
proposition 3.3.21 may help.

(b) Are the norms ‖ ‖1 and ‖ ‖u on C([a, b], E) equivalent?
(c) Let C1 be the vector space C([a, b], E) under the norm ‖ ‖1 and Cu be the same vector space

under its usual uniform norm. Does convergence of a sequence in Cu imply convergence
in C1? What about the converse?

24.3.26. Problem. Show that if f ∈ C([0, 1],R) and
∫ 1
0 x

nf(x) dx = 0 for n = 0, 1, 2, . . . , then
f = 0.
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24.3.27. Problem. Find lim
∫ 1
0 x

nf(x) dx∫ 1
0 x

n dx
when f is a continuous real valued function on [0, 1]. Hint.

For each n in N let Ln(f) =
∫ 1
0 x

nf(x) dx∫ 1
0 x

n dx
. Show that Ln is a continuous linear functional on the

space C([0, 1],R) of continuous real valued functions on [0, 1]. What is limn→∞ Ln(p) when p is a
polynomial? Use the Weierstrass approximation theorem 23.2.8.





CHAPTER 25

DIFFERENTIAL CALCULUS

In chapter 8 we studied the calculus of real valued functions of a real variable. We now extend
that study to vector valued functions of a vector variable. The first three sections of this chapter
repeat almost exactly the material in chapter 8. Absolute values are replaced by norms, and linear
maps by continuous linear maps. Other than that there are few differences. In fact, if you have
done chapter 8 carefully you may wish just to glance over the first three sections of this chapter
and move on to section 25.4.

Throughout this chapter V , W , and X (with or
without subscripts) will be normed linear spaces.

25.1. O AND o FUNCTIONS

25.1.1. Notation. Let a ∈ V . We denote by Fa(V,W ) the family of all functions defined on a
neighborhood of a taking values in W . That is, f belongs to Fa(V,W ) if there exists a set U such

that a ∈ U
◦
⊆ dom f ⊆ V and if the image of f is contained in W . We shorten Fa(V,W ) to Fa

when no confusion will result. Notice that for each a ∈ V , the set Fa is closed under addition
and scalar multiplication. (As usual, we define the sum of two functions f and g in Fa to be the
function f + g whose value at x is f(x) + g(x) whenever x belongs to dom f ∩ dom g.) Despite the
closure of Fa under these operations, Fa is not a vector space.

25.1.2. Problem. Let a ∈ V 6= {0}. Prove that Fa(V,W ) is not a vector space.

Among the functions defined on a neighborhood of the zero vector in V are two subfamilies of
crucial importance; they are O(V,W ) (the family of “big-oh” functions) and o(V,W ) (the family
of “little-oh” functions).

25.1.3. Definition. A function f in F0(V,W ) belongs to O(V,W ) if there exist numbers c > 0
and δ > 0 such that

‖f(x)‖ ≤ c ‖x‖
whenever ‖x‖ < δ.

A function f in F0(V,W ) belongs to o(V,W ) if for every c > 0 there exists δ > 0 such that

‖f(x)‖ ≤ c ‖x‖
whenever ‖x‖ < δ. Notice that f belongs to o(V,W ) if and only if f(0) = 0 and

lim
h→0

‖f(h)‖
‖h‖

= 0 .

When no confusion seems likely we will shorten O(V,W ) to O and o(V,W ) to o.

The properties of the families O and o are given in propositions 25.1.4–25.1.9, 25.1.11, and 25.1.12.

25.1.4. Proposition. Every member of o(V,W ) belongs to O(V,W ); so does every member of
B(V,W ). Every member of O(V,W ) is continuous at 0.

Proof. Obvious from the definitions. �
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25.1.5. Proposition. Other than the zero transformation, no bounded linear transformation be-
longs to o.

Proof. Exercise. (Solution Q.25.1.)

25.1.6. Proposition. The family O is closed under addition and scalar multiplication.

Proof. Exercise. (Solution Q.25.2.)

25.1.7. Proposition. The family o is closed under addition and scalar multiplication.

Proof. Problem.

The next two propositions say that the composite of a function in O with one in o (in either
order) ends up in o.

25.1.8. Proposition. If g ∈ O(V,W ) and f ∈ o(W,X), then f ◦ g ∈ o(V,X).

Proof. Problem.

25.1.9. Proposition. If g ∈ o(V,W ) and f ∈ O(W,X), then f ◦ g ∈ o(V,X).

Proof. Exercise. (Solution Q.25.3.)

25.1.10. Notation. In the sequel it will be convenient to multiply vectors not only by scalars but
also by scalar valued functions. If φ is a function in Fa(V,R) and w ∈ W , we define the function
φw by

(φw)(x) = φ(x) · w
for all x in the domain of φ. Clearly, φw belongs to Fa(V,W ).

Similarly, it is useful to multiply vector valued functions by scalar valued functions. If φ ∈
Fa(V,R) and f ∈ Fa(V,W ), we define the function φf by

(φf)(x) = φ(x) · f(x)

for all x in domφ ∩ dom f . Then φf belongs to Fa(V,W ).

25.1.11. Proposition. If φ ∈ o(V,R) and w ∈W , then φw ∈ o(V,W ).

Proof. Exercise. (Solution Q.25.4.)

25.1.12. Proposition. If φ ∈ O(V,R) and f ∈ O(V,W ), then φf ∈ o(V,W ).

Proof. Exercise. (Solution Q.25.5.)

Remark. The list summarizing these facts is almost the same as the one in 8.1. In (1) and (2) the
linear maps L have been replaced by continuous linear maps B; and (7) is new. (As before, C0 is
the set of all functions in F0 which are continuous at 0.)

(1) B ∪ o ⊆ O ⊆ C0 .
(2) B ∩ o = {0} .
(3) O + O ⊆ O ; αO ⊆ O .

(4) o + o ⊆ o ; α o ⊆ o .

(5) o ◦O ⊆ o .

(6) O ◦ o ⊆ o .

(7) o(V,R) ·W ⊆ o(V,W ) .

(8) O(V,R) ·O(V,W ) ⊆ o(V,W ) .

25.1.13. Problem. Find a function in C0(R2,R) \O(R2,R). Also, find a function in O(R2,R) \
o(R2,R).
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25.1.14. Problem. Show that O ◦ O ⊆ O. That is, if g ∈ O(V,W ) and f ∈ O(W,X), then
f ◦ g ∈ O(V,X). (As usual, the domain of f ◦ g is taken to be {x ∈ V : g(x) ∈ dom f}.)

25.1.15. Problem. If f1 ∈ O(V1,W ) and f2 ∈ O(V2,W ), then the function g defined on dom f1×
dom f2 by

g(v1, v2) = f1(v1) + f2(v2)

belongs to O(V1×V2,W ). Hint. The simplest proof never mentions the domain elements v1 and v2.
Instead write g in terms of the projection maps π1 and π2 on V1 × V2, and apply problem 25.1.14.

25.1.16. Problem. If φ ∈ O(V1,R) and f ∈ O(V2,W ), then the function h defined on domφ ×
dom f by

h(v1, v2) = φ(v1) f(v2)

belongs to o(V1 × V2,W ). (Use the hint given in the preceding problem.)

25.1.17. Problem. Show that the membership of the families O(V,W ) and o(V,W ) is not changed
when the norms on the spaces V and W are replaced by equivalent norms.

25.2. TANGENCY

25.2.1. Definition. Two functions f and g in F0(V,W ) are tangent at zero, in which case we
write f ' g, if f − g ∈ o(V,W ).

25.2.2. Proposition. The relation “tangency at zero” is an equivalence relation on F0.

Proof. Exercise. (Solution Q.25.6.)

The next result shows that at most one bounded linear transformation can be tangent at zero
to a given function.

25.2.3. Proposition. Let S, T ∈ B and f ∈ F0. If S ' f and T ' f , then S = T .

Proof. Exercise. (Solution Q.25.7.)

25.2.4. Proposition. If f ' g and j ' k, then f + j ' g + k, and furthermore, αf ' αg for all
α ∈ R.

Proof. Problem.

In the next proposition we see that if two real valued functions are tangent at zero, multiplication
by a vector does not disrupt this relationship. (For notation see 25.1.10.)

25.2.5. Proposition. Let φ, ψ ∈ F0(V,R) and w ∈W . If φ ' ψ, then φw ' ψw.

Proof. Exercise. (Solution Q.25.8.)

25.2.6. Proposition. Let f , g ∈ F0(V,W ) and T ∈ B(W,X). If f ' g, then T ◦ f ' T ◦ g.

Proof. Problem.

25.2.7. Proposition. Let h ∈ O(V,W ) and f , g ∈ F0(W,X). If f ' g, then f ◦ h ' g ◦ h.

Proof. Problem.

25.2.8. Problem. Fix a vector x in V . Define a function Mx : R→ V by

Mx(α) = αx for all α ∈ R.

Notice that Mx ∈ B(R, V ). If f ∈ F0(R, V ) and f 'Mx, then

(a)
f(α)

α
→ x as α→ 0; and

(b) f(α)→ 0 as α→ 0.
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25.2.9. Problem. Each of the following is an abbreviated version of a proposition. Formulate
precisely and prove.

(a) C0 + O ⊆ C0.
(b) C0 + o ⊆ C0.
(c) O + o ⊆ O.

25.2.10. Problem. Suppose that f ' g. Then the following hold.

(a) If g is continuous at 0, so is f .
(b) If g belongs to O, so does f .
(c) If g belongs to o, so does f .

25.3. DIFFERENTIATION

25.3.1. Definition. Let f ∈ Fa(V,W ). Define the function ∆fa by

∆fa(h) ≡ f(a+ h)− f(a)

for all h such that a+ h is in the domain of f . Notice that since f is defined in a neighborhood of
a, the function ∆fa is defined in a neighborhood of 0; that is, ∆fa belongs to F0(V,W ). Notice
also that ∆fa(0) = 0.

25.3.2. Proposition. If f ∈ Fa(V,W ) and α ∈ R, then

∆(αf)a = α∆fa .

Proof. No changes need to be made in the proof of 8.3.3. �

25.3.3. Proposition. If f , g ∈ Fa(V,W ), then

∆(f + g)a = ∆fa + ∆ga .

Proof. The proof given (in the solutions to exercises) for proposition 8.3.4 needs no alteration.
�

25.3.4. Proposition. If φ ∈ Fa(V,R) and f ∈ Fa(V,W ), then

∆(φf)a = φ(a) ·∆fa + ∆φa · f(a) + ∆φa ·∆fa .

Proof. Problem.

25.3.5. Proposition. If f ∈ Fa(V,W ), g ∈ Ff(a)(W,X), and g ◦ f ∈ Fa(V,X), then

∆(g ◦ f)a = ∆g
f(a)
◦∆fa .

Proof. Use the proof given (in the solutions to exercises) for proposition 8.3.6. �

25.3.6. Proposition. A function f : V →W is continuous at the point a in V if and only if ∆fa
is continuous at 0.

Proof. Problem.

25.3.7. Proposition. If f : U → U1 is a bijection between subsets of arbitrary vector spaces, then
for each a in U the function ∆fa : U − a→ U1 − f(a) is invertible and(

∆fa
)−1

= ∆
(
f−1

)
f(a)

.

Proof. Problem.

25.3.8. Definition. Let f ∈ Fa(V,W ). We say that f is differentiable at a if there exists a
bounded linear map which is tangent at 0 to ∆fa. If such a map exists, it is called the differential
of f at a and is denoted by dfa. Thus dfa is just a member of B(V,W ) which satisfies dfa ' ∆fa.
We denote by Da(V,W ) the family of all functions in Fa(V,W ) which are differentiable at a. We
often shorten this to Da.
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25.3.9. Proposition. Let f ∈ Fa(V,W ). If f is differentiable at a, then its differential is unique.
(That is, there is at most one bounded linear map tangent at 0 to ∆fa.)

Proof. Proposition 25.2.3. �

Remark. If f is a function in Fa(V,W ) which is differentiable at a, its differential dfa has three
important properties:

(i) it is linear;
(ii) it is continuous (that is, bounded as a linear map);

(iii) lim
h→0

∆fa(h)− dfa(h)

‖h‖
= 0 .

(An expression of the form
∆fa(h)− dfa(h)

‖h‖
is called a Newton quotient.)

25.3.10. Exercise. Let f(x, y) = 3x2 − xy + 4y2. Show that df(1,−1)(x, y) = 7x − 9y. Interpret
df(1,−1) geometrically. (Solution Q.25.9.)

25.3.11. Exercise. Let

f : R3 → R2 : (x, y, z) 7→ (x2y − 7, 3xz + 4y)

and a = (1,−1, 0). Use the definition of “differential” to find dfa. Hint. Work with the matrix
representation of dfa. Since the differential must belong to B(R3,R2), its matrix representation is a

2× 3 matrix M =

[
r s t
u v w

]
. Use the requirement—condition (iii) of the preceding remark—that

‖h‖−1 ‖∆fa(h)−Mh‖ → 0 as h→ 0 to discover the identity of the entries in M . (Solution Q.25.10.)

25.3.12. Proposition. If f ∈ Da, then ∆fa ∈ O.

Proof. Use the proof given (in the solutions to exercises) for proposition 8.4.8. Since we are
working with bounded linear maps between normed spaces instead of linear maps on R, we must
change L to B. �

25.3.13. Corollary. Every function which is differentiable at a point is continuous there.

Proof. Use the proof given (in the solutions to exercises) for corollary 8.4.9. �

25.3.14. Proposition. If f is differentiable at a and α ∈ R, then αf is differentiable at a and

d(αf)a = αdfa .

Proof. The proof given (in the solutions to exercises) for proposition 8.4.10 works, but three
references need to be changed. (What are the correct references?) �

25.3.15. Proposition. If f and g are differentiable at a, then f + g is differentiable at a and

d(f + g)a = dfa + dga .

Proof. Problem.

25.3.16. Proposition (Leibniz’s Rule). If φ ∈ Da(V,R) and f ∈ Da(V,W ), then φf ∈ Da(V,W )
and

d(φf)a = dφa · f(a) + φ(a) dfa .

Proof. Exercise. (Solution Q.25.11.)

In the chapters of beginning calculus texts devoted to the differential calculus of several vari-
ables, the expression “chain rule” refers most frequently to a potentially infinite collection of related
results concerning the differentiation of composite functions. Several examples such as the following
are usually given:
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Let w = f(x, y, z), x = x(u, v), y = y(u, v), and z = z(u, v). If these functions
are all differentiable, then the function

w = f(x(u, v) , y(u, v) , z(u, v))

is differentiable and

∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u
+
∂w

∂z

∂z

∂u

∂w

∂v
=
∂w

∂x

∂x

∂v
+
∂w

∂y

∂y

∂v
+
∂w

∂z

∂z

∂v

(∗)

Then the reader is encouraged to invent new “chain rules” for functions having different numbers
of variables. Formulations such as (∗) have many shortcomings the most serious of which is a
nearly complete lack of discernible geometric content. The version of the chain rule which we will
prove says that (after a suitable translation) the best linear approximation to the composite of two
functions is the composite of the best linear approximations. In other words, the differential of the
composite is the composite of the differentials. Notice that theorem 25.3.17, where this is stated
formally, is simpler than (∗); it has obvious geometric content; it is a single “rule” rather than a
family of them; and it holds in arbitrary infinite dimensional normed linear spaces as well as in
finite dimensional ones.

25.3.17. Proposition (The Chain Rule.). If f ∈ Da(V,W ) and g ∈ Df(a)(W,X), then g ◦ f ∈
Da(V,X) and

d(g ◦ f)a = dg
f(a)
◦ dfa .

Proof. Exercise. (Solution Q.25.12.)

Each of the preceding propositions concerning differentiation is a direct consequence of a sim-
ilar result concerning the map ∆. In particular, the linearity of the map f 7→ dfa (proposi-
tions 25.3.14 and 25.3.15) follows from the fact that the function f 7→ ∆fa is linear (proposi-
tions 25.3.2 and 25.3.3); Leibniz’s rule 25.3.16 is a consequence of proposition 25.3.4; and the proof
of the chain rule 25.3.17 makes use of proposition 25.3.5. It is reasonable to hope that the re-
sult given in proposition 25.3.7 concerning ∆

(
f−1

)
f(a)

will lead to useful information concerning

the differential of the inverse function. This is indeed the case; but obtaining information about
d
(
f−1

)
f(a)

from 25.3.7 is a rather involved undertaking. It turns out, happily enough, that (under

mild hypotheses) the differential of f−1 is the inverse of the differential of f . This result is known
as the inverse function theorem, and the whole of chapter 29 is devoted to detailing its proof and
to examining some of its consequences.

25.3.18. Problem. Show that proposition 25.3.14 is actually a special case of Leibniz’s rule 25.3.16.
Also, suppose that φ ∈ Da(V,R) and w ∈W . Prove that φw ∈ Da(V,W ) and that d(φw)a = dφa ·w.

25.3.19. Problem. Let f : R2 → R2 be defined by f(x) = (3x1 − x2 + 7, x1 + 4x2). Show that[
df(1,0)

]
=

[
3 −1
1 4

]
. Hint. Let M =

[
3 −1
1 4

]
and a = (1, 0). Show that the Newton quotient

∆fa(h)−Mh

‖h‖
approaches 0 as h → 0. Use the uniqueness of differentials (proposition 25.3.9) to

conclude that
[
dfa
]

= M .

25.3.20. Problem. Let F : R2 → R4 be defined by

F (x) = (x2 , x1
2 , 4− x1x2 , 7x1)
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and let a = (1, 1). Use the definition of “differential” to show that

[
dFa

]
=


0 1
2 0
−1 −1
7 0

 .
25.3.21. Problem. Let F : R3 → R4 : x 7→ (x1+2x3, x2−x3, 4x2, 2x1−5x2) and a = (1, 2,−5). Use
the definition of “differential” to find

[
dFa

]
. Hint. Use the technique suggested in exercise 25.3.11.

25.3.22. Problem. Let F : R3 → R2 be defined by F (x, y, z) = (xy−3, y+2z2). Use the definition
of “differential” to find

[
dF(1,−1,2)

]
.

25.3.23. Problem. Let F : R3 → R3 : x 7→ (x1x2, x2 − x32, 2x1x3). Use the definition of “differ-
ential” to find

[
dFa

]
at a in R3.

25.3.24. Problem. Let T ∈ B(V,W ) and a ∈ V . Find dTa.

25.4. DIFFERENTIATION OF CURVES

In the preceding section we have discussed the differentiability of functions mapping one normed
linear space into another. Here we briefly consider the important and interesting special case which
occurs when the domains of the functions are one dimensional.

25.4.1. Definition. A curve in a normed linear space V is a continuous mapping from an interval
in R into V . If c : J → V is a curve, if 0 belongs to the interval J , and if c(0) = a ∈ V , then c is a
curve at a.

In classical terminology a curve c : J → V : t 7→ c(t) is usually referred to as a parametrized
curve in V . The interval J is the parameter interval and the variable t belonging to J is the
parameter. If you start with a subset A of V and find a continuous function c from an interval
J onto A, then c is called a parametrization of A.

25.4.2. Example. Let

c1 : [0, 2π]→ R2 : t 7→ (cos t, sin t)

and

c2 : [0, 3π]→ R2 : t 7→ (sin(2t+ 1), cos(2t+ 1)).

Then c1 and c2 are two different parametrizations of the unit circle

S1 := {(x, y) ∈ R2 : x2 + y2 = 1} .

Parameters need have no physical significance, but it is quite common to think of a curve in R2

or R3 as representing the motion of a particle in that space: the parameter t is taken to be time
and the range value c(t) is the position of the particle at time t. With this interpretation we may
view c1 and c2 as representing the motion of particles traveling around the unit circle. In the first
case the particle starts (when t = 0) at the point (1, 0) and makes one complete trip around the
circle traveling counterclockwise. In the second case, the particle starts at the point (sin 1, cos 1)
and traverses S1 three times moving clockwise.

25.4.3. Example. Let a and u 6= 0 be vectors in V . The curve

` : R→ V : t 7→ a+ tu

is the parametrized line through a in the direction of u. Of course, infinitely many other
parametrizations of the range of ` are possible, but this is the standard one and we adopt it.
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25.4.4. Problem. Find a parametrization of the unit square

A := {(x, y) ∈ R2 : du
(
(x, y) , (12 ,

1
2)
)

= 1
2}

which starts at (0, 0) and traverses A once in a counterclockwise direction.

25.4.5. Definition. Let c : J → V be a curve in V and suppose that a is a point in the interior of
the interval J . Then Dc(a), the derivative of c at a, is defined by the formula

Dc(a) := lim
h→0

∆ca(h)

h

if the indicated limit exists. Notice that this is just the definition of “derivative” given in beginning
calculus. The derivative at a is also called the tangent vector to c at a or, in case we are
thinking of the motion of a particle, the velocity of c at a. If Dc(a) exists and is not zero, then
the parametrized line through c(a) in the direction of Dc(a) is the tangent line to the image of
c at the point c(a).

25.4.6. Exercise. Let c : [0, 2π]→ R2 : t 7→ (cos t, sin t).

(a) Find the tangent vector to c at t = π
3 .

(b) Find the tangent line to the range of c at the point (12 ,
√
3
2 ).

(c) Write the equation of the range in R2 of the tangent line found in (b).

(Solution Q.25.13.)

25.4.7. Proposition. If a curve c : J → V is differentiable at a point a in the interior of the
interval J , then it has a derivative at a and

Dc(a) = dca(1) .

Proof. Exercise. Hint. Start with the Newton quotient
∆ca(h)

h
. Subtract and add

dca(h)

h
.)

(Solution Q.25.14.)

The converse of the preceding proposition is also true. Every curve possessing a derivative is
differentiable. This is our next proposition.

25.4.8. Proposition. If a curve c : J → V has a derivative at a point a in J◦, then it is differen-
tiable at a and

dca(h) = hDc(a) for all h ∈ R.

Proof. Problem. Hint. Define T : R→ V : h 7→ hDc(a). Show that ∆ca ' T .

25.4.9. Problem. Suppose that curves c1 and c2 in a normed linear space are defined and differ-
entiable in some neighborhood of a ∈ R. Then

(a) D(c1 + c2)(a) = Dc1(a) +Dc2(a).
(b) D(αc1)(a) = αDc1(a) for all α ∈ R.

25.4.10. Problem. Let V be a normed linear space and a ∈ V .

(a) Suppose c is a differentiable curve at the zero vector in V . Then c ' 0 if and only if
Dc(0) = 0.

(b) Suppose c1 and c2 are differentiable curves at a. Then c1 ' c2 if and only if Dc1(0) =
Dc2(0).

25.4.11. Proposition. If c ∈ Dt(R, V ) and f ∈ Da(V,W ), where a = c(t), then f ◦ c ∈ Dt(R,W )
and

D(f ◦ c)(t) = dfa(Dc(t)) .

Proof. Problem.
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Thus far integration and differentiation have been treated as if they belong to separate worlds.
In the next theorem, known as the fundamental theorem of calculus, we derive the most important
link between these two topics.

25.4.12. Theorem (Fundamental Theorem Of Calculus). Let a belong to an open interval J in
the real line, E be a Banach space, and f : J → E be a regulated curve. Define F (x) =

∫ x
a f for all

x ∈ J . If f is continuous at c ∈ J , then F is differentiable at c and DF (c) = f(c).

Proof. Exercise. Hint. For every ε > 0 there exists δ > 0 such that c+h ∈ J and ‖∆fc(h)‖ <
ε whenever |h| < δ. (Why?) Use the (obvious) fact that h f(c) =

∫ c+h
c f(c) dt to show that

‖∆Fc(h) − h f(c)‖ < ε |h| whenever 0 < |h| < δ. From this conclude that lim
h→0

1

h
∆Fc(h) = f(c).

(Solution Q.25.15.)

25.5. DIRECTIONAL DERIVATIVES

We now return to the study of maps between arbitrary normed linear spaces. Closely related
to differentiability is the concept of directional derivative, an examination of which provides some
technical advantages and also throws light on the geometric aspect of differentiation.

25.5.1. Definition. Let f be a member of Fa(V,W ) and v be a nonzero vector in V . Then Dvf(a),
the derivative of f at a in the direction of v, is defined by

Dvf(a) := lim
t→0

1

t
∆fa(tv)

if this limit exists. This directional derivative is also called the Gâteaux differential (or
Gâteaux variation) of f , and is sometimes denoted by δf(a; v). Many authors require that in
the preceding definition v be a unit vector. We will not adopt this convention.

Recall that for 0 6= v ∈ V the curve ` : R→ V defined by `(t) = a+ tv is the parametrized line
through a in the direction of v. In the following proposition, which helps illuminate our use of the
adjective “directional”, we understand the domain of f ◦ ` to be the set of all numbers t for which
the expression f(`(t)) makes sense; that is,

dom(f ◦ `) = {t ∈ R : a+ tv ∈ dom f} .
Since a is an interior point of the domain of f , the domain of f ◦` contains an open interval about 0.

25.5.2. Proposition. If f ∈ Da(V,W ) and 0 6= v ∈ V , then the directional derivative Dvf(a)
exists and is the tangent vector to the curve f ◦ ` at 0 (where ` is the parametrized line through a
in the direction of v). That is,

Dvf(a) = D(f ◦ `)(0) .

Proof. Exercise. (Solution Q.25.16.)

25.5.3. Exercise. Let f(x, y) = ln
(
x2 + y2

) 1
2 . Find Dvf(a) when a = (1, 1) and v = (35 ,

4
5).

(Solution Q.25.17.)

25.5.4. Notation. For a < b let C1([a, b],R) be the family of all functions f differentiable on some
open subset of R containing [a, b] whose derivative Df is continuous on [a, b].

25.5.5. Exercise. For all f in C1([0, π2 ],R) define

φ(f) =

∫ π
2

0
(cosx+Df(x))2 dx .

Compute Dvφ(a) when a(x) = 1 + sinx and v(x) = 2− cosx for 0 ≤ x ≤ π
2 . (Solution Q.25.18.)

25.5.6. Problem. Let f(x, y) = ex
2+y2 , a = (1,−1), and v = (−1, 2). Find Dvf(a).
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25.5.7. Problem. Let f(x, y) = (2xy, y2 − x2), a = (−1, 2), and v =
(

1√
2
, 1√

2

)
. Find Dvf(a).

25.5.8. Problem. Let φ : C([0, 1],R) → R : f 7→
∫ 1
0

(
sin6 πx + (f(x))2

)
dx, and for 0 ≤ x ≤ 1 let

a(x) = e−x − x+ 3 and v(x) = ex. Find Dvφ(a).

According to proposition 25.5.2, differentiability implies the existence of directional derivatives
in all directions. (In problem 25.5.11 you are asked to show that the converse is not true.) The
next proposition makes explicit the relationship between differentials and directional derivatives for
differentiable functions.

25.5.9. Proposition. If f ∈ Da(V,W ), then for every nonzero v in V

Dvf(a) = dfa(v) .

Proof. Exercise. Hint. Use problem 25.4.11 (Solution Q.25.19.)

It is worth noticing that even though the domain of a curve is 1-dimensional, it is still possible
to take directional derivatives. The relationship between derivatives and directional derivatives is
very simple: the derivative of a curve c at a point t is just the directional derivative at t in the
direction of the unit vector 1 in R. Proof:

Dc(t) = dct(1) (by proposition 25.4.7)

= D1c(t) (by proposition 25.5.9)

25.5.10. Problem. Let φ : C([0, 1],R)→ C1([0, 1],R) be defined by φf(x) =
∫ x
0 f(s) ds for all f in

C([0, 1],R) and x in [0, 1]. For arbitrary functions a and v 6= 0 in C([0, 1],R) compute Dvφ(a) using

(a) the definition of “directional derivative”.
(b) proposition 25.5.2.
(c) proposition 25.5.9.

25.5.11. Problem. Show that the converse of proposition 25.5.2 need not hold. A function may
have directional derivatives in all directions but fail to be differentiable. Hint. Consider the function

defined by f(x, y) =
x3

x2 + y2
for (x, y) 6= (0, 0) and f(0, 0) = 0.

25.6. FUNCTIONS MAPPING INTO PRODUCT SPACES

In this short section we examine the differentiability of functions which map into the product of
normed linear spaces. This turns out to be a very simple matter: a necessary and sufficient condition
for a function whose codomain is a product to be differentiable is that each of its components be
differentiable. The somewhat more complicated topic of differentiation of functions whose domain
lies in a product of normed linear spaces is deferred until the next chapter when we have the mean
value theorem at our disposal.

25.6.1. Proposition. If f1 ∈ Da(V,W1) and f2 ∈ Da(V,W2), then the function f =
(
f1, f2

)
belongs to Da(V,W1 ×W2) and dfa =

(
d(f1)a, d(f2)a

)
.

Proof. Exercise. Hint. The function f is defined by f(x) =
(
f1(x), f2(x)

)
for all x ∈ dom f1∩

dom f2. Check that f = j
1
◦f1 + j

2
◦f2 where j

1
: W1 →W1×W2 : u 7→ (u, 0) and j

2
: W2 →W1×

W2 : v 7→ (0, v). Use proposition 25.3.15, theorem 25.3.17, and problem 25.3.24. (Solution Q.25.20.)

The preceding proposition says that a function is differentiable if its components are. The
converse, which is the next proposition, is also true: the components of a differentiable function
are differentiable.

25.6.2. Proposition. If f belongs to Da(V,W1 ×W2), then its components f1 and f2 belong to
Da(V,W1) and Da(V,W2), respectively, and

dfa =
(
d(f1)a, d(f2)a

)
.
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Proof. Problem. Hint. For k = 1, 2 write fk = πk ◦ f where, as usual, πk(x1, x2) = xk. Then
use the chain rule 25.3.17 and problem 25.3.24.

An easy consequence of the two preceding propositions is that curves in product spaces have
derivatives if and only if their components do.

25.6.3. Corollary. Let c1 and c2 be curves in W1 and W2, respectively. If c1 and c2 are differen-
tiable at t, then so is the curve c = (c1, c2) in W1 ×W2 and Dc(t) =

(
Dc1(t), Dc2(t)

)
. Conversely,

if c is a differentiable curve in the product W1×W2, then its components c1 and c2 are differentiable
and Dc =

(
Dc1, Dc2

)
.

Proof. Exercise. (Solution Q.25.21.)

It is easy to see how to generalize the three preceding results to functions whose codomains are
the products of any finite collection of normed linear spaces. Differentiation is done componentwise.

25.6.4. Example. Consider the helix

c : R→ R3 : t 7→ (cos t, sin t, t) .

Its derivative at t is found by differentiating each component separately. That is, Dc(t) = (− sin t, cos t, 1)
for all t ∈ R.

25.6.5. Problem. Let f(x, y) = (ln(xy), y2 − x2), a = (1, 1), and v = (35 ,
4
5). Find the directional

derivative Dvf(a).





CHAPTER 26

PARTIAL DERIVATIVES AND ITERATED INTEGRALS

In this chapter we consider questions which arise concerning a function f whose domain is the
product V1×V2 of normed linear spaces. What relationship (if any) exists between the differentiabil-
ity of f and the differentiability of the functions x 7→ f(x, b) and y 7→ f(a, y), where a and b are fixed
points in V1 and V2, respectively? What happens in the special case V1 = V2 = R if we integrate f
first with respect to y (that is, integrate, for arbitrary x, the function y 7→ f(x, y) over the interval

[c, d]) and then integrate with respect to x (that is, integrate the function x 7→
∫ d
c f(x, y) dy)? Does

this produce the same result as integrating first with respect to x and then with respect to y?
Before we can answer these and similar questions we must develop a fundamental tool of analysis:
the mean value theorem.

26.1. THE MEAN VALUE THEOREM(S)

Heretofore we have discussed differentiability only of functions defined on open subsets of
normed linear spaces. It is occasionally useful to consider differentiability of functions defined
on other types of subsets. The business from beginning calculus of right and left differentiabil-
ity at endpoints of intervals does not extend in any very natural fashion to functions with more
complicated domains in higher dimensional spaces. Recall that according to definition 12.1.1 a
neighborhood of a point in a metric space is an open set containing that point. It will be convenient
to expand slightly our use of this word.

26.1.1. Definition. A neighborhood of a subset A of a metric space is any open set which
contains A.

26.1.2. Definition. Let V and W be normed linear spaces and A ⊆ V . A W valued function f is
said to be differentiable on A if it is (defined and) differentiable on some neighborhood of A.
The function f is continuously differentiable on A if it is differentiable on (a neighborhood
of) A and if its differential df : x 7→ dfx is continuous at each point of A. The family of all W
valued continuously differentiable functions on A is denoted by C1(A,W ). (Keep in mind that in
order for a function f to belong to C1(A,W ) its domain must contain a neighborhood of A.)

Given a function f for which both “differential” and “derivative” make sense it is natural to
ask if there is any difference between requiring df to be continuous and requiring Df to be. It is
the point of the next problem to show that there is not.

26.1.3. Problem. Let A be a subset of R with nonempty interior and W be a normed linear space.
A function f mapping a neighborhood of A into W belongs to C1(A,W ) if and only if its derivative
Df (exists and) is continuous on some neighborhood of A.

Not every function that is differentiable is continuously differentiable.

26.1.4. Example. Let f(x) = x2 sin 1/x for x 6= 0 and f(0) = 0. Then f is differentiable on R
but does not belong to C1(R,R).

Proof. Problem.

We have already encountered one version of the mean value theorem (see theorem 8.4.26): if
a < b and f is a real valued function continuous on the interval [a, b] and differentiable on the

169
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interior of that interval, then

f(b)− f(a)

b− a
= Df(c) (26.1)

for at least one number c between a and b.
We consider the problem of generalizing this formula to scalar fields (that is, real valued func-

tions of a vector variable), to curves (vector valued functions of a real variable), and to vector
fields (vector valued functions of a vector variable). There is no difficulty in finding an entirely
satisfactory variant of (26.1) which holds for scalar fields whose domain lies in Rn. This is done
in chapter 27 once we have the notion of gradient (see proposition 27.2.17). On the other hand
we show in exercise 26.1.5 that for curves (a fortiori, vector fields) formula (26.1) does not hold.
Nevertheless, the most useful aspect of the mean value theorem, that changes in f over the interval
[a, b] cannot exceed the maximum value of |Df | multiplied by the length of the interval does have a
direct generalization to vector fields (see proposition 26.1.6). A somewhat different generalization
can be produced by considering the version of the fundamental theorem of calculus most used in
beginning calculus: if f is a function whose derivative exists and is continuous on [a, b], then

f(b)− f(a) =

∫ b

a
Dft dt. (26.2)

(We have yet to prove this result. In fact we need the mean value theorem to do so. See theo-

rem 26.1.13.) It is conventional to define (b−a)−1
∫ b
a g to be the mean value (or average value)

of a function g over the interval [a, b]. Thus (26.2) may be regarded as a “mean value theorem”
saying that the Newton quotient (b − a)−1(f(b) − f(a)) is just the mean value of the derivative
of f . Since functions between Banach spaces do not in general have “derivatives” it is better for
purposes of generalization to rewrite (26.2) in terms of differentials. For a curve f with continuous
derivative ∫ b

a
Df(t) dt =

∫ b

a
dft(1) dt (by 25.4.7)

so (26.2) becomes

f(b)− f(a) =

∫ b

a
dft(1) dt. (26.3)

If we divide both sides by b− a this result says, briefly, that the Newton quotient of f is the mean
value of the differential of f over [a, b].

There is one more thing to consider in seeking to generalize (26.1). In chapter 24 we defined
the integral only for vector valued functions of a real variable. So if a and b are points in a general

Banach space, the expression
∫ b
a dft(1) dt in (26.3) is meaningless (and so, of course, is the Newton

quotient (f(b)−f(a))/(b−a)). This is easily dealt with. In order to integrate over a closed segment
[a, b] in a Banach space, parametrize it: let l(t) = (1− t)a+ tb for 0 ≤ t ≤ 1 and let g = f ◦ l. Then

dgt(1) = dfl(t)(dlt(1))

= dfl(t)(b− a) .
(26.4)

Apply (26.3) to the function g over the interval [0, 1] to obtain

g(1)− g(0) =

∫ 1

0
dgt(1) dt . (26.5)

Substituting (26.4) in (26.5) leads to

f(b)− f(a) = g(1)− g(0)

=

∫ 1

0
dfl(t)(b− a) dt.

(26.6)
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Notice that if we let h = b− a, then (26.6) may be written

∆fa(h) =

∫ 1

0
dfl(t)(h) dt

=

(∫ 1

0
dfl(t) dt

)
(h)

(26.7)

by corollary 24.3.19. It is in this form (either (26.6) or (26.7)) that the mean value theorem holds
for a function f between Banach spaces which is continuously differentiable on a segment [a, b]. It
is worth noticing that this generalization is weaker in three respects than the classical mean value
theorem: we are not able to conclude that there exists a particular point where the differential of
f is equal to f(b) − f(a); we assume differentiability at a and b; and we assume continuity of the
differential. Nonetheless, this will be adequate for our purposes.

26.1.5. Exercise. Show that the classical mean value theorem (theorem 8.4.26) fails for vector
valued functions. That is, find an interval [a, b], a Banach space E, and a continuous function
f : [a, b] → E differentiable on (a, b) such that the equation (b − a)Df(c) = f(b) − f(a) holds for
no point c in (a, b). Hint. Consider a parametrization of the unit circle. (Solution Q.26.1.)

Here is our first generalization of the mean value theorem. Others will occur in 26.1.7, 26.1.8,
and 26.1.14.

26.1.6. Theorem (Mean Value Theorem for Curves). Let a < b and W be a normed linear space.
If a continuous function f : [a, b] → W has a derivative at each point of (a, b) and if there is a
constant M such that ‖Df(t)‖ ≤M for all t ∈ (a, b), then

‖f(b)− f(a)‖ ≤M(b− a) .

Proof. Exercise. Hint. Given ε > 0 define h(t) = ‖f(t)− f(a)‖− (t− a)(M + ε) for a ≤ t ≤ b.
Let A = h←(−∞, ε]. Show that:

(i) A has a least upper bound, say l;
(ii) l > a;
(iii) l ∈ A; and
(iv) l = b.

To prove (iv) argue by contradiction. Assume l < b. Show that ‖(t− l)−1(f(t)− f(l))‖ < M + ε for
t sufficiently close to and greater than l. For such t show that t ∈ A by considering the expression

‖f(t)− f(l)‖+ ‖f(l)− f(a)‖ − (t− l)(M + ε) .

Finally, show that the desired conclusion follows from (iii) and (iv). (Solution Q.26.2.)

Next we extend the mean value theorem from curves to vector fields.

26.1.7. Proposition. Let V and W be normed linear spaces and a and h be points in V . If a W
valued function f is continuously differentiable on the segment [a, a+ h] , then

‖∆fa(h)‖ ≤M‖h‖ .
whenever M is a number such that ‖dfz‖ ≤M for all z in [a, a+ h].

Proof. Problem. Hint. Use l : t 7→ a+ th (where 0 ≤ t ≤ 1) to parametrize the segment [a, a+
h]. Apply 26.1.6 to the function g = f ◦ l.

26.1.8. Corollary. Let V and W be normed linear spaces, a and h be points of V , the operator T
belong to B(V,W ), and g be a W valued function continuously differentiable on the segment [a, a+h].
If M is any number such that ‖dgz − T‖ ≤M for all z in [a, a+ h], then

‖∆ga(h)− Th‖ ≤M‖h‖ .

Proof. Problem. Hint. Apply 26.1.7 to the function g − T .
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The next proposition is an important application of the mean value theorem.

26.1.9. Proposition. Let V and W be normed linear spaces, U be a nonempty connected open
subset of V , and f : U →W be differentiable. If dfx = 0 for every x ∈ U , then f is constant.

Proof. Problem. Hint. Choose a ∈ U and set G = f←{f(a)}. Show that G is both an open
and closed subset of U . Then use 17.1.6 to conclude that U = G.

To prove that G is open in U , take an arbitrary point y in G, find an open ball B about y
which is contained in U , and use 26.1.7 to show that ∆fy(w − y) = 0 for every w in B.

26.1.10. Corollary. Let V , W , and U be as in the preceding proposition. If f , g : U → W are
differentiable on U and have the same differentials at each point of U , then f and g differ by a
constant.

Proof. Problem.

26.1.11. Problem. Show that the hypothesis that U be connected cannot be deleted in proposi-
tion 26.1.9.

Corollary 26.1.10 makes possible a proof of the version of the fundamental theorem of calculus
which is the basis for the procedures of “formal integration” taught in beginning calculus.

26.1.12. Definition. A differentiable curve f in a Banach space whose domain is an open interval
in R is an antiderivative of a function g if Df = g.

26.1.13. Theorem (Fundamental Theorem of Calculus - Version II). Let a and b be points in an
open interval J ⊆ R with a < b. If g : J → E is a continuous map into a Banach space and f is an
antiderivative of g on J , then ∫ b

a
g = f(b)− f(a) .

Proof. Problem. Hint. Let h(x) =
∫ x
a g for x in J . Use corollary 26.1.10 to show that h and

f differ by a constant. Find the value of this constant by setting x = a.

With this second version of the fundamental theorem of calculus in hand, we are in a position
to prove the version of the mean value theorem discussed in the introduction to this section.

26.1.14. Proposition. Suppose that E and F are Banach spaces, and a, h ∈ E. If an F valued
function f is continuously differentiable on the segment [a, a+ h], then

∆fa(h) =

(∫ 1

0
dfl(t) dt

)
(h) (26.8)

where l(t) = a+ th for 0 ≤ t ≤ 1.

Proof. Problem. Hint. Let g = f ◦ l. Show that Dg(t) = dfl(t)(h). Apply 24.3.19 to the right
side of equation (26.8). Use 26.1.13.

It is conventional when we invoke any of the results 26.1.6, 26.1.7, 26.1.8, or 26.1.14 to say that
we have used “the” mean value theorem.

26.1.15. Problem. Verify proposition 26.1.14 directly for the function f(x, y) = x2 + 6xy − 2y2

by computing both sides of equation (26.8).

26.1.16. Problem. Let W be a normed linear space and a < b. For each f in C1([a, b],W ) define

|||f ||| = sup{‖f(x)‖+ ‖Df(x)‖ : a ≤ x ≤ b} .
(a) Show that C1([a, b],W ) is a vector space and that the map f 7→ |||f ||| is a norm on this

space.
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(b) Let j(x) =
√

1 + x2 for all x in R. Use the mean value theorem to show that |∆jx(y)| ≤ |y|
for all x, y ∈ R.

(c) Let k be a continuous real valued function on the interval [a, b]. For each f in C1([a, b],R)
define

Φ(f) =

∫ b

a
k(x)

√
1 + (f ′(x))2 dx .

Show that the function Φ: C1([a, b],R)→ R is uniformly continuous.

26.1.17. Proposition (Change of Variables). If f ∈ C(J2, E) and g ∈ C1(J1, J2) where J1 and J2
are open intervals in R and E is a Banach space, and if a, b ∈ J1 with a < b, then∫ b

a
g′(f ◦ g) =

∫ g(b)

g(a)
f .

Proof. Problem. Hint. Use 26.1.13. Let F (x) =
∫ x
g(a) f for all x in J2. Compute (F ◦ g)′(t).

26.1.18. Proposition (Integration by Parts). If f ∈ C1(J,R) and g ∈ C1(J,E) where J is an open
interval in R and E is a Banach space, and if a and b are points in J with a < b, then∫ b

a
fg′ = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′g .

Proof. Problem. Hint. Differentiate the function t 7→ f(t)g(t).

26.1.19. Proposition. If f ∈ C(J,R) where J is an interval, and if a, b ∈ J with a < b, then
there exists c ∈ (a, b) such that ∫ b

a
f = f(c)(b− a) .

Proof. Problem.

26.1.20. Problem. Show by example that the preceding proposition is no longer true if it is
assumed that f is a continuous function from J into R2.

26.2. PARTIAL DERIVATIVES

Suppose that V1, V2, . . . , Vn, and W are normed linear spaces. Let V = V1 × · · · × Vn. In
the following discussion we will need the canonical injection maps j

1
, . . . , jn which map the

coordinate spaces V1, . . . , Vn into the product space V . For 1 ≤ k ≤ n the map j
k

: Vk → V is

defined by j
k
(x) = (0, . . . , 0, x, 0, . . . , 0) (where x appears in the kth coordinate). It is an easy

exercise to verify that each j
k

is a bounded linear transformation and that if Vk does not consist
solely of the zero vector then ‖j

k
‖ = 1. Also worth noting is the relationship given in the following

exercise between the injections j
k

and the projections πk.

26.2.1. Exercise. Let V1, . . . , Vn be normed linear spaces and V = V1 × · · · × Vn. Then

(a) For k = 1, . . . , n the injection j
k

is a right inverse of the projection πk.

(b)
n∑
k=1

(j
k
◦ πk) = IV .

(Solution Q.26.3.)

26.2.2. Problem. Let V = V1 × · · · × Vn where V1, . . . , Vn are normed linear spaces. Also let
a ∈ V , r > 0, and 1 ≤ k ≤ n. Then the image under the projection map πk of the open ball in V
about a of radius r is the open ball in Vk about ak of radius r.

26.2.3. Definition. A mapping f : M1 → M2 between metric spaces is open [resp., closed] if
f→(U) is an open [resp., closed] subset of M2 whenever U is an open [resp., closed] subset of M1.
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26.2.4. Problem. Show that each projection mapping πk : V1 × · · · × Vn → Vk on the product of
normed linear spaces is an open mapping. Construct an example to show that projection mappings
need not be closed.

Now suppose that f belongs to Fa(V,W ) and that 1 ≤ k ≤ n. Let B be an open ball about a
which is contained in the domain of f and Bk = (π→k (B))− ak. From problem 26.2.2 and the fact
that translation by ak is an isometry (see problem 22.3.14) we see that Bk is an open ball in Vk
about the origin (whose radius is the same as the radius of B). Define

g : Bk →W : x 7→ f(a+ j
k
(x)) .

Notice that as x changes, only the kth variable of the domain of f is changing; the other k − 1
variables are fixed. Also notice that we can write g = f ◦Ta ◦ jk , where Ta is translation by a (that
is, Ta : x 7→ x+ a).

26.2.5. Exercise. With notation as above show that

∆g0 = ∆fa ◦ jk .

in some neighborhood of the origin in Vk. (Solution Q.26.4.)

26.2.6. Proposition. Let f , g, and a be as above. If f is differentiable at a, then g is differentiable
at 0 and

dg0 = dfa ◦ jk .

Proof. Problem. Hint. Use exercise 26.2.5 and proposition 25.2.7.

26.2.7. Notation. Suppose that the function g : Bk → W : x 7→ f(a + j
k
(x)) is differentiable at

0. Since g depends only on the function f , the point a, and the index k, it is desirable to have
a notation for dg0 which does not require the use of the extraneous letter “g”. A fairly common
convention is to write dkfa for dg0; this bounded linear map is the kth partial differential of
f at a. Thus dkfa is the unique bounded linear map which is tangent to ∆fa ◦ jk . We restate the
preceding proposition using this notation.

26.2.8. Corollary. Let V1, V2, . . . , Vn, and W be normed linear spaces. If the function f belongs
to Da(V1 × · · · × Vn,W ), then for each k = 1, . . . , n the kth partial differential of f at a exists and

dkfa = dfa ◦ jk .

26.2.9. Corollary. Let V1, V2, . . . , Vn, and W be normed linear spaces. If the function f belongs
to Da(V1 × · · · × Vn,W ), then

dfa(x) =

n∑
k=1

dkfa(xk)

for each x in V1 × · · · × Vn.

Proof. Problem. Hint. Write dfa as dfa ◦ I (where I is the identity map on V1× · · ·×Vn) and
use exercise 26.2.1(b).

The preceding corollaries assure us that if f is differentiable at a point, then it has partial
differentials at that point. The converse is not true. (Consider the function defined on R2 whose
value is 1 everywhere except on the coordinate axes, where its value is 0. This function has partial
differentials at the origin, but is certainly not differentiable—or even continuous—there.) The
following proposition shows that if we assume continuity (as well as the existence) of the partial
differentials of a function in an open set, then the function is differentiable (in fact, continuously
differentiable) on that set. To avoid complicated notation we prove this only for the product of two
spaces.
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26.2.10. Proposition. Let V1, V2, and W be normed linear spaces, and let f : U → W where

U
◦
⊆ V1 × V2. If the partial differentials d1f and d2f exist and are continuous on U , then f is

continuously differentiable on U and

df(a,b) = d1f(a,b) ◦ π1 + d2f(a,b) ◦ π2 (26.9)

at each point (a, b) in U .

Proof. Exercise. Hint. To show that f is differentiable at a point (a, b) in U and that its
differential there is the expression on the right side of (26.9), we must establish that ∆f(a,b) is
tangent to R = S ◦ π1 + T ◦ π2 where S = d1f(a,b) and T = d2f(a,b). Let g : t 7→ f(a, b+ t) for all t

such that (a, b+ t) ∈ U and ht : s 7→ f(a+ s, b+ t) for all s and t such that (a+ s, b+ t) ∈ U . Show
that ∆f(a,b)(s, t) is the sum of ∆

(
ht
)
0

(s) and ∆g0(t). Conclude from this that it suffices to show
that: given ε > 0 there exists δ > 0 such that if ‖(u, v)‖1 < δ , then

‖∆ (hv)0 (u)− Su‖ ≤ ε ‖u‖ (26.10)

and

‖∆g0(v)− Tv‖ ≤ ε ‖v‖ . (26.11)

Find δ1 > 0 so that (26.11) holds whenever ‖v‖ < δ1. (This is easy.) Then find δ2 > 0 so that (26.10)
holds whenever ‖(u, v)‖1 < δ2. This requires a little thought. Notice that (26.10) follows from the
mean value theorem (corollary 26.1.8) provided that we can verify that

‖d (hv)z − S‖ ≤ ε

for all z in the segment [0, u]. To this end show that d (hv)z = d1f(a+z,b+v) and use the fact that
d1f is assumed to be continuous. (Solution Q.26.5.)

26.2.11. Notation. Up to this point we have had no occasion to consider the problem of the
various ways in which a Euclidean space Rn may be regarded as a product. Take R5 for example.
If nothing to the contrary is specified it is natural to think of R5 as being the product of 5 copies
of R; that is, points of R5 are 5-tuples x = (x1, . . . , x5) of real numbers. If, however we wish to
regard R5 as the product of R2 and R3, then a point in R5 is an ordered pair (x, y) with x ∈ R2

and y ∈ R3. One good way of informing a reader that you wish R5 considered as a product in this
particular fashion is to write R2×R3; another is to write R2+3. (Note the distinction between R2+3

and R3+2.) In many concrete problems the names of variables are given in the statement of the
problem: for example, suppose we encounter several equations involving the variables u, v, w, x,
and y and wish to solve for the last three variables in terms of the first two. We are then thinking
of R5 as the product of R2 (the space of independent variables) and R3 (the space of dependent
variables). This particular factorization may be emphasized by writing a point (u, v, w, x, y) of the
product as ((u, v), (w, x, y)). And if you wish to avoid such an abundance of parentheses you may
choose to write (u, v;w, x, y) instead. Ordinarily when Rn appears, it is clear from context what
factorization (if any) is intended. The preceding notational devices are merely reminders designed
to ease the burden on the reader. In the next exercise a function f of 4 variables is given and you
are asked to compute d1fa in several different circumstances; it is important to realize that the
value of d1fa depends on the factorization of R4 that is assumed.

26.2.12. Exercise. Let

f(t, u, v, w) = tu2 + 3 vw (26.12)

for all t, u, v, w ∈ R, and let a = (1, 1, 2,−1). Find d1fa assuming that the domain of f is:

(a) R4.
(b) R× R3.
(c) R2 × R2.
(d) R2 × R× R.
(e) R3 × R.
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Hint. First compute dfa. Then use 26.2.8. Note. The default case is (a); that is, if we were given
only equation (26.12) we would assume that the domain of f is R × R × R × R. In this case it is
possible to compute dkfa for k = 1, 2, 3, 4. In cases (b), (c), and (e) only d1fa and d2fa make sense;
and in (d) we can compute dkfa for k = 1, 2, 3. (Solution Q.26.6.)

26.2.13. Problem. Let

f(t, u, v, w) = tuv − 4u2w

for all t, u, v, w ∈ R and let a = (1, 2,−1, 3). Compute dkfa for all k for which this expression
makes sense, assuming that the domain of f is:

(a) R4.
(b) R× R3.
(c) R2 × R2.
(d) R× R2 × R.
(e) R3 × R.

26.2.14. Definition. We now consider the special case of a function f which maps an open subset
of Rn into a normed linear space. For 1 ≤ k ≤ n the injection j

k
: R→ Rn takes the real number t

to the vector t ek. Thus the function g ≡ f ◦Ta ◦ jk is just f ◦ l where as usual l is the parametrized

line through a in the direction of ek. [Proof: g(t) = f
(
a+ j

k
(t)
)

= f(a + t ek) = (f ◦ l)(t).] We

define fk(a) (or ∂f
∂xk

(a), or Dkf(a)), the kth partial derivative of f at a, to be dkfa(1). Using

propositions 25.4.7 and 25.5.2 we see that

fk(a) = dkfa(1)

= dg0(1)

= Dg(0)

= D(f ◦ l)(0)

= Dekf(a).

That is, the kth partial derivative of f is the directional derivative of f in the direction of the kth

coordinate axis of Rn. Thus the notation Dkf for the kth partial derivative can be regarded as a
slight abbreviation of the usual notation Dekf used for directional derivatives of functions on Rn.

It is also useful to note that

fk(a) = Dg(0)

= lim
t→0

g(t)− g(0)

t

= lim
t→0

f(a+ t ek)− f(a)

t
.

(26.13)

This is the usual definition given for partial derivatives in beginning calculus. The mechanics of
computing partial derivatives is familiar and is justified by (26.13): pretend that a function of n
variables is a function only of its kth variable, then take the ordinary derivative.

One more observation: if f is differentiable at a in Rn, then by proposition 25.5.9

fk(a) = Dekf(a) = dfa(e
k) .

Let f ∈ Da(Rn,W ) where W = W1×· · ·×Wm is the product of m normed linear spaces. From
proposition 25.6.2 (and induction) we know that

dfa =
(
d(f1)a, . . . , d(fm)a

)
.

From this it is an easy step to the next proposition.
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26.2.15. Proposition. If f ∈ Da(Rn,W ) where W = W1 × · · · ×Wm is the product of m normed
linear spaces, then (

f j
)
k

= (fk)
j

for 1 ≤ j ≤ m and 1 ≤ k ≤ n.

Proof. Problem.

The point of the preceding proposition is that no ambiguity arises if we write the expression f jk .

It may correctly be interpreted either as the kth partial derivative of the jth component function
f j or as the jth component of the kth partial derivative fk.

26.2.16. Example. Let f(x, y) = (x5y2, x3 − y3). To find f1(x, y) hold y fixed and differentiate
with respect to x using corollary 25.6.3. Then

f1(x, y) = (5x4y2, 3x2) .

Similarly,
f2(x, y) = (2x5y,−3 y2) .

26.2.17. Exercise. Let f(x, y, z) = (x3y2 sin z, x2 + y cos z) and a = (1,−2, π2 ). Find f1(a), f2(a),
and f3(a). (Solution Q.26.7.)

26.2.18. Problem. Let f(w, x, y, z) = (wxy2z3, w2 +x2 +y2, wx+xy+yz) and a = (−3, 1,−2, 1).
Find fk(a) for all appropriate k.

26.2.19. Problem. Let V1, . . . , Vn,W be normed linear spaces, U
◦
⊆ V = V1 × · · · × Vn, α ∈ R,

and f , g : U → W . If the kth partial derivatives of f and g exist at a point a in U , then so do the
kth partial differentials of f + g and αf , and

(a) dk(f + g)a = dkfa + dkga;
(b) dk(αf)a = αdkfa;
(c) (f + g)k(a) = fk(a) + gk(a); and
(d) (αf)k(a) = αfk(a).

Hint. In (a), consider the function (f + g) ◦ Ta ◦ jk .

26.2.20. Problem. Let f , g ∈ Fa(V,W ), α ∈ R, and 0 6= v ∈ V . Suppose that Dvf(a) and
Dvg(a) exist.

(a) Show that Dv(f + g)(a) exists and is the sum of Dvf(a) and Dvg(a). Hint. Use the
definition of directional derivative and proposition 25.3.3. We can not use either 25.5.2
or 25.5.9 here because we are not assuming that f and g are differentiable at a.

(b) Show that Dv(αf)(a) exists and is equal to αDvf(a).
(c) Use (a) and (b) to prove parts (c) and (d) of problem 26.2.19.

26.3. ITERATED INTEGRALS

In the preceding section we considered partial differentiation of functions defined on the product
of two or more spaces. In this section we consider the integration of such functions. To take the
partial derivative of a function f : (x, y) 7→ f(x, y) with respect to x we hold y fixed and differentiate
the function x 7→ f(x, y). Partial integration works in very much the same way. If f is a continuous
function mapping a rectangular subset [a, b] × [c, d] of R2 into a Banach space E, we may, for
each fixed y in [c, d], integrate the function x 7→ f(x, y) over the interval [a, b]. (This function is
continuous since it is the composite of the continuous functions x 7→ (x, y) and f .) The integration
will result in a vector which depends on y, call it h(y). We will show shortly that the function
y 7→ h(y) is also continuous and so may be integrated over [c, d]. The resulting vector in E is denoted

by
∫ d
c

(∫ b
a f(x, y) dx

)
dy or just

∫ d
c

∫ b
a f(x, y) dx dy. The two integrals operating successively are

called iterated integrals.
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26.3.1. Notation. Let f : (x, y) 7→ f(x, y) be a continuous function defined on a subset of R2

containing the rectangle [a, b] × [c, d]. Throughout this section we denote by f y the function of x
which results from holding y fixed and by xf the function of y resulting from fixing x. That is, for
each y

f y : x 7→ f(x, y)

and for each x
xf : y 7→ f(x, y) .

For each y we interpret
∫ b
a f(x, y) dx to mean

∫ b
a f

y, and for each x we take
∫ d
c f(x, y) dy to be∫ d

c
xf . Thus ∫ d

c

∫ b

a
f(x, y) dx dy =

∫ d

c
g

where g(y) =
∫ b
a f

y for all y ∈ [c, d]. In order for
∫ d
c g to make sense we must know that g is a

regulated function. It will suffice for our needs to show that if f is continuous, then so is g.

26.3.2. Lemma. Let f : [a, b]× [c, d]→ E be a continuous function into a Banach space. For each
y ∈ [c, d] let

g(y) =

∫ b

a
f y .

Then g is uniformly continuous on [c, d].

Proof. Exercise. Hint. Use proposition 24.1.11. (Solution Q.26.8.)

Perhaps the most frequently used result concerning iterated integrals is that if f is continuous,
then the order of integration does not matter.

26.3.3. Proposition. If E is a Banach space, if a < b and c < d, and if
f : [a, b]× [c, d]→ E is continuous, then∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy .

Proof. Problem. Hint. Define functions j and k for all z in [c, d] by the formulas

j(z) =

∫ b

a

∫ z

c
f(x, y) dy dx

and

k(z) =

∫ z

c

∫ b

a
f(x, y) dx dy .

It suffices to show that j = k. (Why?) One may accomplish this by showing that j ′(z) = k′(z) for
all z and that j(c) = k(c) (see corollary 26.1.10). Finding k′(z) is easy. To find j ′(z) derive the
formulas

1

h
∆jz (h) =

∫ b

a

1

h

∫ z+h

z
f(x, y) dy dx (26.14)

and ∫ b

a
f(x, z) dx =

∫ b

a

1

h

∫ z+h

z
f(x, z) dy dx . (26.15)

Subtract (26.15)) from (26.14) to obtain a new equation. Show that the right side of this new
equation can be made arbitrarily small by choosing h sufficiently small. (For this use an argument

similar to the one used in the proof of lemma 26.3.2. Conclude that j ′(z) =
∫ b
a f(x, z) dx.
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Now that we have a result (proposition 26.3.3) allowing us to change the order of two integrals,
we can prove a result which justifies changing the order of integration and differentiation. We show
that if f is continuous and f2 (exists and) is continuous, then

d

dy

∫ b

a
f(x, y) dx =

∫ b

a

∂f

∂y
(x, y) dx .

26.3.4. Proposition. Let E be a Banach space, a < b, c < d, and f : [a, b]× [c, d]→ E. If f and
f2 are continuous then the function g defined for all y ∈ [c, d] by

g(y) =

∫ b

a
f y

is continuously differentiable in (c, d) and for c < y < d

g′(y) =

∫ b

a
f2(x, y) dx .

Proof. Exercise. Hint. Let h(y) =
∫ b
a f2(x, y) dx for c ≤ y ≤ d. Use proposition 26.3.3 to re-

verse the order of integration in
∫ z
c h (where c < z < d). Use the version of the fundamental theorem

of calculus given in Theorem 26.1.13 to obtain
∫ z
c h = g(z)− g(c). Differentiate. (Solution Q.26.9.)

26.3.5. Problem. Compute∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy and

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx .

Why does the result not contradict the assertion made in proposition 26.3.3?

26.3.6. Problem. (a) Suppose that the functions g : Rn → R and h : R → R are differentiable
and f = h ◦ g. Show that

fk(x) = gk(x) (Dh)(g(x))

whenever x ∈ Rn and 1 ≤ k ≤ n.
(b) Let g : Rn → R be differentiable and j : R→ R be continuous. Prove that

∂

∂xk

∫ g(x)

c
j(t) dt = gk(x) j(g(x))

whenever c ∈ R, x ∈ Rn, and 1 ≤ k ≤ n. Hint. The expression on the left denotes fk(x) where f

is the function x 7→
∫ g(x)
c j(t) dt.

(c) Use part (b) to compute

∂

∂x

∫ x2+y2

x3y

1

1 + t2 + cos2t
dt .

26.3.7. Proposition (Leibniz’s formula). Let f : [a, b]× [c, d]→ R and h : [c, d]→ R. If f and f2
are continuous, if h is continuously differentiable on (c, d), and if h(y) ∈ [a, b] for every y ∈ (c, d),
then

d

dy

∫ h(y)

a
f(x, y) dx =

∫ h(y)

a
f2(x, y) dx+Dh(y) f(h(y), y) .

Proof. Problem.





CHAPTER 27

COMPUTATIONS IN Rn

In the preceding two chapters we have developed some fundamental facts concerning the differ-
ential calculus in arbitrary Banach spaces. In the present chapter we restrict our attention to the
Euclidean spaces Rn. Not only are these spaces very important historically, but fortunately there
are available a variety of powerful yet relatively simple techniques which make possible explicit
computations of many of the concepts introduced in chapter 25. The usefulness of these spaces
seems to be associated with the emphasis in classical physics on systems having a finite number of
degrees of freedom. The computational simplicity stems from two facts: first, differentials of func-
tions between Euclidean spaces are always continuous (see proposition 23.1.18); and second, the
usual norm on Rn is derivable from an inner product. In the first section of this chapter we derive
some standard elementary facts about inner products. It is important to appreciate that despite
their algebraic appearance, inner products are the source of much of the geometry in Euclidean
spaces.

27.1. INNER PRODUCTS

27.1.1. Definition. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be vectors in Rn. The inner
product (or dot product) of x and y, denoted by 〈x, y〉, is defined by

〈x, y〉 :=

n∑
k=1

xkyk .

As a first result we list the most important properties of the inner product.

27.1.2. Proposition. Let x, y, and z be vectors in Rn and α be a scalar. Then

(a) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;
(b) 〈αx, y〉 = α〈x, y〉;
(c) 〈x, y〉 = 〈y, x〉;
(d) 〈x, x〉 ≥ 0;
(e) 〈x, x〉 = 0 only if x = 0; and

(f) ‖x‖ =
√
〈x, x〉.

Items (a) and (b) say that the inner product is linear in its first variable; (c) says it is symmetric;
and (d) and (e) say that it is positive definite. It is virtually obvious that an inner product is also
linear in its second variable (see exercise 27.1.4). Thus an inner product may be characterized as
a positive definite, symmetric, bilinear functional on Rn.

Proof. Problem.

27.1.3. Proposition. If x is in Rn, then

x =

n∑
k=1

〈x, ek〉ek .

This result is used so frequently that it has been stated formally as a proposition. Its proof,
however, is trivial. [It is clear from the definition of the inner product that 〈x, ek〉 = xk, where, as
usual, {e1, . . . , en} is the standard basis for Rn.]

181
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27.1.4. Exercise. Use properties (a)–(c) above, but not the definition of inner product to prove
that

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉
and

〈x, αy〉 = α〈x, y〉
for all x, y, z ∈ Rn and α ∈ R. (Solution Q.27.1.)

27.1.5. Proposition (The Parallelogram Law). If x, y ∈ Rn, then

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 .
Proof. Problem.

27.1.6. Proposition (Schwarz’s Inequality). If u, v ∈ Rn, then

|〈u, v〉| ≤ ‖u‖‖v‖ .
Proof. This has been proved in chapter 9: notice that the left side of the inequality given in

proposition 9.2.6 is
(
〈u, v〉

)2
and the right side is ‖u‖2‖v‖2. �

27.1.7. Definition. If x and y are nonzero vectors in Rn, define ](x, y), the angle between x
and y, by

](x, y) := arccos

(
〈x, y〉
‖x‖‖y‖

)
.

A version of this formula which is perhaps somewhat more familiar is

〈x, y〉 = ‖x‖‖y‖ cos](x, y) .

27.1.8. Exercise. How do we know that the preceding definition makes sense? (What is the
domain of the arccosine function?) (Solution Q.27.2.)

27.1.9. Problem. Prove the law of cosines: if x and y are nonzero vectors in Rn and θ = ](x, y),
then

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ .

27.1.10. Exercise. What is the angle between the vectors (1, 0, 1) and (0,−1, 1) in R3? (Solu-
tion Q.27.3.)

27.1.11. Problem. Find the angle between the vectors (1, 0,−1,−2) and (−1, 1, 0, 1) in R4.

27.1.12. Problem. The angle of intersection of two curves is by definition the angle between the
tangent vectors to the curves at the point of intersection. Find the angle of intersection at the
point (1,−2, 3) of the curves C1 and C2 where

C1(t) = (t, t2 + t− 4, 3 + ln t)

and
C2(u) = (u2 − 8, u2 − 2u− 5, u3 − 3u2 − 3u+ 12) .

27.1.13. Definition. Two vectors x and y in Rn are perpendicular (or orthogonal) if 〈x, y〉 =
0. In this case we write x ⊥ y. Notice that the relationship between perpendicularity and angle is
what we expect: if x and y are nonzero vectors then x ⊥ y if and only if ](x, y) = π/2. The zero
vector is perpendicular to all vectors but the angle it makes with another vector is not defined.

27.1.14. Problem. Find a linear combination of the vectors (1, 0, 2) and (2,−1, 1) which is per-
pendicular to the vector (2, 2, 1) in R3.

27.1.15. Problem. Prove the Pythagorean theorem: if x ⊥ y in Rn, then

‖x+ y‖2 = ‖x‖2 + ‖y‖2 .
Does the converse hold?
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27.1.16. Notation. Let f : U → Rn and g : V → Rn where U and V are subsets of a normed
linear space which are not disjoint. Then we denote by 〈f, g〉 the real valued function on U ∩ V
whose value at a point x in U ∩ V is 〈f(x), g(x)〉. That is,

〈f, g〉 : U ∩ V → R : x 7→ 〈f(x), g(x)〉 .
The scalar field 〈f, g〉 is the inner product (or dot product of f and g.

27.1.17. Proposition. Suppose that the functions f : U → Rn and g : V → Rn, defined on subsets
of a normed linear space W , are differentiable at a point a in the interior of U ∩ V . Then 〈f, g〉 is
differentiable at a and

d〈f, g〉a = 〈f(a), dga〉+ 〈dfa, g(a)〉 .
Proof. Problem. Hint. Use propositions 25.3.16 and 25.6.2.

27.1.18. Corollary. If f and g are curves at a point a in Rn and are differentiable, then

D〈f, g〉(a) = 〈f(a), Dg(a)〉+ 〈Df(a), g(a)〉 .
Proof. Use 27.1.17 and 25.4.7.

D〈f, g〉(a) = d〈f, g〉a(1)

= 〈f(a), dga(1)〉+ 〈dfa(1), g(a)〉
= 〈f(a), Dg(a)〉+ 〈Df(a), g(a)〉

�

27.1.19. Problem. Let f = (f1, f2, f3) where

f1(t) = t3 + 2t2 − 4t+ 1

f2(t) = t4 − 2t3 + t2 + 3

f3(t) = t3 − t2 + t− 2

and let g(t) = ‖f(t)‖2 for all t in R. Find Dg(1).

27.1.20. Problem. Let c be a differentiable curve in Rn. Show that the point c(t) moves on the
surface of a sphere centered at the origin if and only if the tangent vector Dc(t) at t is perpendicular
to the position vector c(t) at each t. Hint. Use corollary 27.1.18.

27.2. THE GRADIENT

In beginning calculus texts the gradient of a real valued function of n variables is usually defined
to be an n-tuple of partial derivatives. This definition, although convenient for computation,
disguises the highly geometric nature of the gradient. Here we adopt a different definition: the
gradient of a scalar field is the vector which represents, in a sense to be made precise below, the
differential of the function. First we look at an important example of a bounded linear functional
on Rn.

27.2.1. Example. Let b ∈ Rn. Define

ψ
b
: Rn → R : x 7→ 〈x, b〉 .

Then ψ
b

is a bounded linear functional on Rn and ‖ψ
b
‖ = ‖b‖.

Proof. Exercise. (Solution Q.27.4.)

The reason for the importance of the preceding example is that functions of the form ψ
b

turn
out to be the only bounded linear functionals on Rn. Since on Rn every linear functional is bounded
(see propositions 23.1.18 and 23.1.4), the functions ψ

b
are in fact the only real valued linear maps

on Rn. Thus we say that every linear functional on Rn can be represented in the form ψ
b

for some
vector b in Rn. Furthermore, this representation is unique. These assertions are stated formally in
the next theorem.
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27.2.2. Theorem (Riesz-Fréchet Theorem). If f ∈ (Rn)∗, then there exists a unique vector b in
Rn such that

f(x) = 〈x, b〉
for all x in Rn.

Proof. Problem. Hint. For the existence part, (a) write
∑n

k=1 xke
k for x in the expression

f(x), and use the linearity of f . Then, (b) write 〈x, b〉 as a sum. Comparing the results of
(a) and (b), guess the identity of the desired vector b. The uniqueness part is easy: suppose
f(x) = 〈x, a〉 = 〈x, b〉 for all x in Rn. Show a = b.

27.2.3. Definition. If a map T : V → W between two normed linear spaces is both an isometry
and a vector space isomorphism, we say that it is an isometric isomorphism and that the spaces
V and W are isometrically isomorphic.

27.2.4. Proposition. Each Euclidean space Rn is isometrically isomorphic to its dual (Rn)∗.

Proof. Problem. Hint. Consider the map

ψ : Rn → (Rn)∗ : b 7→ ψb .

One thing that must be established is that ψ is linear; don’t confuse this with showing that each
ψb is linear—a task already accomplished in example 27.2.1. Use the Riesz-Fréchet theorem 27.2.2
and problem 22.3.12.

The Riesz-Fréchet theorem 27.2.2 is the crucial ingredient in our definition of the gradient of a
scalar field.

27.2.5. Definition. Let U ⊆ Rn and φ : U → R be a scalar field. If φ is differentiable at a point
a in U◦, then its differential dφa is a bounded linear map from Rn into R. That is, dφa ∈ (Rn)∗.
Thus according to the Riesz-Fréchet theorem 27.2.2 there exists a unique vector, which we denote
by ∇φ(a), representing the linear functional dφa. That is, ∇φ(a) is the unique vector in Rn such
that

dφa(x) = 〈x,∇φ(a)〉
for all x in Rn. The vector ∇φ(a) is the gradient of φ at a. If U is an open subset of Rn and φ
is differentiable at each point of U , then the function

∇φ : U → Rn : u 7→ ∇φ(u)

is the gradient of φ. Notice two things: first, the gradient of a scalar field is a vector field; and
second, the differential dφa is the zero linear functional if and only if the gradient at a, ∇φ(a), is
the zero vector in Rn.

Perhaps the most useful fact about the gradient of a scalar field φ at a point a in Rn is that it
is the vector at a which points in the direction of the most rapid increase of φ.

27.2.6. Proposition. Let φ : U → R be a scalar field on a subset U of Rn. If φ is differentiable at a
point a in U and dφa is not the zero functional, then the maximum value of the directional derivative
Duφ(a), taken over all unit vectors u in Rn, is achieved when u points in the direction.of the gradient
∇φ(a). The minimum value is achieved when u points in the opposite direction −∇φ(a).

Proof. Exercise. Hint. Use proposition 25.5.9 and recall that 〈x, y〉 = ‖x‖‖y‖ cos](x, y).
(Solution Q.27.5.)

When a curve c is composed with a scalar field φ we obtain a real valued function of a single
variable. An easy but useful special case of the chain rule says that the derivative of the composite
φ ◦ c is the dot product of the derivative of c with the gradient of φ.
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27.2.7. Proposition. Suppose that c is a curve in Rn which is differentiable at a point t in R and
that φ belongs to Dc(t)(Rn,R). Then φ ◦ c is differentiable at t and

D(φ ◦ c)(t) = 〈Dc(t), (∇φ)(c(t))〉 .

Proof. Problem. Hint. Use proposition 25.4.7 and the chain rule 25.3.17.

27.2.8. Problem. If φ : Rn → R : x 7→ ‖x‖2, then φ is differentiable at each point b of Rn and

dφb = 2ψb

Furthermore, ∇φ = 2I (where I is the identity function on Rn). Hint. The definition of ψb is given
in 27.2.1. Write φ = 〈I, I〉 and use 27.1.17.

27.2.9. Problem. For the function φ given in the preceding problem verify by direct computation
the formula for the mean value theorem (proposition 26.1.14).

27.2.10. Definition. A linear transformation T : Rn → Rn is self-adjoint if 〈Tx, y〉 = 〈x, Ty〉
for all x, y ∈ Rn.

27.2.11. Problem. Let T ∈ B(Rn,Rn) be self-adjoint and

µ : Rn → R : x 7→ 〈Tx, x〉.
(a) Show that µ is differentiable at each point b in Rn and find dµb.
(b) Find ∇µ.

27.2.12. Problem. Repeat problem 27.2.9, this time using the function µ given in problem 27.2.11.

27.2.13. Exercise (Conservation of Energy). Consider a particle P moving in R3 under the in-
fluence of a force F . Suppose that the position of P at time t is x(t) where x : R → R3 is at least
twice differentiable. Let v := Dx be the velocity of P and a := Dv be its acceleration. Assume
Newton’s second law : F ◦ x = ma, where F : R3 → R3 is the force acting on P and m is the mass
of P . Suppose further that the force field F is conservative; that is, there exists a scalar field
φ : R3 → R such that F = −∇φ. (Such a scalar field is a potential function for F .) The
kinetic energy of P is defined by

KE := 1
2m‖v‖

2 ,

its potential energy by
PE := φ ◦ x ,

and its total energy by
TE := KE + PE .

Prove, for this situation, the law of conservation of energy :

TE is constant.

Hint. Use propositions 26.1.9, 27.1.17, and 27.2.7. (Solution Q.27.6.)

In most circumstances the simplest way of computing the gradient of a scalar field φ on Rn is
to calculate the n partial derivatives of φ. The n-tuple of these derivatives is the gradient. In most
beginning calculus texts this is the definition of the gradient.

27.2.14. Proposition. If φ is a scalar field on a subset of Rn and is differentiable at a point a,
then

∇φ(a) =

n∑
k=1

φk(a)ek .

Proof. Exercise. Hint. Substitute ∇φ(a) for x in 27.1.3. Use 25.5.9. (Solution Q.27.7.)

27.2.15. Exercise. Let φ(w, x, y, z) = wz − xy, u = (12 ,−
1
2 ,

1
2 ,−

1
2), and a = (1, 2, 3, 4). Find

the directional derivative Duφ(a). Hint. Use 25.5.9, the definition of gradient, and 27.2.14. (Solu-
tion Q.27.8.)
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27.2.16. Exercise (Method of Steepest Descent). Let φ(x, y) = 2x2+6y2 and a = (2,−1). Find the
steepest downhill path on the surface z = φ(x, y) starting at the point a and ending at the minimum
point on the surface. Hints. (1) It is enough to find the equation of the projection of the curve
onto the xy-plane; every curve t 7→

(
x(t), y(t)

)
in the xy-plane is the projection along the z-axis of

a unique curve t 7→
(
x(t), y(t), φ(x(t), y(t))

)
on the surface z = φ(x, y). (2) If c : t 7→

(
x(t), y(t)

)
is

the desired curve and we set c(0) = a, then according to proposition 27.2.6 the unit vector u which
minimizes the directional derivative Duφ(b) at a point b in R2 is the one obtained by choosing u
to point in the direction of −∇φ(b). Thus in order for the curve to point in the direction of the
most rapid decrease of φ at each point c(t), the tangent vector to the curve at c(t) must be some
positive multiple p(t) of −(∇φ)

(
c(t)
)
. The function p will govern the speed of descent; since this

is irrelevant in the present problem, set p(t) = 1 for all t. (3) Recall from beginning calculus that
on an interval the only nonzero solution to an equation of the form Dx(t) = kx(t) is of the form
x(t) = x(0)ekt. (4) The parameter t which we have introduced is artificial. Eliminate it to obtain
an equation of the form y = f(x). (Solution Q.27.9.)

27.2.17. Proposition (A Mean Value Theorem for Scalar Fields). Let φ be a differentiable scalar
field on an open convex subset U of Rn and suppose that a and b are distinct points belonging to U .
Then there exists a point c in the closed segment [a, b] such that

φ(b)− φ(a) = 〈b− a,∇φ(c)〉 .

Proof. Problem. Hint. Let l(t) = (1− t)a+ tb for 0 ≤ t ≤ 1. Apply the mean value theorem
for a real valued function of a single variable (8.4.26) to the function φ ◦ l. Use proposition 27.2.7.

27.2.18. Problem. Let c(t) = (cos t, sin t, t) and φ(x, y, z) = x2y−3yz. Find D(φ◦ c)(π/6). Hint.
Use 27.2.7 and 27.2.14.

27.2.19. Problem. Let φ(x, y, z) = xz − 4y, u = (12 , 0,
1
2

√
3), and a = (1, 0,−π

2 ). Find the
directional derivative Duφ(a).

27.2.20. Problem. Show that if V is a normed linear space, f ∈ Da(Rn, V ), and v is a nonzero
vector in Rn, then

Dvf(a) =
n∑
k=1

vkfk(a) .

Hint. Use proposition 25.5.9.

27.2.21. Problem. Let f : R2 → R2 : x 7→ (x1
2 − x22, 3x1x2), a = (2, 1), and v = (−1, 2). Use the

preceding problem to find Dvf(a).

27.2.22. Problem. Find the path of steepest descent on the surface z = x6 + 12y4 starting at the
point whose x-coordinate is 1 and whose y-coordinate is 1

2 .

27.2.23. Problem. Suppose that the temperature φ(x, y) at points (x, y) on a flat surface is given
by the formula

φ(x, y) = x2 − y2 .
Starting at a point (a, b) on the surface, what path should be followed so that the temperature will
increase as rapidly as possible?

27.2.24. Problem. This (like exercise 27.2.16 and problem 27.2.22) is a steepest descent problem;
but here, we suppose that for some reason we are unable to solve explicitly the resulting differential
equations. Instead we invoke an approximation technique. Let

φ(x) = 13x1
2 − 42x1 + 13x2

2 + 6x2 + 10x1x2 + 9

for all x in R2. The goal is to approximate the path of steepest descent. Start at an arbitrary point
x0 in R2 and choose a number h > 0. At x0 compute the gradient of φ, take u0 to be the unit



27.3. THE JACOBIAN MATRIX 187

vector pointing in the direction of −∇φ(x0), and then move h units in the direction of u0 arriving
at a point x1. Repeat the procedure: find the unit vector u1 in the direction of −∇φ(x1), then
from x1 move h units along u1 to a point x2. Continue in this fashion. In other words, x0 ∈ R2

and h > 0 are arbitrary, and for n ≥ 0

xn+1 = xn + hun

where un = −‖∇φ(xn)‖−1∇φ(xn).

(a) Start at the origin x0 = (0, 0) and choose h = 1. Compute 25 or 30 values of xn. Explain
geometrically what is happening here. Why is h “too large”? Hint. Don’t attempt to do
this by hand. Write a program for a computer or a programmable calculator. In writing
your program don’t ignore the possibility that ∇φ(xn) may be zero for some n. (Keep
in mind when you write this up that your reader probably has no idea how to read the
language in which you write your program. Document it well enough that the reader can
easily understand what you are doing at each step.)

(b) Describe what happens when h is “too small”. Again start at the origin, take h = 0.001
and compute 25 or 30 values of xn.

(c) By altering the values of h at appropriate times, find a succession of points x0, . . . , xn

(starting with x0 = (0, 0) ) such that the distance between xn and the point where φ
assumes its minimum value is less than 0.001. (By examining the points x0, . . . , xn you
should be able to guess, for this particular function, the exact location of the minimum.)

(d) Alter the program in part (a) to eliminate division by ‖∇φ(xn)‖. (That is, let xn+1 =
xn − h∇φ(xn).) Explain what happens in this case when h is “too large” (say h = 1).
Explain why the altered program works better (provided that h is chosen appropriately)
than the program in (a) for the present function φ.

27.2.25. Problem. Is it possible to find a differentiable scalar field φ on Rn and a point a in Rn
such that Duφ(a) > 0 for every nonzero u in Rn?

27.2.26. Problem. Is it possible to find a differentiable scalar field φ on Rn and a nonzero vector
u in Rn such that Duφ(a) > 0 for every a in Rn?

27.3. THE JACOBIAN MATRIX

27.3.1. Definition. Let U
◦
⊆ Rn and f : U → Rm be a differentiable function. Recall that the

components f1, . . . , fm of f satisfy

f(x) =
(
f1(x), . . . , fm(x)

)
=

m∑
j=1

f j(x)ej

for all x in U . More briefly we may write

f = (f1, . . . , fm) =
m∑
j=1

f jej .

Recall also (from proposition 26.2.15) that

(f j)k(a) = (fk)
j(a)

whenever 1 ≤ j ≤ m, 1 ≤ k ≤ n, and a ∈ U . Consequently the notation f jk(a) is unambiguous;
from now on we use it. As the differential of f at a point a in U is a (bounded) linear map from
Rn into Rm, it may be represented by an m× n matrix. This is called the Jacobian matrix of f

at a. The entry in the jth row and kth column of this matrix is f jk(a).

27.3.2. Proposition. If f ∈ Da(Rn,Rm), then

[dfa] = [f jk(a)] .
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Proof. Exercise. Hint. It helps to distinguish notationally between the standard basis vectors
in Rn and those in Rm. Denote the ones in Rn by e1, . . . , en and those in Rm by ê1, . . . , êm.
Use 21.3.11. (Solution Q.27.10.)

Note that the jth row of the Jacobian matrix is f j1 , . . . , f
j
n. Thought of as a vector in Rn this

is just the gradient of the scalar field f j . Thus we may think of the Jacobian matrix [dfa] as being
in the form ∇f

1(a)
...

∇fm(a)

 .
27.3.3. Exercise. Let f : R4 → R3 : (w, x, y, z) 7→ (wxz, x2 + 2y2 + 3z2, wy arctan z), let a =
(1, 1, 1, 1), and let v = (0, 2,−3, 1).

(a) Find [dfa].
(b) Find dfa(v).

(Solution Q.27.11.)

27.3.4. Problem. Let f : R2 → R2 : x 7→ (x1
2 − x22, 3x1x2) and a = (2, 1).

(a) Find [dfa].
(b) Use part (a) to find dfa(−1, 3).

27.3.5. Problem. Let f : R3 → R4 : (x, y, z) 7→ (xy, y − z2, 2xz, y + 3z), let a = (1,−2, 3), and let
v = (2, 1,−1).

(a) Find [dfa].
(b) Use part (a) to calculate Dvf(a).

27.3.6. Problem. Let f : R2 → R2 : (x, y) 7→ (x2y, 2xy2), let a = (2,−1), and let u = (35 ,
4
5).

Compute Duf(a) in three ways:

(a) Use the definition of directional derivative.
(b) Use proposition 25.5.2.
(c) Use proposition 25.5.9.

27.3.7. Problem. Suppose that f ∈ Da(R3,R4) and that the Jacobian matrix of f at a is
b c e
g h i
j k l
m n p


Find f1(a), f2(a), f3(a), ∇f1(a), ∇f2(a), ∇f3(a), and ∇f4(a).

27.3.8. Problem. Let f ∈ Da(Rn,Rm) and v ∈ Rn. Show that

(a) dfa(v) =
∑m

j=1〈∇f j(a), v〉ej , and

(b) ‖dfa‖ ≤
∑m

j=1‖∇f j(a)‖.

27.4. THE CHAIN RULE

In some respects it is convenient for scientists to work with variables rather than functions.
Variables denote the physical quantities in which a scientist is ultimately interested. (In thermo-
dynamics, for example, T is temperature, P pressure, S entropy, and so on.) Functions usually
have no such standard associations. Furthermore, a problem which deals with only a small number
of variables may turn out to involve a dauntingly large number of functions if they are specified.
The simplification provided by the use of variables may, however, be more apparent than real, and
the price paid in increased ambiguity for their suggestiveness is often substantial. Below are a
few examples of ambiguities produced by the combined effects of excessive reliance on variables,
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inadequate (if conventional) notation, and the unfortunate mannerism of using the same name for
a function and a dependent variable (“Suppose x = x(s, t). . . ”).

(A) If z = f(x, y), what does ∂
∂xz(y, x) mean? (Perhaps f1(y, x)? Possibly f2(y, x)?)

(B) If z = f(x, t) where x = x(t), then what is ∂z
∂t ? (Is it f2(t)? Perhaps the derivative of

t 7→ f(x(t), t) is intended?)
(C) Let f(x, y) be a function of two variables. Does the expression z = f(tx, ty) have three

partial derivatives ∂z
∂x , ∂z

∂y , and ∂z
∂t ? Do ∂z

∂x and ∂f
∂x mean the same thing?

(D) Let w = w(x, y, t) where x = x(s, t) and y = y(s, t). A direct application of the chain rule
(as stated in most beginning calculus texts) produces

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂t
.

Is this correct ? Do the terms of the form ∂w
∂t cancel?

(E) Let z = f(x, y) = g(r, θ) where x = r cos θ and y = r sin θ. Do ∂z
∂r and ∂z

∂θ make sense? Do
∂z
∂x and ∂z

∂y? How about z1 and z2? Are any of these equal?

(F) The formulas for changing polar to rectangular coordinates are x = r cos θ and y = r sin θ.
So if we compute the partial derivative of the variable r with respect to the variable x we
get

∂r

∂x
=

∂

∂x

√
x2 + y2 =

x√
x2 + y2

=
x

r
= cos θ .

On the other hand, since r =
x

cos θ
, we use the chain rule to get

∂r

∂x
=

1

cos θ
= sec θ .

Do you suppose something is wrong here? What?

The principal goal of the present section is to provide a reliable formalism for dealing with
partial derivatives of functions of several variables in such a way that questions like (A)–(F) can
be avoided. The basic strategy is quite simple: when in doubt give names to the relevant functions
(especially composite ones!) and then use the chain rule. Perhaps it should be remarked that
one need not make a fetish of avoiding variables. Many problems stated in terms of variables
can be solved quite simply without the intrusion of the names of functions. (E.g. What is ∂z

∂x if

z = x3y2?) This section is intended as a guide for the perplexed. Although its techniques are
often useful in dissipating confusion generated by inadequate notation, it is neither necessary nor
even particularly convenient to apply them routinely to every problem which arises. Let us start
by writing the chain rule for functions between Euclidean spaces in terms of partial derivatives.
Suppose that f ∈ Da(Rp,Rn) and g ∈ Df(a)(Rn,Rm). Then according to theorem 25.3.17

d(g ◦ f)a = dgf(a) ◦ dfa .
Replacing these linear transformations by their matrix representations and using proposition 21.5.12
we obtain [

d(g ◦ f)a
]

=
[
dgf(a)

][
dfa
]
. (27.1)

27.4.1. Proposition. If f ∈ Da(Rp,Rn) and g ∈ Df(a)(Rn,Rm), then
[
d(g ◦ f)a

]
is the m × p

matrix whose entry in the jth row and kth column is
∑n

i=1 g
j
i (f(a))f ik(a). That is,

(g ◦ f)jk(a) =

n∑
i=1

(
gji ◦ f

)
(a)f ik(a)

for 1 ≤ j ≤ m and 1 ≤ k ≤ p.

Proof. Multiply the two matrices on the right hand side of (27.1) and use proposition 27.3.2.
�
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It is occasionally useful to restate proposition 27.4.1 in the following (clearly equivalent) way.

27.4.2. Corollary. If f ∈ Da(Rp,Rn) and g ∈ Df(a)(Rn,Rm), then[
d(g ◦ f)a

]
=
[
〈∇gj(f(a)), fk(a)〉

]m
j=1

p

k=1
.

27.4.3. Exercise. This is an exercise in translation of notation. Suppose y = y(u, v, w, x) and
z = z(u, v, w, x) where u = u(s, t), v = v(s, t), w = w(s, t), and x = x(s, t). Show that (under
suitable hypotheses)

∂z

∂t
=
∂z

∂u

∂u

∂t
+
∂z

∂v

∂v

∂t
+
∂z

∂w

∂w

∂t
+
∂z

∂x

∂x

∂t
.

(Solution Q.27.12.)

27.4.4. Problem. Suppose that the variables x, y, and z are differentiable functions of the variables
α, β, γ, δ, and ε, which in turn depend in a differentiable fashion on the variables r, s, and t. As
in exercise 27.4.3 use proposition 27.4.1 to write ∂z

∂r in terms of quantities such as ∂z
∂α , ∂δ

∂r , etc.

27.4.5. Exercise. Let f(x, y, z) = (xy2, 3x− z2, xyz, x2 + y2, 4xz + 5), g(s, t, u, v, w) = (s2 + u2 +
v2, s2v − 2tw2), and a = (1, 0,−1). Use the chain rule to find

[
d(g ◦ f)a

]
. (Solution Q.27.13.)

27.4.6. Problem. Let f(x, y, z) = (x3y2 sin z, x2 + y cos z), g(u, v) = (
√
uv, v3), k = g ◦ f , a =

(1,−2, π/2), and h = (1,−1, 2). Use the chain rule to find dka(h).

27.4.7. Problem. Let f(x, y, z) = (x2y + y2z, xyz), g(x, y) = (x2y, 3xy, x − 2y, x2 + 3), and
a = (1,−1, 2). Use the chain rule to find

[
d(g ◦ f)a

]
.

We now consider a slightly more complicated problem. Suppose that w = w(x, y, t) where
x = x(s, t) and y = y(s, t) and that all the functions mentioned are differentiable. (This is problem
(D) at the beginning of this section.) It is perhaps tempting to write

∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂t

∂t

∂t

=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+
∂w

∂t

(27.2)

(since ∂t
∂t = 1). The trouble with this is that the ∂w

∂t on the left is not the same as the one on

the right. The ∂t
∂t on the right refers only to the rate of change of w with respect to t insofar as

t appears explicitly in the formula for w; the one on the left takes into account the fact that in
addition w depends implicitly on t via the variables x and y. What to do? Use functions. Relate
the variables by functions as follows.

s
t

f−−−−→
x
y
t

g−−−−→ w (27.3)

Also let h = g ◦ f . Notice that f3 = π2 (that is, f3(s, t) = t). Then according to the chain rule

h2 =

3∑
k=1

(gk ◦ f) fk2 .

But f32 = 1 (that is, ∂t
∂t = 1). So

h2 = (g1 ◦ f)f12 + (g2 ◦ f)f22 + g3 ◦ f. (27.4)

The ambiguity of (27.2) has been eliminated in (27.4). The ∂w
∂t on the left is seen to be the derivative

with respect to t of the composite h = g ◦ f , whereas the ∂w
∂t on the right is just the derivative with

respect to t of the function g.
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One last point. Many scientific workers adamantly refuse to give names to functions. What do
they do? Look back at diagram (27.3) and remove the names of the functions.

s
t
−−−−→

x
y
t
−−−−→ w (27.5)

The problem is that the symbol “t” occurs twice. To specify differentiation of the composite
function (our h) with respect to t, indicate that the “t” you are interested in is the one in the
left column of (27.5). This may be done by listing everything else that appears in that column.
That is, specify which variables are held constant. This specification conventionally appears as a
subscript outside parentheses. Thus the ∂w

∂t on the left of (27.2) (our h2) is written as
(
∂w
∂t

)
s

(and

is read, “∂w∂t with s held constant”). Similarly, the ∂w
∂t on the right of (27.2)) (our g3) involves

differentiation with respect to t while x and y are fixed. So it is written
(
∂w
∂t

)
x,y

(and is read, “∂w∂t
with x and y held constant). Thus (27.2) becomes(

∂w

∂t

)
s

=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
+

(
∂w

∂t

)
x,y

(27.6)

It is not necessary to write, for example, an expression such as
(
∂w
∂x

)
t,y

because there is no

ambiguity; the symbol “x” occurs only once in (27.5). If you choose to use the convention just
presented, it is best to use it only to avoid confusion; use it because you must, not because you can.

27.4.8. Exercise. Let w = t3 + 2yx−1 where x = s2 + t2 and y = s arctan t. Use the chain rule to
find

(
∂w
∂t

)
s

at the point where s = t = 1. (Solution Q.27.14.)

We conclude this section with two more exercises on the use of the chain rule. Part of the
difficulty here and in the problems at the end of the section is to interpret correctly what the
problem says. The suggested solutions may seem longwinded, and they are. Nevertheless these
techniques prove valuable in situations complicated enough to be confusing. With practice it is
easy to do many of the indicated steps mentally.

27.4.9. Exercise. Show that if z = xy + xφ(yx−1), then x ∂z∂x + y ∂z∂y = xy + z. Hint. Start by

restating the exercise in terms of functions. Add suitable hypotheses. In particular, suppose that
φ : R→ R is differentiable. Let

j(x, y) = xy + xφ(yx−1)

for x, y ∈ R, x 6= 0. Then for each such x and y

xj1(x, y) + yj2(x, y) = xy + j(x, y) . (27.7)

To prove this assertion proceed as follows.

(a) Let g(x, y) = yx−1. Find
[
dg(x,y)

]
.

(b) Find
[
d(φ ◦ g)(x,y)

]
.

(c) Let G(x, y) =
(
x, φ(yx−1)

)
. Use (b) to find

[
dG(x,y)

]
.

(d) Let m(x, y) = xy. Find
[
dm(x,y)

]
.

(e) Let h(x, y) = xφ(yx−1). Use (c) and (d) to find
[
dh(x,y)

]
.

(f) Use (d) and (e) to find
[
dj(x,y)

]
.

(g) Use (f) to prove (27.7).

(Solution Q.27.15.)

27.4.10. Exercise. Show that if f(u, v) = g(x, y) where f is a differentiable real valued function,
u = x2 − y2, and v = 2xy, then

y
∂g

∂x
− x∂g

∂y
= 2v

∂f

∂u
− 2u

∂f

∂v
(27.8)
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Hint. The equations u = x2 − y2 and v = 2xy give u and v in terms of x and y. Think of the
function h : (x, y) 7→ (u, v) as a change of variables in R2. That is, define

h : R2 → R2 : (x, y) 7→ (x2 − y2, 2xy) .

Then on the uv-plane (that is, the codomain of h) the function f is real valued and differentiable.
The equation f(u, v) = g(x, y) serves only to fix notation. It indicates that g is the composite
function f ◦ h. We may visualize the situation thus.

x
y

h−−−−→ u
v

f−−−−→ w (27.9)

where g = f ◦ h.
Now what are we trying to prove? The conclusion (27.8) is clear enough if we evaluate the

partial derivatives at the right place. Recalling that we have defined h so that u = h1(x, y) and
v = h2(x, y), we may write (27.8) in the following form.

yg1(x, y)− xg2(x, y) = 2h2(x, y)f1(h(x, y))− 2h1(x, y)f2(h(x, y)) . (27.10)

Alternatively we may write
π2g1 − π1g2 = 2h2f1 − 2h1f2

(where π1 and π2 are the usual coordinate projections). To verify (27.10) use the chain rule to find[
dg(x,y)

]
. (Solution Q.27.16.)

27.4.11. Problem. Let w = 1
2x

2y+ arctan(tx) where x = t2−3u2 and y = 2tu. Find
(
∂w
∂t

)
u

when
t = 2 and u = −1.

27.4.12. Problem. Let z = 1
16uw

2xy where w = t2 − u2 + v2, x = 2tu + tv, and y = 3uv. Find(
∂z
∂u

)
t,v

when t = 1, u = −1, and v = −2.

27.4.13. Problem. If z = f

(
x−y
y

)
, then x ∂z∂x + y ∂z∂y = 0. State this precisely and prove it.

27.4.14. Problem. If φ is a differentiable function on an open subset of R2 and w = φ(u2−t2, t2−
u2), then t∂w∂u + u∂w∂t = 0. Hint. Let h(t, u) = (u2 − t2, t2 − u2) and w = ψ(t, u) where ψ = φ ◦ h.

Compute
[
dh(t,u)

]
. Use the chain rule to find

[
dψ(t,u)

]
. Then simplify tψ2(t, u) + uψ1(t, u).

27.4.15. Problem. If f(u, v) = g(x, y) where f is a differentiable real valued function on R2 and
if u = x3 + y3 and v = xy, then

x
∂g

∂x
+ y

∂g

∂y
= 3u

∂f

∂u
+ 2v

∂f

∂v
.

27.4.16. Problem. Let f(x, y) = g(r, θ) where (x, y) are Cartesian coordinates and (r, θ) are polar
coordinates in the plane. Suppose that f is differentiable at all (x, y) in R2.

(a) Show that except at the origin

∂f

∂x
= (cos θ)

∂g

∂r
− 1

r
(sin θ)

∂g

∂θ
.

(b) Find a similar expression for ∂f
∂y .

Hint. Recall that Cartesian and polar coordinates are related by x = r cos θ and y = r sin θ.

27.4.17. Problem. Let n be a fixed positive integer. A function f : R2 → R2 is homogeneous
of degree n if f(tx, ty) = tnf(x, y) for all t, x, y ∈ R. If such a function f is differentiable, then

x
∂f

∂x
+ y

∂f

∂y
= nf . (27.11)

Hint. Try the following:

(a) Let G(x, y, t) = (tx, ty). Find
[
dG(t,x,y)

]
.
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(b) Let h = f ◦G. Find
[
dh(x,y,t)

]
.

(c) Let H(x, y, t) = (tn, f(x, y)). Find
[
dH(x,y,t)

]
.

(d) Let k = m ◦H (where m(u, v) = uv). Find
[
dk(x,y,t)

]
.

(e) By hypothesis h = k; so the answers to (b) and (d) must be the same. Use this fact to
derive (27.11).





CHAPTER 28

INFINITE SERIES

It is perhaps tempting to think of an infinite series
∞∑
k=1

ak = a1 + a2 + a3 + . . .

as being nothing but “addition performed infinitely often”. This view of series is misleading, can
lead to curious errors, and should not be taken seriously. Consider the infinite series

1− 1 + 1− 1 + 1− 1 + .... (28.1)

If we think of the “+” and “-” signs as functioning in essentially the same manner as the symbols
we encounter in ordinary arithmetic, we might be led to the following “discovery”.

0 = (1− 1) + (1− 1) + (1− 1) + . . . (28.2)

= 1− 1 + 1− 1 + 1− 1 + . . . (28.3)

= 1− (1− 1)− (1− 1)− . . . (28.4)

= 1− 0− 0− . . . (28.5)

= 1 . (28.6)

One can be more inventive: If S is the sum of the series (28.1), then

1− S = 1− (1− 1 + 1− 1 + . . . ) = 1− 1 + 1− 1 + 1− 1 + · · · = S

from which it follows that S = 1
2 . This last result, incidentally, was believed (for quite different

reasons) by both Leibniz and Euler. See [9]. The point here is that if an intuitive notion of infinite
sums and plausible arguments lead us to conclude that 1 = 0 = 1

2 , then it is surely crucial for us
to exercise great care in defining and working with convergence of infinite series.

In the first section of this chapter we discuss convergence of series in arbitrary normed linear
spaces. One reason for giving the definitions in this generality is that doing so is no more compli-
cated than discussing convergence of series in R. A second reason is that it displays with much
greater clarity the role of completeness of the underlying space in questions of convergence. (See,
in particular, propositions 28.1.17 and 28.3.2.) A final reason is that this generality is actually
needed. We use it, for example, in the proofs of the inverse and implicit function theorems in the
next chapter.

28.1. CONVERGENCE OF SERIES

28.1.1. Definition. Let (ak) be a sequence in a normed linear space. For each n in N let sn =∑n
k=1 ak. The vector sn is the nth partial sum of the sequence (ak). As is true of sequences,

we permit variations of this definition. For example, in section 28.4 on power series we consider
sequences

(
ak
)n
k=0

whose first term has index zero. In this case, of course, the proper definition of

sn is
∑n

k=0 ak.

28.1.2. Exercise. Let ak = (−1)k+1 for each k in N. For n ∈ N compute the nth partial sum of
the sequence (ak). (Solution Q.28.1.)

28.1.3. Exercise. Let ak = 2−k for each k in N. For n ∈ N show that the nth partial sum of the
sequence (ak) is 1− 2−n. (Solution Q.28.2.)

195
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28.1.4. Definition. Let (ak) be a sequence in a normed linear space. The infinite series∑∞
k=1 ak is defined to be the sequence (sn) of partial sums of the sequence (ak). We may also write

a1 + a2 + a3 + . . . for
∑∞

k=1 ak. Again we permit variants of this definition. For example, the

infinite series associated with the sequence
(
ak
)∞
k=0

is denoted by
∑∞

k=0 ak. Whenever the range
of the summation index k is understood from context or is unimportant we may denote a series
simply by

∑
ak.

28.1.5. Exercise. What are the infinite series associated with the sequences given in exercises
28.1.2 and 28.1.3? (Solution Q.28.3.)

28.1.6. Definition. Let (ak) be a sequence in a normed linear space V . If the infinite series∑∞
k=1 ak (that is, the sequence of partial sums of (ak)) converges to a vector b in V , then we say

that the sequence (ak) is summable or, equivalently, that the series
∑∞

k=1 ak is a convergent
series. The vector b is called the sum of the series

∑∞
k=1 ak and we write

∞∑
k=1

ak = b .

It is clear that a necessary and sufficient condition for a series
∑∞

k=1 ak to be convergent or,
equivalently, for the sequence (ak) to be summable, is that there exist a vector b in V such that∥∥∥∥∥b−

n∑
k=1

ak

∥∥∥∥∥→ 0 as n→∞. (28.7)

If a series does not converge we say that it is a divergent series (or that it diverges).

CAUTION. It is an old, if illogical, practice to use the same notation
∑∞

k=1 ak for both the
sum of a convergent series and the series itself. As a result of this convention, the statements
“
∑∞

k=1 ak converges to b” and “
∑∞

k=1 ak = b” are interchangeable. It is possible for this to cause
confusion, although in practice it is usually clear from the context which use of the symbol

∑∞
k=1 ak

is intended. Notice however that since a divergent series has no sum, the symbol
∑∞

k=1 ak for such
a series is unambiguous; it can refer only to the series itself.

28.1.7. Exercise. Are the sequences (ak) given in exercises 28.1.2 and 28.1.3 summable? If (ak)
is summable, what is the sum of the corresponding series

∑∞
k=1 ak? (Solution Q.28.4.)

28.1.8. Problem (Geometric Series). Let a and r be real numbers.

(a) Show that if |r| < 1, then
∑∞

k=0 ar
k converges and

∞∑
k=0

ark =
a

1− r
.

Hint. To compute the nth partial sum sn, use a technique similar to the one used in
exercise 28.1.3. See also problem I.1.12.

(b) Show that if |r| ≥ 1 and a 6= 0, then
∑∞

k=0 ar
k diverges. Hint. Look at the cases r ≥ 1

and r ≤ −1 separately.

28.1.9. Problem. Let
∑
ak and

∑
bk be convergent series in a normed linear space.

(a) Show that the series
∑

(ak + bk) also converges and that∑
(ak + bk) =

∑
ak +

∑
bk .

Hint. Problem 22.3.9(a).
(b) Show that for every α ∈ R the series

∑
(αak) converges and that∑

(αak) = α
∑

ak .
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One very easy way of seeing that certain series do not converge is to observe that its terms do
not approach 0. (The proof is given in the next proposition.) It is important not to confuse this
assertion with its converse. The condition ak → 0 does not guarantee that

∑∞
k=1 ak converges. (An

example is given in example 28.1.11.

28.1.10. Proposition. If
∑∞

k=1 ak is a convergent series in a normed linear space, then ak → 0
as k →∞.

Proof. Exercise. Hint. Write an in terms of the partial sums sn and sn−1. (Solution Q.28.5.)

28.1.11. Example. It is possible for a series to diverge even though the terms ak approach 0.
A standard example of this situation in R is the harmonic series

∑∞
k=1 1/k. The harmonic series

diverges.

Proof. Exercise. Hint. Show that the difference of the partial sums s2p and sp is at least 1/2.
Assume that (sn) converges. Use proposition 18.1.4. (Solution Q.28.6.)

28.1.12. Problem. Show that if 0 < p ≤ 1, then the series
∑∞

k=1 k
−p diverges. Hint. Modify the

argument used in 28.1.11.

28.1.13. Problem. Show that the series
∑∞

k=1
1

k2+k
converges and find its sum. Hint. 1

k2+k
=

1
k −

1
k+1 .

28.1.14. Problem. Use the preceding problem to show that the series
∑∞

k=1
1
k2

converges and
that its sum is no greater than 2.

28.1.15. Problem. Show that the series
∑∞

k=4
1

k2−1 converges and find its sum.

28.1.16. Problem. Let p ∈ N. Find the sum of the series
∑∞

k=1
(k−1)!
(k+p)! . Hint. If ak = k!

(k+p)! , what

can you say about
∑n

k=1(ak−1 − ak)?

In complete normed linear spaces the elementary fact that a sequence is Cauchy if and only if it
converges may be rephrased to give a simple necessary and sufficient condition for the convergence
of series in the space.

28.1.17. Proposition (The Cauchy Criterion). Let V be a normed linear space. If the series
∑
ak

converges in V , then for every ε > 0 there exists n0 ∈ N such that
∥∥∑n

k=m+1 ak
∥∥ < ε whenever

n > m ≥ n0. If V is a Banach space, then the converse of this implication also holds.

Proof. Exercise (Solution Q.28.7.)

The principal use of the preceding proposition is to shorten proofs. By invoking the Cauchy
criterion one frequently can avoid explicit reference to the partial sums of the series involved. See,
for example, proposition 28.3.5.

One obvious consequence of the Cauchy criterion is that the convergence of an infinite series is
unaffected by changing any finite number of its terms. If an = bn for all n greater than some fixed
integer n0, then the series

∑
an converges if and only if the series

∑
bn does.

The examples of infinite series we have looked at thus far are all series of real numbers. We
now turn to series in the Banach space B(S,E) of bounded E valued functions on a set S (where
E is a Banach space). Most of the examples we consider will be real valued functions on subsets of
the real line.

First a word of caution: the notations
∑∞

k=1 fk and
∑∞

k=1 fk(x) can, depending on context, mean
many different things. There are many ways in which sequences (and therefore series) of functions
can converge. There are, among a host of others, uniform convergence, pointwise convergence,
convergence in mean, and convergence in measure. Only the first two of these appear in this text.
Since we regard B(S,E) as a Banach space under the uniform norm ‖ ‖u, it is not, strictly speaking,
necessary for us to write “fn → g (unif)” when we wish to indicate that the sequence (fn) converges
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to g in the space B(S,E); writing “fn → g” is enough, because unless the contrary is explicitly
stated uniform convergence is understood. Nevertheless, in the sequel we will frequently add the
redundant “(unif)” just as a reminder that in the space B(S,E) we are dealing with uniform, and
not some other type of, convergence of sequences and series.

It is important to keep in mind that in the space B(S,E) the following assertions are equivalent:

(a)
∑∞

k=1 fk converges uniformly to g;
(b) g =

∑∞
k=1 fk; and

(c) ‖g −
∑n

k=1 fk‖u → 0 as n→∞.

Since uniform convergence implies pointwise convergence, but not conversely, each of the preceding
three conditions implies—but is not implied by—the following three (which are also equivalent):

(a′)
∑∞

k=1 fk(x) converges to g(x) for every x in S;
(b′) g(x) =

∑∞
k=1 fk(x) for every x in S; and

(c′) For every x in S ∥∥∥∥∥g(x)−
n∑
k=1

fk(x)

∥∥∥∥∥→ 0 as n→∞ .

One easy consequence of the Cauchy criterion (proposition 28.1.17) is called the Weierstrass
M-test. The rather silly name which is attached to this result derives from the fact that in the
statement of the proposition, the constants which appear are usually named Mn.

28.1.18. Proposition (Weierstrass M-test). Let (fn) be a sequence of functions in B(S,E) where
S is a nonempty set and E is a Banach space. If there is a summable sequence of positive constants
Mn such that ‖fn‖u ≤ Mn for every n in N, then the series

∑
fk converges uniformly on S.

Furthermore, if the underlying set S is a metric space and each fn is continuous, then
∑
fk is

continuous.

Proof. Problem.

28.1.19. Exercise. Let 0 < δ < 1. Show that the series
∑∞

k=1
xk

1+xk
converges uniformly on the

interval [−δ, δ]. Hint. Use problem 28.1.8. (Solution Q.28.8.)

28.1.20. Problem. Show that
∑∞

n=1
1

1+n2x
converges uniformly on [δ,∞) for any δ such that

0 < δ < 1.

28.1.21. Problem. Let M > 0. Show that
∑∞

n=1
n2x3

n4+x4
converges uniformly on [−M,M ].

28.1.22. Problem. Show that
∑∞

n=1
nx

n4+x4
converges uniformly on R.

We conclude this section with a generalization of the alternating series test, familiar from
beginning calculus. Recall that an alternating series in R is a series of the form

∑∞
k=1(−1)k+1αk

where each αk > 0. The generalization here will not require that the multipliers of the αk’s be +1
and −1 in strict alternation. Indeed they need not even be real numbers; they may be the terms of
any sequence of vectors in a Banach space for which the corresponding sequence of partial sums is
bounded. You are asked in problem 28.1.25 to show that the alternating series test actually follows
from the next proposition.

28.1.23. Proposition. Let (αk) be a decreasing sequence of real numbers, each greater than or
equal to zero, which converges to zero. Let (xk) be a sequence of vectors in a Banach space for
which there exists M > O such that ‖

∑n
k=1 xk‖ ≤ M for all n in N. Then

∑∞
k=1 αkxk converges

and ‖
∑∞

k=1 αkxk‖ ≤Mα1.

Proof. Problem. Hint. This is a bit complicated. Start by proving the following very simple
geometrical fact about a normed linear space V : if [x, y] is a closed segment in V , then one of its
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endpoints is at least as far from the origin as every other point in the segment. Use this to derive
the fact that if x and y are vectors in V and 0 ≤ t ≤ 1, then

‖x+ ty‖ ≤ max{‖x‖, ‖x+ y‖ .
Next prove the following result.

28.1.24. Lemma. Let (αk) be a decreasing sequence of real numbers with αk ≥ 0 for every k, let
M > 0, and let V be a normed linear space. If x1, . . . , xn ∈ V satisfy∥∥∥∥∥

m∑
k=1

xk

∥∥∥∥∥ ≤M (28.8)

for all m ≤ n, then ∥∥∥∥∥
n∑
k=1

αkxk

∥∥∥∥∥ ≤Mα1 .

To prove this result use mathematical induction. Supposing the lemma to be true for n = p,
let y1, . . . , yp+1 be vectors in V such that ‖

∑m
k=1 yk‖ ≤ M for all m ≤ p + 1. Let xk = yk for

k = 1, . . . , p − 1 and let xp = yp + (αp+1/αp)yp+1. Show that the vectors x1, . . . , xp satisfy (28.8)
for all m ≤ p and invoke the inductive hypothesis.

Once the lemma is in hand, apply it to the sequence
(
xk
)∞
k=1

to obtain ‖
∑n

k=1 αkxk‖ ≤ Mα1

for all n ∈ N, and apply it to the sequence
(
xk
)∞
k=m+1

to obtain
∥∥∑n

k=m+1 αkxk
∥∥ ≤ 2Mαm+1 for

0 < m < n. Use this last result to prove that the sequence of partial sums of the series
∑
αkxk is

Cauchy.

28.1.25. Problem. Use proposition 28.1.23 to derive the alternating series test : If (αk) is a
decreasing sequence of real numbers with αk ≥ 0 for all k and if αk → 0 as k → ∞, then the
alternating series

∑∞
k=1(−1)k+1αk converges. Furthermore, the absolute value of the difference

between the sum of the series and its nth partial sum is no greater than αn+1.

28.1.26. Problem. Show that the series
∑∞

k=1 k
−1 sin(kπ/4) converges.

An important and interesting result in analysis is the Tietze extension theorem. For compact
metric spaces it says that any continuous real valued function defined on a closed subset of the
space can be extended to a continuous function on the whole space and that this process can be
carried out in such a way that the (uniform) norm of the extension does not exceed the norm of
the original function. One proof of this uses both the M-test and the approximation theorem of
Weierstrass.

28.1.27. Theorem (Tietze Extension Theorem). Let M be a compact metric space, A be a closed
subset of M , and g : A → R be continuous. Then there exists a continuous function w : M → R
such that w

∣∣
A

= g and ‖w‖u = ‖g‖u.

Proof. Problem. Hint. First of all demonstrate that a continuous function can be truncated
without disturbing its continuity. (Precisely: if f : M → R is a continuous function on a metric
space, if A ⊆ M , and if f→(A) ⊆ [a, b], then there exists a continuous function g : M → R which
agrees with f on A and whose range is contained in [a, b].) Let F = {u

∣∣
A

: u ∈ C(M,R)}. Notice
that the preceding comment reduces the proof of 28.1.27 to showing that F = C(A,R). Use the
Stone-Weierstrass theorem 23.2.6 to prove that F is dense in C(A,R). Next find a sequence (fn)
of functions in F such that ∥∥∥∥∥g −

n∑
k=1

fk

∥∥∥∥∥
u

<
1

2n

for every n. Then for each k find a function uk in C(M,R) whose restriction to A is fk. Truncate
each uk (as above) to form a new function vk which agrees with uk (and therefore fk) on A and
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which satisfies ‖vk‖u = ‖fk‖u. Use the Weierstrass M-test 28.1.18 to show that
∑∞

1 vk converges
uniformly on M . Show that w =

∑∞
1 vk is the desired extension.

Recall that in problem 23.1.22 we showed that if φ : M → N is a continuous map between
compact metric spaces, then the induced map Tφ : C(N,R) → C(M,R) is injective if and only if φ
is surjective, and φ is injective if Tφ is surjective. The “missing part” of this result (Tφ is surjective
if φ is injective) happens also to be true but requires the Tietze extension theorem for its proof.

28.1.28. Problem. Let φ and Tφ be as in problem 23.1.22. Show that if φ is injective, then Tφ is
surjective.

28.2. SERIES OF POSITIVE SCALARS

In this brief section we derive some of the standard tests of beginning calculus for convergence
of series of positive numbers.

28.2.1. Definition. Let S(n) be a statement in which the natural number n is a variable. We say
that S(n) holds for n sufficiently large if there exists N in N such that S(n) is true whenever
n ≥ N .

28.2.2. Proposition (Comparison Test). Let (ak) and (bk) be sequences in [0,∞) and suppose
that there exists M > 0 such that ak ≤ Mbk for sufficiently large k ∈ N. If

∑
bk converges, then∑

ak converges. If
∑
ak diverges, so does

∑
bk.

Proof. Problem.

28.2.3. Proposition (Ratio Test). Let (ak) be a sequence in (0,∞). If there exists δ ∈ (0, 1) such
that ak+1 ≤ δak for k sufficiently large, then

∑
ak converges. If there exists M > 1 such that

ak+1 ≥Mak for k sufficiently large, then
∑
ak diverges.

Proof. Exercise. (Solution Q.28.9.)

28.2.4. Proposition (Integral Test). Let f : [1,∞) → [0,∞) be decreasing; that is, f(x) ≥ f(y)

whenever x < y. If limM→∞
∫M
1 f exists, then

∑∞
1 f(k) converges. If limM→∞

∫M
1 f does not

exist, then
∑∞

1 f(k) diverges.

Proof. Problem. Hint. Show that
∫ k+1
k f ≤ f(k) ≤

∫ k
k−1 f for k ≥ 2.

28.2.5. Proposition (The Root Test). Let
∑
ak be a series of numbers in [0,∞). Suppose that

the limit L = limk→∞(ak)
1/k exists.

(a) If L < 1, then
∑
ak converges.

(b) If L > 1, then
∑
ak diverges.

Proof. Problem.

28.2.6. Problem. Let (ak) and (bk) be decreasing sequences in (0,∞) and let ck = min{ak, bk}
for each k. If

∑
ak and

∑
bk both diverge, must

∑
ck also diverge?

28.3. ABSOLUTE CONVERGENCE

It is a familiar fact from beginning calculus that absolute convergence of a series of real numbers
implies convergence of the series. The proof of this depends in a crucial way on the completeness
of R. We show in the first proposition of this section that for series in a normed linear space V
absolute convergence implies convergence if and only if V is complete.

28.3.1. Definition. Let (ak) be a sequence in a normed linear space V . We say that (ak) is
absolutely summable or, equivalently, that the series

∑
ak converges absolutely if the

series
∑
‖ak‖ converges in R.
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28.3.2. Proposition. A normed linear space V is complete if and only if every absolutely summable
sequence in V is summable.

Proof. Exercise. Hint. If V is complete, the Cauchy criterion 28.1.17 may be used. For the
converse, suppose that every absolutely summable sequence is summable. Let (ak) be a Cauchy
sequence in V . Find a subsequence

(
ank
)

such that
∥∥ank+1

− ank
∥∥ < 2−k for each k. Consider the

sequence (yk) where yk := ank+1
− ank for all k. (Solution Q.28.10.)

One of the most useful consequences of absolute convergence of a series is that the terms of the
series may be rearranged without affecting the sum of the series. This is not true of conditionally
convergent series (that is, series which converge but do not converge absolutely). One can show,
in fact, that a conditionally convergent series of real numbers can, by rearrangement, be made to
converge to any real number whatever, or, for that matter, to diverge. We will not demonstrate
this here, but a nice proof can be found in [1].

28.3.3. Definition. A series
∑∞

k=1 bk is said to be a rearrangement of the series
∑∞

k=1 ak if
there exists a bijection φ : N→ N such that bk = aφ(k) for all k in N.

28.3.4. Proposition. If
∑
bk is a rearrangement of an absolutely convergent series

∑
ak in a

Banach space, then
∑
bk is itself absolutely convergent and it converges to the same sum as

∑
ak.

Proof. Problem Hint. Let βn :=
∑n

k=1 ‖bk‖. Show that the sequence (βn) is increasing and
bounded. Conclude that

∑
bk is absolutely convergent. The hard part of the proof is showing that

if
∑∞

1 ak converges to a vector A, then so does
∑∞

1 bk. Define partial sums as usual: sn :=
∑n

1 ak
and tn :=

∑n
1 bk. Given ε > 0, you want to show that ‖tn − A‖ < ε for sufficiently large n. Prove

that there exists a positive N such that ‖sn−A‖ < 1
2ε and

∑∞
n ‖ak‖ ≤

1
2ε whenever n ≥ N . Write

‖tn −A‖ ≤ ‖tn − sN‖+ ‖sN −A‖ .

Showing that ‖tn − sN‖ ≤ 1
2ε for n sufficiently large takes a little thought. For an appropriate

function φ write bk = aφ(k). Notice that

‖tn − sN‖ =

∥∥∥∥∥
n∑
1

aφ(k) −
N∑
1

ak

∥∥∥∥∥ .
The idea of the proof is to choose n so large that there are enough terms aφ(j) to cancel all the
terms ak (1 ≤ k ≤ N).

If you have difficulty in dealing with sums like
∑n

k=1 aφ(k) whose terms are not consecutive
(a1, a2, . . . are consecutive terms of the sequence (ak); aφ(1), aφ(2), . . . in general are not), a no-
tational trick may prove useful. For P a finite subset of N, write

∑
P

ak for the sum of all the

terms ak such that k belongs to P . This notation is easy to work with. It should be easy to
convince yourself that, for example, if P and Q are finite subsets of N and if they are disjoint, then∑
P∪Q

ak =
∑
P

ak +
∑
Q

ak. (What happens if P ∩Q 6= ∅?) In the present problem, let C := {1, . . . , N}

(where N is the integer chosen above). Give a careful proof that there exists an integer p such
that the set {φ(1), . . . , φ(p)} contains C. Now suppose n is any integer greater than p. Let
F := {φ(1), . . . , φ(n)} and show that

‖tn − sN‖ ≤
∑
G

‖ak‖

where G := F \ C.

28.3.5. Proposition. If (αn) is an absolutely summable sequence in R and (xn) is a bounded
sequence in a Banach space E, then the sequence (αnxn) is summable in E.

Proof. Problem. Hint. Use the Cauchy criterion 28.1.17.
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28.3.6. Problem. What happens in the previous proposition if the sequence (αn) is assumed only
to be bounded and the sequence (xn) is absolutely summable?

28.3.7. Problem. Show that if the sequence (an) of real numbers is square summable (that is,
if the sequence (an

2) is summable), then the series
∑
n−1an converges absolutely. Hint. Use the

Schwarz inequality 27.1.6.

28.4. POWER SERIES

According to problem 28.1.8 we may express the reciprocal of the real number 1− r as the sum
of a power series

∑∞
0 rk provided that |r| < 1. One may reasonably ask if anything like this is true

in Banach spaces other than R, in the space of bounded linear maps from some Banach space into
itself, for example. If T is such a map and if ‖T‖ < 1, is it necessarily true that I −T is invertible?
And if it is, can the inverse of I − T be expressed as the sum of the power series

∑∞
0 T k? It turns

out that the answer to both questions is yes. Our interest in pursuing this matter is not limited
to the fact that it provides an interesting generalization of facts concerning R to spaces with richer
structure. In the next chapter we will need exactly this result for the proof we give of the inverse
function theorem.

Of course it is not possible to study power series in arbitrary Banach spaces; there are, in
general, no powers of vectors because there is no multiplication. Thus we restrict our attention to
those Banach spaces which (like the space of bounded linear maps) are equipped with an additional
operation (x, y) 7→ xy (we call it multiplication) under which they become linear associative algebras
(see 21.2.6 for the definition) and on which the norm is submultiplicative (that is, ‖xy‖ ≤ ‖x‖ ‖y‖
for all x and y). We will, for simplicity, insist further that these algebras be unital and that the
multiplicative identity 1 have norm one. Any Banach space thus endowed is a (unital) Banach
algebra. It is clear that Banach algebras have many properties in common with R. It is important,
however, to keep firmly in mind those properties not shared with R. Certainly there is, in general,
no linear ordering < of the elements of a Banach algebra (or for that matter of a Banach space).
Another crucial difference is that in R every nonzero element has a multiplicative inverse (its
reciprocal); this is not true in general Banach algebras (see, for example, proposition21.5.16).
Furthermore, Banach algebras may have nonzero nilpotent elements (that is, elements x 6= 0

such that xn = 0 for some natural number n). (Example: the 2× 2 matrix a =

[
0 1
0 0

]
is not zero,

but a2 = 0.) This,of course, prevents us from requiring that the norm be multiplicative: while
|xy| = |x| |y| holds in R, all that is true in general Banach algebras is ‖xy‖ ≤ ‖x‖ ‖y‖. Finally,
multiplication in Banach algebras need not be commutative.

28.4.1. Definition. Let A be a normed linear space. Suppose there is an operation (x, y) 7→ xy
from A×A into A satisfying the following: for all x, y, z ∈ A and α ∈ R

(a) (xy)z = x(yz),
(b) (x+ y)z = xz + yz,
(c) x(y + z) = xy + xz,
(d) α(xy) = (αx)y = x(αy), and
(e) ‖xy‖ ≤ ‖x‖ ‖y‖.

Suppose additionally that there exists a vector 1 in A such that

(f) x1 = 1x = x for all x ∈ A, and
(g) ‖1‖ = 1.

Then A is a (unital) normed algebra. If A is complete it is a (unital) Banach algebra.
If all elements x and y in a normed (or Banach) algebra satisfy xy = yx, then the algebra A is
commutative.

28.4.2. Example. The set R of real numbers is a commutative Banach algebra. The number 1 is
the multiplicative identity.
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28.4.3. Example. If S is a nonempty set, then with pointwise multiplication

(fg)(x) := f(x)g(x) for all x ∈ S
the Banach space B(S,R) becomes a commutative Banach algebra. The constant function 1 : x 7→ 1
is the multiplicative identity.

28.4.4. Exercise. Show that if f and g belong to B(S,R), then ‖fg‖u ≤ ‖f‖u‖g‖u. Show by
example that equality need not hold. (Solution Q.28.11.)

28.4.5. Example. If M is a compact metric space then (again with pointwise multiplication)
C(M,R) is a commutative Banach algebra. It is a subalgebra of B(M,R) (that is, a subset
of B(M,R) containing the multiplicative identity which is a Banach algebra under the induced
operations).

28.4.6. Example. If E is a Banach space, then B(E,E) is a Banach algebra (with composition
as “multiplication”). We have proved in problem 21.2.8 that the space of linear maps from E
into E is a unital algebra. The same is easily seen to be true of B(E,E) the corresponding
space of bounded linear maps. The identity transformation IE is the multiplicative identity. Its
norm is 1 by 23.1.11(a). In proposition 23.1.14 it was shown that B(E,E) is a normed linear
space; the submultiplicative property of the norm on this space was proved in proposition 23.1.15.
Completeness was proved in proposition 23.3.6.

28.4.7. Proposition. If A is a normed algebra, then the operation of multiplication

M : A×A→ A : (x, y) 7→ xy

is continuous.

Proof. Problem. Hint. Try to adapt the proof of example 14.1.9.

28.4.8. Corollary. If xn → a and yn → b in a normed algebra, then xnyn → ab.

Proof. Problem.

28.4.9. Definition. An element x of a unital algebra A (with or without norm) is invertible if
there exists an element x−1 (called the multiplicative inverse of x) such that xx−1 = x−1x = 1.
The set of all invertible elements of A is denoted by InvA. We list several almost obvious properties
of inverses.

28.4.10. Proposition. If A is a unital algebra, then

(a) Each element of A has at most one multiplicative inverse.
(b) The multiplicative identity 1 of A is invertible and 1−1 = 1.

(c) If x is invertible, then so is x−1 and
(
x−1

)−1
= x.

(d) If x and y are invertible, then so is xy and (xy)−1 = y−1x−1.
(e) If x and y are invertible, then x−1 − y−1 = x−1(y − x)y−1.

Proof. Let 1 be the multiplicative identity of A.

(a) If y and z are multiplicative inverses of x, then y = y 1 = y(xz) = (yx)z = 1 z = z.
(b) 1 · 1 = 1 implies 1−1 = 1 by (a).
(c) x−1x = xx−1 = 1 implies x is the inverse of x−1 by (a).
(d) (xy)(y−1x−1) = xx−1 = 1 and (y−1x−1)(xy) = y−1y = 1 imply y−1x−1 is the inverse of

xy (again by (a)).
(e) x−1(y − x)y−1 = (x−1y − 1)y−1 = x−1 − y−1.

�

28.4.11. Proposition. If x is an element of a unital Banach algebra and ‖x‖ < 1, then 1− x is
invertible and (1− x)−1 =

∑∞
k=0 x

k.
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Proof. Exercise. Hint. First show that the geometric series
∑∞

k=0 x
k converges absolutely.

Next evaluate (1 − x)sn and sn(1 − x) where sn =
∑n

k=0 x
k. Then take limits as n → ∞. (Solu-

tion Q.28.12.) �

28.4.12. Corollary. If x is an element of a unital Banach algebra and ‖x‖ < 1, then

‖(1− x)−1 − 1‖ ≤ ‖x‖
1− ‖x‖

.

Proof. Problem.

Proposition 28.4.11 says that anything close to 1 in a Banach algebra A is invertible. In other
words 1 is an interior point of InvA. Corollary 28.4.12 says that if ‖x‖ is small, that is, if 1− x is
close to 1, then (1−x)−1 is close to 1−1 (= 1). In other words, the operation of inversion x 7→ x−1

is continuous at 1. These results are actually special cases of much more satisfying results: every
point of InvA is an interior point of that set (that is, InvA is open); and the operation of inversion
is continuous at every point of InvA. We use the special cases above to prove the more general
results.

28.4.13. Proposition. If A is a Banach algebra, then InvA
◦
⊆ A.

Proof. Problem. Hint. Let a ∈ InvA, r = ‖a−1‖−1, y ∈ Br(a), and x = a−1(a − y). What
can you say about a(1− x)?

28.4.14. Proposition. If A is a Banach algebra, then the operation of inversion

r : InvA→ InvA : x 7→ x−1

is continuous.

Proof. Exercise. Hint. Show that r is continuous at an arbitrary point a in InvA. Given
ε > 0 find δ > 0 sufficiently small that if y belongs to Bδ(a) and x = 1− a−1y, then

‖x‖ < ‖a−1‖δ < 1
2

and

‖r(y)− r(a)‖ ≤ ‖x‖‖a
−1‖

1− ‖x‖
< ε (28.9)

For (28.9) use 28.4.10(e), the fact that y−1a =
(
a−1y

)−1
, and 28.4.12. (Solution Q.28.13.)

There are a number of ways of multiplying infinite series. The most common is the Cauchy
product. And it is the only one we will consider.

28.4.15. Definition. If
∑∞

n=0 an and
∑∞

n=0 bn are infinite series in a Banach algebra, then their
Cauchy product is the series

∑∞
n=0 cn where cn =

∑n
k=0 akbn−k. To see why this definition is

rather natural, imagine trying to multiply two power series
∑∞

0 akx
k and

∑∞
0 bkx

k just as if they
were infinitely long polynomials. The result would be another power series. The coefficient of xn

in the resulting series would be the sum of all the products aibj where i+ j = n. There are several
ways of writing this sum ∑

i+j=n

aibj =

n∑
k=0

akbn−k =

n∑
k=0

an−kbk .

If we just forget about the variable x, we have the preceding definition of the Cauchy product.

The first thing we observe about these products is that convergence of both the series
∑
ak

and
∑
bk does not imply convergence of their Cauchy product.
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28.4.16. Example. Let ak = bk = (−1)k(k + 1)−1/2 for all k ≥ 0. Then
∑∞

0 ak and
∑∞

0 bk
converge by the alternating series test (problem 28.1.25). The nth term of their Cauchy product is

cn =

n∑
k=0

akbn−k = (−1)n
n∑
k=0

1√
k + 1

√
n− k + 1

.

Since for 0 ≤ k ≤ n

(k + 1)(n− k + 1) = k(n− k) + n+ 1

≤ n2 + 2n+ 1

= (n+ 1)2

we see that

|cn| =
n∑
k=0

1√
k + 1

√
n− k + 1

≥
n∑
k=0

1

n+ 1
= 1 .

Since cn 9 0, the series
∑∞

0 ck does not converge (see proposition 28.1.10).

Fortunately quite modest additional hypotheses do guarantee convergence of the Cauchy prod-
uct. One very useful sufficient condition is that at least one of the series

∑
ak or

∑
bk converge

absolutely.

28.4.17. Theorem (Mertens’ Theorem). If in a Banach algebra
∑∞

0 ak is absolutely convergent
and has sum a and the series

∑∞
0 bk is convergent with sum b, then the Cauchy product of these

series converges and has sum ab.

Proof. Exercise Hint. Although this exercise is slightly tricky, the difficulty has nothing
whatever to do with Banach algebras. Anyone who can prove Mertens’ theorem for series of real
numbers can prove it for arbitrary Banach algebras.

For each k ∈ N let ck =
∑k

j=0 ajbk−j . Let sn, tn, and un be the nth partial sums of the sequences

(ak), (bk), and (ck), respectively. First verify that for every n in N

un =

n∑
k=0

an−ktk (28.10)

To this end define, for 0 ≤ j, k ≤ n, the vector djk by

djk =

{
ajbk−j , if j ≤ k
0, if j > k.

Notice that both the expression which defines un and the expression on the right side of equa-
tion (28.10) involve only finding the sum of the elements of the matrix [djk] but in different orders.

From (28.10) it is easy to see that for every n

un = snb+
n∑
k=0

an−k(tk − b).

Since snb→ ab as n→∞, the proof of the theorem is reduced to showing that

‖
n∑
k=0

an−k(tk − b)‖ → 0 as n→∞.

Let αk = ‖ak‖ and βk = ‖tk − b‖ for all k. Why does it suffice to prove that
∑n

k=0 αn−kβk → 0 as
n→∞? In the finite sum

αnβ0 + αn−1β1 + · · ·+ α0βn (28.11)
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the αk’s towards the left are small (for large n) and the βk’s towards the right are small (for large n).
This suggests breaking the sum (28.11) into two pieces

p =

n1∑
k=0

αn−kβk and q =

n∑
k=n1+1

αn−kβk

and trying to make each piece small (smaller, say, than 1
2ε for a preassigned ε).

For any positive number ε1 it is possible (since βk → 0) to choose n1 in N so that βk < ε1
whenever k ≥ n1. What choice of ε1 will ensure that q < 1

2ε?
For any ε2 > 0 it is possible (since αk → 0) to choose n2 in N so that αk < ε2 whenever k ≥ n2.

Notice that n− k ≥ n2 for all k ≤ n1 provided that n ≥ n1 + n2. What choice of ε2 will guarantee
that p < 1

2ε? (Solution Q.28.14.)

28.4.18. Proposition. On a Banach algebra A the operation of multiplication

M : A×A→ A : (x, y) 7→ xy

is differentiable.

Proof. Problem. Hint. Fix (a, b) in A×A. Compute the value of the function ∆M(a,b) at the

point (h, j) in A×A. Show that ‖(h, j)‖−1hj → 0 in A as (h, j)→ 0 in A×A. How should dM(a,b)

be chosen so that the Newton quotient

∆M(a,b)(h, j)− dM(a,b)(h, j)

‖(h, j)‖
approaches zero (in A) as (h, j)→ 0 (in A×A)? Don’t forget to show that your choice for dM(a,b)

is a bounded linear map.

28.4.19. Proposition. Let c ∈ V where V is a normed linear space and let A be a Banach algebra.
If f , g ∈ Dc(V,A), then their product fg defined by

(fg)(x) := f(x) g(x)

(for all x in some neighborhood of c) is differentiable at c and

d(fg)c = f(c)dgc + dfc · g(c) .

Proof. Problem. Hint. Use proposition 28.4.18.

28.4.20. Proposition. If A is a commutative Banach algebra and n ∈ N, then the function
f : x 7→ xn is differentiable and dfa(h) = nan−1h for all a, h ∈ A.

Proof. Problem. Hint. A simple induction proof works. Alternatively, you may choose to con-
vince yourself that the usual form of the binomial theorem (see I.1.17) holds in every commutative
Banach algebra.

28.4.21. Problem. What happens in 28.4.20 if we do not assume that the Banach algebra is
commutative? Is f differentiable? Hint. Try the cases n = 2, 3, and 4. Then generalize.

28.4.22. Problem. Generalize proposition 28.3.5 to produce a theorem concerning the convergence
of a series

∑
akbk in a Banach algebra.

28.4.23. Definition. If (ak) is a sequence in a Banach algebra A and x ∈ A, then a series of the
form

∑∞
k=0 akx

k is a power series in x.

28.4.24. Notation. It is a bad (but very common) habit to use the same notation for a polynomial
function and for its value at a point x. One often encounters an expression such as “the function
x2 − x+ 5” when clearly what is meant is “the function x 7→ x2 − x+ 5.” This abuse of language
is carried over to power series. If (ak) is a sequence in a Banach algebra A and D = {x ∈
A :

∑∞
k=0 akx

k converges}, then the function x 7→
∑∞

k=0 akx
k from D into A is usually denoted by
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k=0 akx

k. Thus for example one may find the expression, “
∑∞

k=0 akx
k converges uniformly on the

set U .” What does this mean? Answer: if sn(x) =
∑n

k=0 akx
k for all n ∈ N and f(x) =

∑∞
k=0 akx

k,
then sn → f (unif).

28.4.25. Proposition. Let (ak) be a sequence in a Banach algebra and r > 0. If the sequence
(‖ak‖rk) is bounded, then the power series

∑∞
k=0 akx

k converges uniformly on every open ball Bs(0)
such that 0 < s < r. (And therefore it converges on the ball Br(0). )

Proof. Exercise. Hint. Let p = s/r where 0 < s < r. Let fk(x) = akx
k. Use the Weierstrass

M-test 28.1.18. (Solution Q.28.15.)

Since the uniform limit of a sequence of continuous functions is continuous (see 14.2.15), it
follows easily from preceding proposition that (under the hypotheses given) the function f : x 7→∑∞

0 akx
k is continuous on Br(0). We will prove considerably more than this: the function is

actually differentiable on Br(0), and furthermore, the correct formula for its differential is found by
differentiating the power series term-by-term. That is, f behaves on Br(0) just like a “polynomial”
with infinitely many terms. This is proved in 28.4.27. We need however a preliminary result.

28.4.26. Proposition. Let V and W be normed linear spaces, U be an open convex subset of V ,
and (fn) be a sequence of functions in C1(U,W ). If the sequence (fn) converges pointwise to a
function F : U →W and if the sequence

(
d(fn)

)
converges uniformly on U , then F is differentiable

at each point a of U and

dFa = lim
n→∞

d
(
fn
)
a
.

Proof. Exercise. Hint. Fix a ∈ U . Let φ : U → B(V,W ) be the function to which the
sequence

(
d(fn)

)
converges uniformly. Given ε > 0 show that there exists N ∈ N such that∥∥d(fn − fN)x∥∥ < ε/4 for all x ∈ U and n ∈ N. Let gn = fn− fN for each n. Use one version of the

mean value theorem to show that

‖∆
(
gn
)
a
(h)− d

(
gn
)
a
(h)‖ ≤ 1

2ε‖h‖ (28.12)

whenever n ≥ N and h is a vector such that a + h ∈ U . In (28.12) take the limit as n → ∞.
Use the result of this together with the fact that ∆

(
fN
)
a
' d

(
fN
)
a

to show that ∆Fa ' T when
T = φ(a). (Solution Q.28.16.)

28.4.27. Theorem (Term-by-Term Differentiation of Power Series). Suppose that (an) is a se-
quence in a commutative Banach algebra A and that r > 0. If the sequence (‖ak‖rk) is bounded,
then the function F : Br(0)→ A defined by

F (x) =
∞∑
k=0

akx
k

is differentiable and

dFx(h) =

∞∑
k=1

kakx
k−1h

for every x ∈ Br(0) and h ∈ A.

Proof. Problem. Hint. Let fn(x) =
∑n

0 akx
k. Fix x in Br(0) and choose a number s satisfying

‖x‖ < s < r. Use propositions 28.4.20 and 28.4.26 to show that F is differentiable at x and to
compute its differential there. In the process you will need to show that the sequence

(
d(fn)

)
converges uniformly on Bs(0). Use propositions 28.4.25 and 4.2.8. If s < t < r, then there exists

N ∈ N such that k1/k < r/t for all k ≥ N . (Why ?)

28.4.28. Problem. Give a definition of and develop the properties of the exponential function on
a commutative Banach algebra A. Include at least the following:
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(a) The series
∑∞

k=0
1
k!x

k converges absolutely for all x in A and uniformly on Br(0) for every
r > 0.

(b) If exp(x) :=
∑∞

k=0
1
k!x

k, then exp: A→ A is differentiable and

d expx(h) = exp(x) · h .
This is the exponential function on A.

(c) If x, y ∈ A, then
exp(x) · exp(y) = exp(x+ y) .

(d) If x ∈ A, then x is invertible and(
exp(x)

)−1
= exp(−x) .

28.4.29. Problem. Develop some trigonometry on a commutative Banach algebra A. (It will be
convenient to be able to take the derivative of a Banach algebra valued function. If G : A→ A is
a differentiable function, define DG(a) := dGa(1) for every a ∈ A.) Include at least the following:

(a) The series
∑∞

k=0
(−1)k
(2k)! x

k converges absolutely for all x in A and uniformly on every open

ball centered at the origin.

(b) The function F : x 7→
∑∞

k=0
(−1)k
(2k)! x

k is differentiable at every x ∈ A. Find dFx(h).

(c) For every x ∈ A, let cosx := F (x2). Let sinx := D cosx for every x. Show that

sinx =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1

for every x ∈ A.
(d) Show that D sinx = cosx for every x ∈ A.
(e) Show that sin2 x+ cos2 x = 1 for every x ∈ A.



CHAPTER 29

THE IMPLICIT FUNCTION THEOREM

This chapter deals with the problem of solving equations and systems of equations for some
of the variables which appear in terms of the others. In a few very simple cases this can be done
explicitly. As an example, consider the equation

x2 + y2 = 25 (29.1)

for the circle of radius 5 centered at the origin in R2. Although (29.1) can not be solved globally for y
in terms of x (that is, there is no function f such that y = f(x) for all points (x, y) satisfying (29.1)),
it nevertheless is possible at most points on the circle to solve locally for y in terms of x. For
example, if (a, b) lies on the circle and b > 0, then there exist open intervals J1 and J2 containing a
and b, respectively, and a function f : J1 → J2 such that every point (x, y) in the rectangular region
J1×J2 will satisfy y = f(x) if and only if it satisfies equation (29.1). In particular, we could choose

J1 = (−5, 5), J2 = (0, 6), and f : x 7→
√

25− x2. In case b < 0 the function f would be replaced by

f : x 7→ −
√

25− x2. If b = 0 then there is no local solution for y in terms of x: each rectangular
region about either of the points (5, 0) or (−5, 0) will contain pairs of points symmetrically located
with respect to the x-axis which satisfy (29.1); and it is not possible for the graph of a function to
contain such a pair.

Our attention in this chapter is focused not on the relatively rare cases where it is possible to
compute explicit (local) solutions for some of the variables in terms of the remaining ones but on
the more typical situation where no such computation is possible. In this latter circumstance it is
valuable to have information concerning the existence of (local) solutions and the differentiability
of such solutions.

The simplest special case is a single equation of the form y = f(x) where f is a continuously
differentiable function. The inverse function theorem, derived in the first section of this chapter,
provides conditions under which this equation can be solved locally for x in terms of y, say x = g(y),
and gives us a formula allowing us to compute the differential of g. More complicated equations
and systems of equations require the implicit function theorem, which is the subject of the second
section of the chapter.

29.1. THE INVERSE FUNCTION THEOREM

Recall that in chapter 25 formulas concerning the function f 7→ ∆f lead to corresponding
formulas involving differentials. For example, d(f + g)a = dfa + dga followed from ∆(f + g)a =
∆fa + ∆ga (see 25.3.15). It is natural to ask whether the formula

∆
(
f−1

)
f(x)

= (∆fx)−1

derived for bijective functions f in proposition 25.3.7 leads to a corresponding formula

d
(
f−1

)
f(x)

= (dfx)−1 (29.2)

for differentials. Obviously, a necessary condition for (29.2) to hold for all x in some neighborhood
of a point a is that the linear map dfa be invertible. The inverse function theorem states that
for continuously differentiable (but not necessarily bijective) functions this is all that is required.
The proof of the inverse function theorem is a fascinating application of the contractive mapping
theorem (theorem 19.1.5). First some terminology.

209
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29.1.1. Definition. Let E and F be Banach spaces and ∅ 6= U
◦
⊆ E. A function f belonging to

C1(U,F ) is C1-invertible if f is a bijection between U and an open subset V of F and if f−1

belongs to C1(V,E). Such a function is also called a C1-isomorphism between U and V .

29.1.2. Exercise. Find nonempty open subsets U and V of R and a continuously differentiable
bijection f : U → V which is not a C1-isomorphism between U and V . (Solution Q.29.1.)

29.1.3. Definition. Let E and F be Banach spaces. A function f in Fa(E,F ) is locally C1-
invertible (or a local C1-isomorphism) at a point a in E if there exists a neighborhood of a
on which the restriction of f is C1-invertible. The inverse of this restriction is a local C1-inverse
of f at a and is denoted by f−1loc .

29.1.4. Exercise. Let f(x) = x2 − 6x + 5 for all x in R. Find a local C1-inverse of f at x = 1.
(Solution Q.29.2.)

29.1.5. Problem. Let f(x) = x6 − 2x3 − 7 for all x in R. Find local C1-inverses for f at 0 and
at 10.

29.1.6. Problem. Find a nonempty open subset U of R and a function f in C1(U,R) which is not
C1-invertible but is locally C1-invertible at every point in U .

Before embarking on a proof of the inverse function theorem it is worthwhile seeing why a naive
“proof” of this result using the chain rule fails—even in the simple case of a real valued function
of a real variable.

29.1.7. Exercise. If f ∈ Fa(R,R) and if Df(a) 6= 0, then f is locally C1-invertible at a and

Df−1loc (b) =
1

Df(a)
(29.3)

where f
−1
loc is a local C1-inverse of f at a and b = f(a).

This assertion is correct. Criticize the following “proof” of the result: Since f
−1
loc is a local

C1-inverse of f at a

f
−1
loc (f(x)) = x

for all x in some neighborhood U of a. Applying the chain rule (proposition 8.4.19) we obtain

(Df
−1
loc )(f(x)) ·Df(x) = 1

for all x in U . Letting x = a we have

(Df
−1
loc )(b)Df(a) = 1

and since Df(a) 6= 0 equation (29.3) follows. (Solution Q.29.3.)

The inverse function theorem (29.1.16) deals with a continuously differentiable function f which
is defined on a neighborhood of a point a in a Banach space E and which maps into a second
Banach space F . We assume that the differential of f at a is invertible. Under these hypotheses
we prove that f is locally C1-invertible at a and in some neighborhood of a equation (29.2) holds.
To simplify the proof we temporarily make some additional assumptions: we suppose that H is
a continuously differentiable function which is defined on a neighborhood of 0 in a Banach space
E and which maps into this same space E, that H(0) = 0, and that the differential of H at 0 is
the identity map on E. Once the conclusion of the inverse function theorem has been established
in this restricted case the more general version follows easily. The strategy we employ to attack
the special case is straightforward, but there are numerous details which must be checked along
the way. Recall that in chapter 19 we were able to solve certain systems of simultaneous linear
equations by putting them in the form Ax = b where A is a square matrix and x and b are vectors
in the Euclidean space of appropriate dimension. This equation was rewritten in the form Tx = x
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where Tx := x−b+Ax, thereby reducing the problem to one of finding a fixed point of the mapping
T . When T is contractive a simple application of the contractive mapping theorem (19.1.5) is all
that is required. We make use of exactly the same idea here. We want a local inverse of H. That
is, we wish to solve the equation H(x) = y for x in terms of y in some neighborhood of 0. Rewrite
the equation H(x) = y in the form φy(x) = x where for each y near 0 the function φy is defined by
φy(x) := x −H(x) + y. Thus, as before, the problem is to find for each y a unique fixed point of
φy. In order to apply the contractive mapping theorem to φy, the domain of this function must be
a complete metric space. For this reason we choose temporarily to take the domain of φy to be a
closed ball about the origin in E.

In lemma 29.1.8 we find such a closed ball C. It must satisfy two conditions: first, C must lie
in the domain of H; and second, if u belongs to C, then dHu must be close to the identity map
on E, say, ‖dHu − I‖ < 1

2 . (This latter condition turns out to be a crucial ingredient in proving
that φy is contractive.) In lemma 29.1.9 we show that (for y sufficiently small) φy maps the closed
ball C into itself; and in 29.1.10 the basic task is to show that φy is contractive and therefore has a
unique fixed point. The result of all this is that there exists a number r > 0 such that for every y
in B = Br(0) there exists a unique x in the closed ball C = C2r(0) such that y = H(x). Now this
is not quite the end of the story. First of all we do not know that H restricted to C is injective:
some points in C may be mapped to the region outside B, about which the preceding says nothing.
Furthermore, the definition of local C1-invertibility requires a homeomorphism between open sets,
and C is not open. This suggests we restrict our attention to points lying in the interior of C which
map into B. So let V = C◦ ∩H←(B) and consider the restriction of H to V , which we denote by
Hloc. In lemma 29.1.11 we show that V is a neighborhood of 0 and that Hloc is injective. Thus the

inverse function H
−1
loc : H→(V )→ V exists. The succeeding lemma is devoted to showing that this

inverse is continuous.
In order to conclude that H is locally C1-invertible we still need two things: we must know

that Hloc is a homeomorphism between open sets and that H
−1
loc is continuously differentiable.

Lemma 29.1.13 shows that H→(V ) is open in E. And in lemma 29.1.14 we complete the proof of

this special case of the inverse function theorem by showing that H
−1
loc is continuously differentiable

and that in the open set V its differential is given by (29.2).
Corollary 29.1.15 shows that the conclusions of the preceding result remain true even when one

of the hypotheses is eliminated and another weakened. Here we prove the inverse function theorem
for a function G whose domain E and codomain F are not required to be identical. Of course, if
E 6= F we cannot assume that the differential of G at 0 is the identity map; we assume only that
it is invertible.

Finally, in theorem 29.1.16 we prove our final version of the inverse function theorem. Here we
drop the requirement that the domain of the function in question be a neighborhood of the origin.

In 29.1.8–29.1.14 the following hypotheses are in force:

(1’) 0 ∈ U1
◦
⊆ E (where E is a Banach space);

(2’) H ∈ C1(U1, E);
(3’) H(0) = 0; and
(4’) dH0 = I.

29.1.8. Lemma. There exists r > 0 such that B3r(0) ⊆ U1 and ‖dHu−I‖ < 1
2 whenever ‖u‖ ≤ 2r.

Proof. Problem.

29.1.9. Lemma. For ‖y‖ < r define a function φy by

φy(x) := x−H(x) + y

for all x such that ‖x‖ ≤ 2r. Show that φy maps C2r(0) into itself.

Proof. Problem.
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29.1.10. Lemma. For every y in Br(0) there exists a unique x in C2r(0) such that y = H(x).

Proof. Problem. Hint. Show that the function φy defined in lemma 29.1.9 is contractive on
the metric space C2r(0) and has 1

2 as a contraction constant. To find an appropriate inequality
involving ‖φy(u)− φy(v)‖ apply corollary 26.1.8 to ‖H(v)−H(u)− dH0(v − u)‖.

29.1.11. Lemma. Show that if V := {x ∈ B2r(0) : ‖H(x)‖ < r}, then 0 ∈ V
◦
⊆ E. Let Hloc be the

restriction of H to V . Show that Hloc is a bijection between V and H→(V ).

Proof. Problem.

29.1.12. Lemma. The function H
−1
loc : H→(V )→ V is continuous.

Proof. Problem. Hint. Prove first that if u, v ∈ C2r(0), then ‖u− v‖ ≤ 2‖H(u)−H(v)‖. In
order to do this, look at

2‖φ0(u) +H(u)− φ0(v)−H(v)‖ − ‖u− v‖
and recall (from the proof of 29.1.10) that φ0 has contraction constant 1

2 . Use this to conclude that
if w, z ∈ H→(V ), then

‖H−1loc (w)−H−1loc (z)‖ ≤ 2 ‖w − z‖
where Hloc is the restriction of H to V (see lemma 29.1.10.

29.1.13. Lemma. Show that H→(V )
◦
⊆ E.

Proof. Problem. Hint. Show that if a point b belongs to H→(V ), then so does the open ball
Br−‖b‖(b). Proceed as follows: Show that if a point y lies in this open ball, then ‖y‖ < r and
therefore y = H(x) for some (unique) x in C2r(0). Prove that y ∈ H→(V ) by verifying ‖x‖ < 2r.
To do this look at

‖x−H−1loc (b)‖+ ‖H−1loc (b)−H−1loc (0)‖
and use the first inequality given in the hint to the preceding problem.

29.1.14. Lemma. The function H is locally C1 − invertible at 0. Furthermore,

d
(
H
−1
loc

)
H(x)

= (dHx)−1

for every x in V .

Proof. Problem. Hint. First prove the differentiability of H
−1
loc on H→(V ). If y ∈ H→(V ),

then there exists a unique x in V such that y = H(x). By hypothesis ∆Hx ∼ dHx. Show that

multiplication on the right by ∆
(
H
−1
loc

)
y

preserves tangency. (For this it must be established that

∆
(
H
−1
loc

)
y

belongs to O(E,E).) Then show that multiplication on the left by (dHx)−1 preserves

tangency. (How do we know that this inverse exists for all x in V ?) Finally show that the map

y 7→ d
(
H
−1
loc

)
y

is continuous on H→(V ) by using (29.2) to write it as the composite of H
−1
loc , dH,

and the map T 7→ T−1 on Inv B(E,E) (see proposition 28.4.14).

29.1.15. Corollary (A second, more general, version of the inverse function theorem). Let E and
F be Banach spaces. If

(1”) 0 ∈ U1
◦
⊆ E,

(2”) G ∈ C1(U1, F ),
(3”) G(0) = 0, and
(4”) dG0 ∈ Inv B(E,F ),

then G is locally C1-invertible at 0. Furthermore,

d
(
G
−1
loc

)
G(x)

= (dGx)−1

for all x in some neighborhood of 0, where G
−1
loc is a local C1-inverse of G at 0.
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Proof. Problem. Hint. Let H = (dG0)−1 ◦G. Apply lemma 29.1.14.

29.1.16. Theorem (Inverse Function Theorem (third, and final, version)). Let E and F be Banach
spaces. If

(1) a ∈ U
◦
⊆ E,

(2) f ∈ C1(U,F ), and
(3) dfa ∈ Inv B(E,F ),

then f is locally C1-invertible at a. Furthermore,

d
(
f
−1
loc

)
f(x)

= (dfx)−1

for all x in some neighborhood of a.

Proof. Problem. Hint. Let U1 = U − a and G = ∆fa. Write G as a composite of f with
translation maps. Apply corollary 29.1.15.

29.1.17. Problem. Let P : R2 → R2 : (r, θ) 7→ (r cos θ, r sin θ) and a be a point in R2 such that
P (a) = (1,

√
3).

(a) Show that P is locally C1-invertible at a by finding a local C1-inverse P
−1
loc of P at a. For

the inverse you have found, compute d
(
P
−1
loc

)
(1,
√
3)

.

(b) Use the inverse function theorem 29.1.16 to show that P is locally C1-invertible at a.

Then use the formula given in that theorem to compute d
(
P
−1
loc

)
(1,
√
3)

(where P
−1
loc is a

local C1-inverse of P at a). Hint. Use proposition 21.5.16.

29.1.18. Problem. Let U = {(x, y, z) ∈ R3 : x, y, z > 0} and let g : U → R3 be defined by

g(x, y, z) =

(
x

y2z2
, yz , ln y

)
.

Calculate separately
[
dg(x,y,z)

]−1
and

[
d(g−1)g(x,y,z)

]
.

29.2. THE IMPLICIT FUNCTION THEOREM

In the preceding section we derived the inverse function theorem, which gives conditions under
which an equation of the form y = f(x) can be solved locally for x in terms of y. The implicit
function theorem deals with the local solvability of equations that are not necessarily in the form
y = f(x) and of systems of equations. The inverse function theorem is actually a special case of
the implicit function theorem. Interestingly, the special case can be used to prove the more general
one.

This section consists principally of exercises and problems which illustrate how the inverse
function theorem can be adapted to guarantee the existence of local solutions for various examples
of equations and systems of equations. Once the computational procedure is well understood for
these examples it is a simple matter to explain how it works in general; that is, to prove the implicit
function theorem.

Suppose, given an equation of the form y = f(x) and a point a in the domain of f , we are
asked to show that the equation can be solved for x in terms of y near a. It is clear what we are
being asked: to show that f is locally invertible at a. (Since the function f will usually satisfy
some differentiability condition—continuous differentiability, for example—it is natural to ask for
the local inverse to satisfy the same condition.)

As we have seen, local invertibility can be established by explicitly computing a local inverse,
which can be done only rarely, or by invoking the inverse function theorem. Let us suppose we are
given an equation of the form

f(x, y) = 0 (29.4)
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and a point (a, b) in R2 which satisfies (29.4).
Question. What does it mean to say that (29.4) can be solved for y near b in terms of x near a?
(Alternative wording: What does it mean to say that (29.4) can be solved for y in terms of x near
the point (a, b)?)
Answer. There exist a neighborhood V of a and a function h : V → R which satisfy

(i) h(a) = b

(ii) f(x, h(x)) = 0

for all x in V .

29.2.1. Example. In the introduction to this chapter we discussed the problem of solving the
equation

x2 + y2 = 25

for y in terms of x. This equation can be put in the form (29.4) by setting f(x, y) = x2 + y2 − 25.
Suppose we are asked to show that (29.4) can be solved for y near 4 in terms of x near 3. As

in the introduction, take V = (−5, 5) and h(x) =
√

25− x2 for all x in V . Then h(3) = 4 and

f(x, h(x)) = x2 +
(√

25− x2
)2− 25 = 0; so h is the desired local solution to (29.4). If we are asked

to show that (29.4) can be solved for y near −4 in terms of x near 3, what changes? We choose

h(x) = −
√

25− x2. Notice that condition (i) above dictates the choice of h. (Either choice will
satisfy (ii).)

As was pointed out in the introduction, the preceding example is atypical in that it is possible
to specify the solution. We can actually solve for y in terms of x. Much more common is the
situation in which an explicit solution is not possible. What do we do then?

To see how this more complicated situation can be dealt with, let us pretend just for a moment
that our computational skills have so totally deserted us that in the preceding example we are
unable to specify the neighborhood V and the function h required to solve (29.4). The problem is
still the same: show that the equation

x2 + y2 − 25 = 0 (29.5)

can be solved for y near 4 in terms of x near 3. A good start is to define a function G : R2 → R2 by

G(x, y) = (x, f(x, y)) (29.6)

where as above f(x, y) = x2 + y2 − 25, and apply the inverse function theorem to G. It is helpful
to make a sketch here. Take the xy-plane to be the domain of G and in this plane sketch the circle
x2 + y2 = 25. For the codomain of G take another plane, letting the horizontal axis be called “x”
and the vertical axis be called “z”. Notice that in this second plane the image under G of the circle
drawn in the xy-plane is the line segment [−5, 5] along the x-axis and that the image of the x-axis
is the parabola z = x2 − 25. Where do points in the interior of the circle go? What about points
outside the circle? If you think of the action of G as starting with a folding of the xy-plane along
the x-axis, you should be able to guess the identity of those points where G is not locally invertible.
In any case we will find these points using the inverse function theorem.

The function G is continuously differentiable on R2 and (the matrix representation of) its
differential at a point (x, y) in R2 is given by[

dG(x,y)

]
=

[
1 0

2x 2y

]
.

Thus according to the inverse function theorem G is locally C1-invertible at every point (x, y) where
this matrix is invertible, that is, everywhere except on the x-axis. In particular, at the point (3, 4)
the function G is locally C1-invertible. Thus there exist a neighborhood W of G(3, 4) = (3, 0) in R2

and a local C1-inverseH : W → R2 ofG. WriteH in terms of its component functionsH =
(
H1, H2

)
and set h(x) = H2(x, 0) for all x in V := {x : (x, 0) ∈ W}. Then V is a neighborhood of 3 in R
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and the function h is continuously differentiable (because H is). To show that h is a solution of
the equation (29.5) for y in terms of x we must show that

(i) h(3) = 4; and

(ii) f(x, h(x)) = 0

for all x in V .
To obtain (i) equate the second components of the first and last terms of the following compu-

tation.

(3, 4) = H(G(3, 4))

= H(3, f(3, 4))

= H(3, 0)

= (H1(3, 0) , H2(3, 0))

= (H1(3, 0) , h(3)).

To obtain (ii) notice that for all x in V

(x, 0) = G(H(x, 0))

= G(H1(x, 0) , H2(x, 0))

= G(H1(x, 0) , h(x))

= (H1(x, 0) , f(H1(x, 0), h(x))) .

Equating first components we see that H1(x, 0) = x. So the preceding can be written

(x, 0) = (x, f(x, h(x)))

from which (ii) follows by equating second components.
Although the preceding computations demonstrate the existence of a local solution y = h(x)

without specifying it, it is nevertheless possible to calculate the value of its derivative
dy

dx
at the

point (3, 4), that is, to find h′(3). Since h′(3) =
(
H2◦j

1

)′
(3) = d

(
H2◦j

1

)
3
(1) =

(
dH2

(3,0)◦j1
)
(1) =

dH2
(3,0)(1, 0) = ∂H2

∂x (3, 0) (where j
1

is the inclusion map x 7→ (x, 0) ) and since H is a local inverse
of G, the inverse function theorem tells us that[

dH(3,0)

]
=
[
dHG(3,4)

]
=
[
dG(3,4)

]−1
=

[
1 0

f1(3, 4) f2(3, 4)

]−1
=

[
1 0
6 8

]−1
=

[
1 0
−3

4
1
8

]
.

But the entry in the lower left corner is ∂H2

∂x (3, 0). Therefore, h′(3) = −3
4 .

In the next exercise we consider an equation whose solution cannot be easily calculated.

29.2.2. Exercise. Consider the equation

x2y + sin
(π

2
xy2
)

= 2 (29.7)

where x, y ∈ R
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(a) What does it mean to say that equation (29.7) can be solved for y in terms of x near the
point (1, 2)?

(b) Show that it is possible to solve (29.7) as described in (a). Hint. Proceed as in the second
solution to the preceding example.

(c) Use the inverse function theorem to find the value of dy
dx at the point (1, 2).

(Solution Q.29.4.)

29.2.3. Problem. Consider the equation

exy
2 − x2y + 3x = 4 (29.8)

where x, y ∈ R.

(a) What does it mean to say that equation (29.8) can be solved for y near 0 in terms of x
near 1?

(b) Show that such a solution does exist.

(c) Use the inverse function theorem to compute the value of dy
dx at the point (1, 0).

The preceding examples have all been equations involving only two variables. The technique
used in dealing with these examples works just as well in cases where we are given an equation in
an arbitrary number of variables and wish to demonstrate the existence of local solutions for one
of the variables in terms of the remaining ones.

29.2.4. Exercise. Consider the equation

x2z + yz2 − 3z3 = 8 (29.9)

for x, y, z ∈ R.

(a) What does it mean to say that equation (29.9) can be solved for z near 1 in terms of x
and y near (3, 2)? (Alternatively: that (29.9) can be solved for z in terms of x and y near
the point (x, y, z) = (3, 2, 1)?)

(b) Show that such a solution does exist. Hint. Follow the preceding technique, but instead
of using (29.6), define G(x, y, z) := (x, y, f(x, y, z)) for an appropriate function f .

(c) Use the inverse function theorem to find the values of
(
∂z
∂x

)
y

and
(
∂z
∂y

)
x

at the point (3, 2, 1).

(Solution Q.29.5.)

29.2.5. Problem. Let f(x, y, z) = xz+xy+ yz− 3. By explicit computation find a neighborhood
V of (1, 1) in R2 and a function h : V → R such that h(1, 1) = 1 and f(x, y, h(x, y)) = 0 for all x
and y in V . Find h1(1, 1) and h2(1, 1).

29.2.6. Problem. Use the inverse function theorem, not direct calculation, to show that the
equation

xz + xy + yz = 3

has a solution for z near 1 in terms of x and y near (1, 1) and to find
(
∂z
∂x

)
y

and
(
∂z
∂y

)
x

at the point

(1, 1, 1).

29.2.7. Problem. (a) What does it mean to say that the equation

wx2y +
√
wy2z4 = 3xz + 6x3z2 + 7

can be solved for z in terms of w, x, and y near the point (w, x, y, z) = (4, 1, 2, 1)?

(b) Show that such a solution exists.

(c) Use the inverse function theorem to find
(
∂z
∂w

)
x,y

,
(
∂z
∂x

)
w,y

, and
(
∂z
∂y

)
w,x

at the point

(4, 1, 2, 1).
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29.2.8. Problem. Let U
◦
⊆ Rn−1 × R and f ∈ C1(U,R). Suppose that the point (a, b) =

(a1, . . . , an−1; b) belongs to U , that f(a, b) = 0, and that fn(a, b) 6= 0. Show that there exists
a neighborhood V of a in Rn−1 and a function h in C1(V,R) such that h(a) = b and f(x, h(x)) = 0
for all x in V . Hint. Show that the function

G : U → Rn−1 × R : (x, y) = (x1, . . . , xn−1; y) 7→ (x, f(x, y))

has a local C1-inverse, say H, at (a, b).

29.2.9. Problem. Show that the equation

uvy2z + w
√
xz10 + v2eyz4 = 5 + uw2 cos

(
x3y5

)
can be solved for x near 4 in terms of u, v, w, y, and z near −3, 2, −1, 0, and 1, respectively. Hint.
Use the preceding problem.

29.2.10. Problem. (a) Use problem 29.2.8 to make sense of the following “theorem”: If f(x, y, z) =
0, then (

∂z

∂x

)
y

= −

(
∂f
∂x

)
y,z(

∂f
∂z

)
x,y

.

Hint. After determining that there exists a function h which satisfies the equation f(x, y, h(x, y)) =
0 on an appropriate neighborhood of a point, use the chain rule to differentiate both sides of the
equation with respect to x.)

(b) Verify part (a) directly for the function f given in problem 29.2.5 by computing each side
independently.

(c) Restate and prove the following “theorem”: If f(x, y, z) = 0, then(
∂z

∂x

)
y

(
∂x

∂y

)
z

(
∂y

∂z

)
x

= −1 .

29.2.11. Problem. A commonly used formula in scientific work is(
∂x

∂y

)
z

=
1(
∂y
∂x

)
z

.

Recast this as a carefully stated theorem. Then prove the theorem. Hint. Use problem 29.2.8
twice to obtain appropriate functions h and j satisfying f(h(y, z), y, z) = 0 and f(x, j(x, z), z) = 0
on appropriate neighborhoods. Differentiate these equations using the chain rule. Evaluate at a
particular point. Solve.

29.2.12. Problem. (a) Make sense of the formula(
∂x

∂z

)
y

= −

(
∂y
∂z

)
x(

∂y
∂x

)
z

and prove it.

(b) Illustrate the result in part (a) by computing separately
(
∂P
∂V

)
T

and −
(
∂T
∂V

)
P(

∂T
∂P

)
V

from the

equation of state PV = RT for an ideal gas. (Here R is a constant.)

We have dealt at some length with the problem of solving a single equation for one variable
in terms of the remaining ones. It is pleasant to discover that the techniques used there can be
adapted with only the most minor modifications to give local solutions for systems of n equations
in p variables (where p > n) for n of the variables in terms of the remaining p − n variables. We
begin with some examples.
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29.2.13. Exercise. Consider the following system of equations:{
2u3vx2 + v2x3y2 − 3u2y4 = 0

2uv2y2 − uvx2 + u3xy = 2 .
(29.10)

(a) What does it mean to say that the system (29.10) can be solved for x and y near (c, d) in
terms of u and v near (a, b)?

(b) Show that the system (29.10) can be solved for x and y near (1, 1) in terms of u and v
near (1, 1). Hint. Try to imitate the technique of problem 29.2.8, except in this case define
G on an appropriate subset of R2 × R2.

(Solution Q.29.6.)

29.2.14. Problem. Consider the following system of equations{
4x2 + 4y2 = z

x2 + y2 = 5− z .
(29.11)

(a) What does it mean to say that (29.11) can be solved for y and z near (1, 4) in terms of x
near 0?

(b) Show that such a solution exists by direct computation.

(c) Compute
(
∂y
∂x

)
z

and
(
∂z
∂x

)
y

at the point x = 0, y = 1, z = 4.

29.2.15. Problem. (a) Repeat problem 29.2.14(b), this time using the inverse function theorem
instead of direct computation.

(b) Use the inverse function theorem to find
(
∂y
∂x

)
z

and
(
∂z
∂x

)
y

at the point x = 0, y = 1,

z = 4.

29.2.16. Problem. Discuss the problem of solving the system of equations{
ux2 + vwy + u2w = 4

uvy3 + 2wx− x2y2 = 3
(29.12)

for x and y near (1, 1) in terms of u, v, and w near (1, 2, 1).

As the preceding examples indicate, the first step in solving a system of n equations in n + k
unknowns (where k > 0) for n of the variables in terms of the remaining k variables is to replace

the system of equations by a function f : U → Rn where U
◦
⊆ Rk × Rn. If the finite dimensional

spaces Rk and Rn are replaced by arbitrary Banach spaces, the subsequent calculations can be
carried out in exactly the same fashion as in the examples we have just considered. The result of
this computation is the implicit function theorem.

29.2.17. Theorem (The Implicit Function Theorem). Let E1, E2, and F be Banach spaces,

(a, b) ∈ U
◦
⊆ E1 × E2, and f ∈ C1(U,F ). If f(a, b) = 0 and d2f(a,b) is invertible in B(E2, F ), then

there exist a neighborhood V of a in E1 and a continuously differentiable function h : V → E2 such
that h(a) = b and f(x, h(x)) = 0 for all x ∈ V .

Proof. Problem. Hint. Let G(x, y) = (x, f(x, y)) for all (x, y) ∈ U . Show that dG(a,b) =

(x, Sx + Ty) where S = d1f(a,b) and T = d2f(a,b). Show that the map (x, z) 7→ (x, T−1(z − Sx))
from E1×F to E1×E2 is the inverse of dG(a,b). (One can guess what the inverse of dG(a,b) should

be by regarding dG(a,b) as the matrix

[
IE1 0
S T

]
acting on E1 × E2.) Apply the inverse function

theorem 29.1.16 and proceed as in exercise 29.2.13 and problems 29.2.15 and 29.2.16.

29.2.18. Problem. Suppose we are given a system of n equations in p variables where p > n.
What does the implicit function theorem 29.2.17 say about the possibility of solving this system
locally for n of the variables in terms of the remaining p− n variables?



APPENDIX A

QUANTIFIERS

Certainly “2 + 2 = 4” and “2 + 2 = 5” are statements—one true, the other false. On the
other hand the appearance of the variable x prevents the expression “x + 2 = 5” from being a
statement. Such an expression we will call an open sentence; its truth is open to question since
x is unidentified. There are three standard ways of converting open sentences into statements.

The first, and simplest, of these is to give the variable a particular value. If we “evaluate” the
expression “x+ 2 = 5” at x = 4, we obtain the (false) statement “4 + 2 = 5”.

A second way of obtaining a statement from an expression involving a variable is universal
quantification: we assert that the expression is true for all values of the variable. In the preceding
example we get, “For all x, x+ 2 = 5.” This is now a statement (and again false). The expression
“for all x” (or equivalently, “for every x”) is often denoted symbolically by (∀x). Thus the preceding
sentence may be written, (∀x)x + 2 = 5. (The parentheses are optional; they may be used in the
interest of clarity.) We call ∀ a universal quantifier.

Frequently there are several variables in an expression. They may all be universally quantified.
For example

(∀x)(∀y)x2 − y2 = (x− y)(x+ y) (A.1)

is a (true) statement, which says that for every x and for every y the expression x2 − y2 factors in
the familiar way. The order of consecutive universal quantifiers is unimportant: the statement

(∀y)(∀x)x2 − y2 = (x− y)(x+ y)

says exactly the same thing as (A.1). For this reason the notation may be contracted slightly to
read

(∀x, y)x2 − y2 = (x− y)(x+ y) .

A third way of obtaining a statement from an open sentence P (x) is existential quantifica-
tion. Here we assert that P (x) is true for at least one value of x. This is often written “(∃x) such
that P (x)” or more briefly “(∃x)P (x)”, and is read “there exists an x such that P (x)” or “P (x) is
true for some x.” For example, if we existentially quantify the expression “x + 2 = 5” we obtain
“(∃x) such that x+ 2 = 5” (which happens to be true). We call ∃ an existential quantifier.

As is true for universal quantifiers, the order of consecutive existential quantifiers is immaterial.

CAUTION. It is absolutely essential to realize that the order of an existential and a universal
quantifier may not in general be reversed. For example,

(∃x)(∀y)x < y

says that there is a number x with the property that no matter how y is chosen, x is less than y;
that is, there is a smallest real number. (This is, of course, false.) On the other hand

(∀y)(∃x)x < y

says that for every y we can find a number x smaller than y. (This is true: take x to be y − 1 for
example.) The importance of getting quantifiers in the right order cannot be overestimated.

There is one frequently used convention concerning quantifiers that should be mentioned. In
the statement of definitions, propositions, theorems, etc., missing quantifiers are assumed to be
universal; furthermore, they are assumed to be the innermost quantifiers.
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A.1.1. Example. Let f be a real valued function defined on the real line R. Many texts give the
following definition. The function f is continuous at a point a in R if: for every ε > 0 there exists
δ > 0 such that

|f(x)− f(a)| < ε whenever |x− a| < δ .

Here ε and δ are quantified; the function f and the point a are fixed for the discussion, so they do
not require quantifiers. What about x? According to the convention just mentioned, x is universally
quantified and that quantifier is the innermost one. Thus the definition reads: for every ε > 0 there
exists δ > 0 such that for every x

|f(x)− f(a)| < ε whenever |x− a| < δ .

A.1.2. Example. Sometimes all quantifiers are missing. In this case the preceding convention
dictates that all variables are universally quantified. Thus

Theorem. x2 − y2 = (x− y)(x+ y)

is interpreted to mean

Theorem. (∀x)(∀y)x2 − y2 = (x− y)(x+ y) .



APPENDIX B

SETS

In this text everything is defined ultimately in terms of two primitive (that is, undefined)
concepts: set and set membership. We assume that these are already familiar to the reader. In
particular, it is assumed to be understood that distinct elements (or members, or points) can be
regarded collectively as a single set (or family, or class, or collection). To indicate that x belongs
to a set A (or that x is a member of A) we write x ∈ A; to indicate that it does not belong to A
we write x /∈ A.

We specify a set by listing its members between braces (for instance, {1, 2, 3, 4, 5} is the set
of the first five natural numbers), by listing some of its members between braces with an ellipsis
(three dots) indicating the missing members (e.g. {1, 2, 3, . . . } is the set of all natural numbers), or
by writing {x : P (x)} where P (x) is an open sentence which specifies what property the variable x
must satisfy in order to be included in the set (e.g. {x : 0 ≤ x ≤ 1} is the closed unit interval [0, 1]).

B.1.1. Problem. Let N be the set of natural numbers 1, 2, 3, . . . and let

S = {x : x < 30 and x = n2 for some n ∈ N} .
List all the elements of S.

B.1.2. Problem. Let N be the set of natural numbers 1, 2, 3, . . . and let

S = {x : x = n+ 2 for some n ∈ N such that n < 6} .
List all the elements of S.

B.1.3. Problem. Suppose that

S = {x : x = n2 + 2 for some n ∈ N}
and that

T = {3, 6, 11, 18, 27, 33, 38, 51} .
(a) Find an element of S that is not in T .
(b) Find an element of T that is not in S.

B.1.4. Problem. Suppose that

S = {x : x = n2 + 2n for some n ∈ N}
and that

T = {x : x = 5n− 1 for some n ∈ N} .
Find an element which belongs to both S and T .

Since all of our subsequent work depends on the notions of set and of set membership, it is
not altogether satisfactory to rely on intuition and shared understanding to provide a foundation
for these crucial concepts. It is possible in fact to arrive at paradoxes using a naive approach to
sets. (For example, ask yourself the question, “If S is the set of all sets which do not contain
themselves as members, then does S belong to S?” If the answer is yes, then it must be no, and
vice versa.) One satisfactory alternative to our intuitive approach to sets is axiomatic set theory.
There are many ways of axiomatizing set theory to provide a secure foundation for subsequent
mathematical development. Unfortunately, each of these ways turns out to be extremely intricate,
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and it is generally felt that the abstract complexities of axiomatic set theory do not serve well as
a beginning to an introductory course in advanced calculus.

Most of the paradoxes inherent in an intuitive approach to sets have to do with sets that are
too “large”. For example, the set S mentioned above is enormous. Thus in the sequel we will
assume that in each situation all the mathematical objects we are then considering (sets, functions,
etc.) belong to some appropriate “universal” set, which is “small” enough to avoid set theoretic
paradoxes. (Think of “universal” in terms of “universe of discourse”, not “all-encompassing”.) In
many cases an appropriate universal set is clear from the context. Previously we considered a
statement

(∀y)(∃x)x < y .

The appearance of the symbol “<” suggests to most readers that x and y are real numbers. Thus
the universal set from which the variables are chosen is the set R of all real numbers. When there
is doubt that the universal set will be properly interpreted, it may be specified. In the example
just mentioned we might write

(∀y ∈ R)(∃x ∈ R)x < y.

This makes explicit the intended restriction that x and y be real numbers.
As another example recall that in appendix A we defined a real valued function f to be con-

tinuous at a point a ∈ R if

(∀ε > 0)(∃δ > 0) such that (∀x) |f(x)− f(a)| < ε whenever |x− a| < δ.

Here the first two variables, ε and δ, are restricted to lie in the open interval (0,∞). Thus we might
rewrite the definition as follows:

∀ε ∈ (0,∞) ∃δ ∈ (0,∞)

such that (∀x ∈ R) |f(x)− f(a)| < ε whenever |x− a| < δ.

The expressions “∀x ∈ R”, “ ∃δ ∈ (0,∞)”, etc. are called restricted quantifiers.

B.1.5. Definition. Let S and T be sets. We say that S is a subset of T and write S ⊆ T (or
T ⊇ S) if every member of S belongs to T . If S ⊆ T we also say that S is contained in T or that
T contains S. Notice that the relation ⊆ is reflexive (that is, S ⊆ S for all S) and transitive
(that is, if S ⊆ T and T ⊆ U , then S ⊆ U). It is also antisymmetric (that is, if S ⊆ T and
T ⊆ S, then S = T ). If we wish to claim that S is not a subset of T we may write S 6⊆ T . In this
case there is at least one member of S which does not belong to T .

B.1.6. Example. Since every number in the closed interval [0, 1] also belongs to the interval [0, 5],
it is correct to write [0, 1] ⊆ [0, 5]. Since the number π belongs to [0, 5] but not to [0, 1], we may
also write [0, 5] 6⊆ [0, 1].

B.1.7. Definition. If S ⊆ T but S 6= T , then we say that S is a proper subset of T (or that S
is properly contained in T , or that T properly contains S) and write S $ T .

B.1.8. Problem. Suppose that S = {x : x = 2n + 3 for some n ∈ N} and that T is the set of all
odd natural numbers 1, 3, 5, . . . .

(a) Is S ⊆ T? If not, find an element of S which does not belong to T .
(b) Is T ⊆ S? If not, find an element of T which does not belong to S.

B.1.9. Definition. The empty set (or null set), which is denoted by ∅, is defined to be the
set which has no elements. (Or, if you like, define it to be {x : x 6= x}.) It is regarded as a subset
of every set, so that ∅ ⊆ S is always true. (Note: “∅” is a letter of the Danish alphabet, not the
Greek letter “phi”.)

B.1.10. Definition. If S is a set, then the power set of S, which we denote by P(S), is the set
of all subsets of S.
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B.1.11. Example. Let S = {a, b, c}. Then the members of the power set of S are the empty set,
the three one-element subsets, the three two-element subsets, and the set S itself. That is,

P(S) =
{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, S

}
.

B.1.12. Problem. In each of the words (a)–(d) below let S be the set of letters in the word. In
each case find the number of members of S and the number of members of P(S) the power set of S.

(a) lull
(b) appall
(c) attract
(d) calculus

CAUTION. In attempting to prove a theorem which has as a hypothesis “Let S be a set” do not
include in your proof something like “Suppose S = {s1, s2, . . . , sn}” or “Suppose S = {s1, s2, . . . }”.
In the first case you are tacitly assuming that S is finite and in the second that it is countable.
Neither is justified by the hypothesis.

CAUTION. A single letter S (an S in fraktur font) is an acceptable symbol in printed documents.
Don’t try to imitate it in hand-written work or on the blackboard. Use script letters instead.

Finally a word on the use of the symbols = and :=. In this text equality is used in the sense of
identity. We write x = y to indicate that x and y are two names for the same object. For example,
0.5 = 1/2 = 3/6 = 1/

√
4 because 0.5, 1/2, 3/6, and 1/

√
4 are different names for the same real

number. You have probably encountered other uses of the term equality. In many high school
geometry texts, for example, one finds statements to the effect that a triangle is isosceles if it has
two equal sides (or two equal angles). What is meant of course is that a triangle is isosceles if it
has two sides of equal length (or two angles of equal angular measure). We also make occasional
use of the symbol := to indicate equality by definition. Thus when we write a := b we are giving a
new name a to an object b with which we are presumably already familiar.





APPENDIX C

SPECIAL SUBSETS OF R

We denote by R the set of real numbers. Certain subsets of R have standard names. We
list some of them here for reference. The set P = {x ∈ R : x > 0} of strictly positive numbers
is discussed in appendix H. The set {1, 2, 3, . . . } of all natural numbers is denoted by N, initial
segments {1, 2, 3, . . . ,m} of this set by Nm, and the set {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } of all integers
by Z. The set of all rational numbers (numbers of the form p/q where p, q ∈ Z and q 6= 0) is denoted
by Q. There are the open intervals

(a, b) := {x ∈ R : a < x < b},
(−∞, b) := {x ∈ R : x < b}, and

(a,∞) := {x ∈ R : x > a}.
There are the closed intervals

[a, b] := {x ∈ R : a ≤ x ≤ b},
(−∞, b] := {x ∈ R : x ≤ b}, and

[a,∞) := {x ∈ R : x ≥ a}.
And there are the intervals which (if a < b) are neither open nor closed:

[a, b) := {x ∈ R : a ≤ x < b} and

(a, b] := {x ∈ R : a < x ≤ b}.
The set R of all real numbers may be written in interval notation as (−∞,∞). (As an interval

it is considered both open and closed. The reason for applying the words “open” and “closed” to
intervals is discussed in chapter 2.)

A subset A of R is bounded if there is a positive number M such that |a| ≤ M for all a ∈ A.
Thus intervals of the form [a, b], (a, b], [a, b), and (a, b) are bounded. The other intervals are
unbounded.

If A is a subset of R, then A+ := A ∩ [0,∞). These are the positive elements of A. Notice,
in particular, that Z+, the set of positive integers, contains 0, but N, the set of natural numbers,
does not.
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APPENDIX D

LOGICAL CONNECTIVES

D.1. DISJUNCTION AND CONJUNCTION

The word “or” in English has two distinct uses. Suppose you ask a friend how he intends to
spend the evening, and he replies, “I’ll” walk home or I’ll take in a film.” If you find that he then
walked home and on the way stopped to see a film, it would not be reasonable to accuse him of
having lied. He was using the inclusive “or”, which is true when one or both alternatives are. On
the other hand suppose that while walking along a street you are accosted by an armed robber who
says, “Put up your hands or I’ll shoot.” You obligingly raise your hands. If he then shoots you,
you have every reason to feel ill-used. Convention and context dictate that he used the exclusive
“or”: either alternative, but not both.

Since it is undesirable for ambiguities to arise in mathematical discourse, the inclusive “or” has
been adopted as standard for mathematical (and most scientific) purposes. A convenient way of
defining logical connectives such as “or” is by means of a truth table. The formal definition of “or”
looks like this.

P Q P ∨Q
T T T
T F T
F T T
F F F

Here P and Q are any sentences. In the columns labeled P and Q we list all possible combinations
of truth values for P and Q (T for true, F for false). In the third column appears the corresponding
truth value for “P or Q”. According to the table “P or Q” is true in all cases except when both P
and Q are false. The notation “P ∨Q” is frequently used for “P or Q”. The operation ∨ is called
disjunction.

D.1.1. Exercise. Construct a truth table giving the formal definition of “and”, frequently denoted
by ∧. The operation ∧ is called conjunction. (Solution Q.30.1.)

We say that two sentences depending on variables P,Q, . . . are logically equivalent if they
have the same truth value no matter how truth values T and F are assigned to the variables
P,Q, . . . . It turns out that truth tables are quite helpful in deciding whether certain statements
encountered in mathematical reasoning are logically equivalent to one another. (But do not clutter
up mathematical proofs with truth tables. Everyone is supposed to argue logically. Truth tables
are only scratch work for the perplexed.)

D.1.2. Example. Suppose that P , Q, and R are any sentences. To a person who habitually uses
language carefully, it will certainly be clear that the following two assertions are equivalent:

(a) P is true and so is either Q or R.
(b) Either both P and Q are true or both P and R are true.

Suppose for a moment, however, that we are in doubt concerning the relation between (a) and (b).
We may represent (a) symbolically by P ∧ (Q∨R) and (b) by (P ∧Q)∨ (P ∧R). We conclude that
they are indeed logically equivalent by examining the following truth table. (Keep in mind that
since there are 3 variables, P , Q, and R, there are 23 = 8 ways of assigning truth values to them;
so we need 8 lines in our truth table.)
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(1) (2) (3) (4) (5) (6) (7) (8)
P Q R Q ∨R P ∧ (Q ∨R) P ∧Q P ∧R (P ∧Q) ∨ (P ∧R)

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Column (4) is obtained from (2) and (3), column (5) from (1) and (4), column (6) from (l) and
(2), column (7) from (1) and (3), and column (8) from (6) and (7). Comparing the truth values in
columns (5) and (8), we see that they are exactly the same. Thus P ∧ (Q∨R) is logically equivalent
to (P ∧Q)∨ (P ∧R). This result is a distributive law; it says that conjunction distributes over
disjunction.

D.1.3. Problem. Use truth tables to show that the operation of disjunction is associative; that
is, show that (P ∨Q) ∨R and P ∨ (Q ∨R) are logically equivalent.

D.1.4. Problem. Use truth tables to show that disjunction distributes over conjunction; that is,
show that P ∨ (Q ∧R) is logically equivalent to (P ∨Q) ∧ (P ∨R).

One final remark: quantifiers may be “moved past” portions of disjunctions and conjunctions
which do not contain the variable being quantified. For example,

(∃y)(∃x) [(y2 ≤ 9) ∧ (2 < x < y)]

says the same thing as

(∃y) [(y2 ≤ 9) ∧ (∃x) 2 < x < y].

D.2. IMPLICATION

Consider the assertion, “If 1 = 2, then 2 = 3.” If you ask a large number of people (not
mathematically trained) about the truth of this, you will probably find some who think it is true,
some who think it is false, and some who think it is meaningless (therefore neither true nor false).
This is another example of the ambiguity of ordinary language. In order to avoid ambiguity and
to insure that “P implies Q” has a truth value whenever P and Q do, we define the operation of
implication, denoted by ⇒, by means of the following truth table.

P Q P ⇒ Q

T T T
T F F
F T T
F F T
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There are many ways of saying that P implies Q. The following assertions are all identical.

P ⇒ Q.

P implies Q.

If P , then Q.

P is sufficient (or a sufficient condition) for Q.

Whenever P , then Q.

Q⇐ P

Q is implied by P .

Q is a consequence of P .

Q follows from P .

Q is necessary (or a necessary condition) for P .

Q whenever P .

The statement Q⇒ P is the converse of P ⇒ Q. It is a common mistake to confuse a statement
with its converse. This is a grievous error. For example: it is correct to say that if a geometric figure
is a square, then it is a quadrilateral; but it is not correct to say that if a figure is a quadrilateral
it must be a square.

D.2.1. Definition. If P and Q are sentences, we define the logical connective “iff” (read “if and
only if”) by the following truth table.

P Q P iff Q

T T T
T F F
F T F
F F T

Notice that the sentence “P iff Q” is true exactly in those cases where P and Q have the same
truth values. That is, saying that “P iff Q” is a tautology (true for all truth values of P and Q)
is the same as saying that P and Q are equivalent sentences. Thus the connective “iff” is called
equivalence. An alternative notation for “iff” is “⇔”.

D.2.2. Example. By comparing columns (3) and (6) of the following truth table, we see that “P
iff Q” is logically equivalent to “(P ⇒ Q) ∧ (Q⇒ P )”.

(1) (2) (3) (4) (5) (6)
P Q P iff Q P ⇒ Q Q ∨ (∼ P ) (P ⇒ Q) ∧ (Q⇒ P )

T T T T T T
T F F F T F
F T F T F F
F F T T T T

This is a very important fact. Many theorems of the form P iff Q are most conveniently proved by
verifying separately that P ⇒ Q and that Q⇒ P .

D.3. RESTRICTED QUANTIFIERS

Now that we have the logical connectives ⇒ and ∧ at our disposal, it is possible to introduce
restricted quantifiers formally in terms of unrestricted ones. This enables one to obtain properties
of the former from corresponding facts about the latter.

(See exercise D.3.2 and problems D.4.8 and D.4.9.)
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D.3.1. Definition (of restricted quantifiers). Let S be a set and P (x) be an open sentence. We
define (∀x ∈ S)P (x) to be true if and only if (∀x)

(
(x ∈ S) ⇒ P (x)

)
is true; and we define

(∃x ∈ S)P (x) to be true if and only if (∃x)
(
(x ∈ S) ∧ P (x)

)
is true.

D.3.2. Exercise. Use the preceding definition and the fact (mentioned in chapter A) that the
order of unrestricted existential quantifiers does not matter to show that the order of restricted
existential quantifiers does not matter. That is, show that if S and T are sets and P (x, y) is an
open sentence, then (∃x ∈ S) (∃y ∈ T )P (x, y) holds if and only if (∃y ∈ T ) (∃x ∈ S)P (x, y) does.
(Solution Q.30.2.)

D.4. NEGATION

If P is a sentence, then ∼ P , read “the negation of P” or “the denial of P” or just “not P”,
is the sentence whose truth values are the opposite of P .

P ∼ P
T F
F T

D.4.1. Example. It should be clear that the denial of the disjunction of two sentences P and Q
is logically equivalent to the conjunction of their denials. If we were in doubt about the correctness
of this, however, we could appeal to a truth table to prove that ∼ (P ∨ Q) is logically equivalent
to ∼ P∧ ∼ Q.

(1) (2) (3) (4) (5) (6) (7)
P Q P ∨Q ∼ (P ∨Q) ∼ P ∼ Q (∼ P ) ∧ (∼ Q)

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Columns (4) and (7) have the same truth values: That is, the denial of the disjunction of P and Q
is logically equivalent to the conjunction of their denials. This result is one of De Morgan’s laws.
The other is given as problem D.4.2.

D.4.2. Problem (De Morgan’s law). Use a truth table to show that ∼ (P ∧ Q) is logically
equivalent to (∼ P ) ∨ (∼ Q).

D.4.3. Problem. Obtain the result in problem D.4.2 without using truth tables. Hint. Use D.4.1
together with the fact that a proposition P is logically equivalent to ∼∼ P . Start by writing
(∼ P ) ∨ (∼ Q) iff ∼∼ ((∼ P ) ∨ (∼ Q)).

D.4.4. Exercise. Let P and Q be sentences. Then P ⇒ Q is logically equivalent to Q ∨ (∼ P ).
(Solution Q.30.3.)

One very important matter is the process of taking the negation of a quantified statement. Let
P (x) be an open sentence. If it is not the case that P (x) holds for every x, then it must fail for
some x, and conversely. That is, ∼ (∀x)P (x) is logically equivalent to (∃x) ∼ P (x).

Similarly, ∼ (∃x)P (x) is logically equivalent to (∀x) ∼ P (x). (If it is not the case that P (x) is
true for some x, then it must fail for all x, and conversely.)

D.4.5. Example. In chapter 3 we define a real valued function f on the real line to be continuous
provided that

(∀a)(∀ε)(∃δ)(∀x) |x− a| < δ ⇒ |f(x)− f(a)| < ε.

How does one prove that a particular function f is not continuous? Answer: find numbers a and
ε such that for every δ it is possible to find an x such that |f(x) − f(a)| ≥ ε and |x − a| < δ. To
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see that this is in fact what we must do, notice that each pair of consecutive lines in the following
argument are logically equivalent.

∼ [(∀a)(∀ε)(∃δ)(∀x) |x− a| < δ ⇒ |f(x)− f(a)| < ε]

(∃a) ∼ [(∀ε)(∃δ)(∀x) |x− a| < δ ⇒ |f(x)− f(a)| < ε]

(∃a)(∃ε) ∼ [(∃δ)(∀x) |x− a| < δ ⇒ |f(x)− f(a)| < ε]

(∃a)(∃ε)(∀δ) ∼ [(∀x) |x− a| < δ ⇒ |f(x)− f(a)| < ε]

(∃a)(∃ε)(∀δ)(∃x) ∼ [ |x− a| < δ ⇒ |f(x)− f(a)| < ε]

(∃a)(∃ε)(∀δ)(∃x) ∼ [(|f(x)− f(a)| < ε)∨ ∼ (|x− a| < δ)]

(∃a)(∃ε)(∀δ)(∃x) [∼ ( |f(x)− f(a)| < ε)∧ ∼∼ (|x− a| < δ)]

(∃a)(∃ε)(∀δ)(∃x) [( |f(x)− f(a)| ≥ ε) ∧ (|x− a| < δ)]

To obtain the third line from the end use exercise D.4.4; the penultimate line is a consequence of
example D.4.1; and the last line makes use of the obvious fact that a sentence P is always logically
equivalent to ∼∼ P .

D.4.6. Problem. Two students, Smith and Jones, are asked to prove a mathematical theorem
of the form, “If P then if Q then R.” Smith assumes that Q is a consequence of P and tries to
prove R. Jones assumes both P and Q are true and tries to prove R. Is either of these students
doing the right thing? Explain carefully.

D.4.7. Problem. The contrapositive of the implication P ⇒ Q is the implication (∼ Q) ⇒
(∼ P ). Without using truth tables or assigning truth values show that an implication is logically
equivalent to its contrapositive. (This is a very important fact. In many cases when you are asked
to prove a theorem of the form P ⇒ Q, rather than assuming P and proving Q you will find it
easier to assume that Q is false and conclude that P must also be false.) Hint. Use D.4.4. You may
also use the obvious facts that disjunction is a commutative operation (P ∨Q is logically equivalent
to Q ∨ P ) and that P is logically equivalent to ∼∼ P .)

D.4.8. Problem. Use the formal definition of restricted quantifiers given in section D.3 together
with the fact mentioned in appendix A that the order of unrestricted universal quantifiers does not
matter to show that the order of restricted universal quantifiers does not matter. That is, show
that if S and T are sets and P (x, y) is an open sentence, then (∀x ∈ S)(∀y ∈ T )P (x, y) holds if
and only if (∀y ∈ T )(∀x ∈ S)P (x, y) does.

D.4.9. Problem. Let S be a set and P (x) be an open sentence. Show that

(a) ∼ (∀x ∈ S)P (x) if and only if (∃x ∈ S) ∼ P (x).
(b) ∼ (∃x ∈ S)P (x) if and only if (∀x ∈ S) ∼ P (x).

Hint. Use the corresponding facts (given in the two paragraphs following exercise D.4.4) for unre-
stricted quantifiers.





APPENDIX E

WRITING MATHEMATICS

E.1. PROVING THEOREMS

Mathematical results are called theorems—or propositions, or lemmas, or corollaries, or exam-
ples. All these are intended to be mathematical facts. The different words reflect only a difference
of emphasis. Theorems are more important than propositions. A lemma is a result made use
of in a (usually more important) subsequent result. The German word for lemma is particularly
suggestive: “Hilfsatz,” meaning “helping statement.” A corollary (to a theorem or proposition) is
an additional result we get (almost) for free. All these results are typically packaged in the form,
“If P , then Q.” The assertion P is the hypothesis (or premise, or assumption, or supposition). The
assertion Q is the conclusion. Notice that the result “Every object of type A is of type B” is in
this form. It can be rephrased as, “If x is an object of type A, then x is of type B.”

The statements, P and Q themselves may be complicated conjunctions, or disjunctions, or
conditionals of simpler statements. One common type of theorem, for example, is, “If P1, P2, . . . ,
and Pm, then Q1, Q2, . . . , and Qn.” (Personally, I think such a theorem is clumsily stated if m
and n turn out to be large.)

A proof of a result is a sequence of statements, each with justification, which leads to the
conclusion(s) of the desired result. The statements that constitute a proof may be definitions, or
hypotheses, or statements which result from applying to previous steps of the proof a valid rule of
inference. Modus ponens is the basic rule of inference. It says that if you know a proposition P
and you also know that P implies Q, then you can conclude that Q is true. Another important
rule of inference (sometimes called universal instantiation) is that if you know a proposition P (x)
to be true for every x in a set S and you know that a is a member of S, then you can conclude
that P (a) is true.

Other rules of inference can be derived from modus ponens. Let’s look at an example. Certainly,
if we know that the proposition P ∧ Q is true we should be able to conclude that P is true. The
reason is simple we know (or can easily check) that

(P ∧Q)⇒ P (E.1)

is a tautology (true for all truth values of P and Q). Since P ∧ Q is known to be true, P follows
from (E.1) by modus ponens. No attempt is made here to list every rule of inference that it is
appropriate to use. Most of them should be entirely obvious. For those that are not, truth tables
may help. (As an example consider problem G.1.13: If the product of two numbers x and y is zero,
then either x or y must be zero. Some students feel obligated to prove two things: that if xy = 0
and x 6= 0 then y = 0 AND that if xy = 0 and y 6= 0 then x = 0. Examination of truth tables
shows that this is not necessary.)

A proof in which you start with the hypotheses and reason until you reach the conclusion is
a direct proof. There are two other proof formats, which are known as indirect proofs. The first
comes about by observing that the proposition ∼ Q⇒∼ P is logically equivalent to P ⇒ Q. (We
say that ∼ Q ⇒∼ P is the contrapositive of P ⇒ Q.) To prove that P implies Q, it suffices to
assume that Q is false and prove, using this assumption that P is false. Some find it odd that to
prove something is true one starts by assuming it to be false. A slight variant of this is the proof
by contradiction. Here, to prove that P implies Q, assume two things: that P is true and that
Q is false. Then attempt to show that these lead to a contradiction. We like to believe that the
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mathematical system we work in is consistent (although we know we can’t prove it), so when an
assumption leads us to a contradiction we reject it. Thus in a proof by contradiction when we find
that P and ∼ Q can’t both be true, we conclude that if P is true Q must also be true.

E.1.1. Problem. Prove that in an inconsistent system, everything is true. That is, prove that if
P and Q are propositions and that if both P and ∼ P are true, then Q is true. Hint. Consider the
proposition (P∧ ∼ P )⇒ Q.

E.1.2. Problem. What is wrong with the following proof that 1 is the largest natural number.

Let N be the largest natural number. Since N is a natural number so is N2.
We see that N2 = N · N ≥ N · 1 = N . Clearly the reverse inequality N2 ≤ N
holds because N is the largest natural number. Thus N2 = N . This equation
has only two solutions: N = 0 and N = 1. Since 0 is not a natural number, we
have N = 1. That is, 1 is the largest natural number.

E.2. CHECKLIST FOR WRITING MATHEMATICS

After you have solved a problem or discovered a counterexample or proved a theorem, there
arises the problem of writing up your result. You want to do this in a way that will be as clear and
as easy to digest as possible. Check your work against the following list of suggestions.

(1) Have you clearly stated the problem you are asked to solve or the result you are trying to
prove?

Have an audience in mind. Write to someone. And don’t assume the person
you are writing to remembers the problem. (S)he may have gone on vacation, or
been fired; or maybe (s)he just has a bad memory. You need not include every
detail of the problem, but there should be enough explanation so that a person
not familiar with the situation can understand what you are talking (writing)
about.

(2) Have you included a paragraph at the beginning explaining the method you are going to use
to address the problem?

No one is happy being thrown into a sea of mathematics with no clue as to what
is going on or why. Be nice. Tell the reader what you are doing, what steps you
intend to take, and what advantages you see to your particular approach to the
problem.

(3) Have you defined all the variables you use in your writeup?

Never be so rude as to permit a symbol to appear that has not been properly
introduced. You may have a mental picture of a triangle with vertices labelled
A, B, and C. When you use those letters no one will know what they stand for
unless you tell them. (Even if you have included a graph appropriately labelled,
still tell the reader in the text what the letters denote.) Similarly, you may be
consistent in always using the letter j to denote a natural number. But how
would you expect the reader to know?

It is good practice to italicize variables so that they can be easily distinguished
from regular text.

(4) Is the logic of your report entirely clear and entirely correct?
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It is an unfortunate fact of life that the slightest error in logic can make a
“solution” to a problem totally worthless. It is also unfortunate that even a
technically correct argument can be so badly expressed that no one will believe
it.

(5) In your writeup are your mathematical symbols and mathematical terms all correctly used
in a standard fashion? And are all abbreviations standard?

Few things can make mathematics more confusing than misused or eccentrically
used symbols. Symbols should clarify arguments not create yet another level of
difficulty. By the way, symbols such as “=” and “<” are used only in formulas.
They are not substitutes for the words “equals” and “less than” in ordinary text.
Logical symbols such as ⇒ are rarely appropriate in mathematical exposition:
write “If A then B,” not “A⇒ B.” Occasionally they may be used in displays.

(6) Are the spelling, punctuation, diction, and grammar of your report all correct?

(7) Is every word, every symbol, and every equation part of a sentence? And is every sentence
part of a paragraph?

For some reason this seems hard for many students. Scratchwork, of course, tends
to be full of free floating symbols and formulas. When you write up a result get
rid of all this clutter. Keep only what is necessary for a logically complete report
of your work. And make sure any formula you keep becomes (an intelligible)
part of a sentence. Study how the author of any good mathematics text deals
with the problem of incorporating symbols and formulas into text.

(8) Does every sentence start correctly and end correctly?

Sentences start with capital letters. Never start a sentence with a number or with
a mathematical or logical symbol. Every declarative sentence ends with a period.
Other sentences may end with a question mark or (rarely) an exclamation mark.

(9) Is the function of every sentence of your report clear?

Every sentence has a function. It may be a definition. Or it may be an assertion
you are about to prove. Or it may be a consequence of the preceding statement.
Or it may be a standard result your argument depends on. Or it may be a
summary of what you have just proved. Whatever function a sentence
serves, that function should be entirely clear to your reader.

(10) Have you avoided all unnecessary clutter?

Mindless clutter is one of the worst enemies of clear exposition. No one wants
to see all the details of your arithmetic or algebra or trigonometry or calculus.
Either your reader knows this stuff and could do it more easily than read it, or
doesn’t know it and will find it meaningless. In either case, get rid of it. If you
solve an equation, for example, state what the solutions are; don’t show how you
used the quadratic formula to find them. Write only things that inform. Logical
argument informs, reams of routine calculations do not. Be ruthless in rooting
out useless clutter.
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(11) Is the word “any” used unambiguously? And is the order in which quantifiers act entirely
clear?

Be careful with the word “any”, especially when taking negations. It can be
surprisingly treacherous. “Any” may be used to indicate universal quantification.
(In the assertion, “It is true for any x that x2 − 1 = (x + 1)(x − 1)”, the word
“any” means “every”.) It may also be used for existential quantification. (In the
question, “Does x2 + 2 = 2x hold for any x?” the word “any” means “for some”.
Also notice that answering yes to this question does not mean that you believe it
is true that “x2 +2 = 2x holds for any x.”) Negations are worse. (What does “It
is not true that x2 + 2 = 2x for any x” mean?) One good way to avoid trouble:
don’t use “any”.

And be careful of word order. The assertions “Not every element of A is an
element of B” and “Every element of A is not an element of B” say quite dif-
ferent things. I recommend avoiding the second construction entirely. Putting
(some or all) quantifiers at the end of a sentence can be a dangerous business.
(The statement, “P (x) or Q(x) fails to hold for all x,” has at least two possible
interpretations. So does “x 6= 2 for all x ∈ A,” depending on whether we read 6=
as “is not equal to” or as “is different from”.)

E.3. FRAKTUR AND GREEK ALPHABETS

Fraktur is a typeface widely used until the middle of the twentieth century in Germany and a
few other countries. In this text it is used to denote families of sets and families of linear maps.
In general it is not a good idea to try to reproduce these letters in handwritten material or when
writing on the blackboard. In these cases English script letters are both easier to read and easier
to write. Here is a list of upper case Fraktur letters:

A (A) B (B) C (C) D (D) E (E) F (F) G (G)

H (H) I (I) J (J) K (K) L (L) M (M) N (N)

O (O) P (P) Q (Q) R (R) S (S) T (T) U (U)

V (V) W (W) X (X) Y (Y) Z (Z)

The following is a list of standard Greek letters used in mathematics. Notice that in some cases
both upper case and lower case are commonly used:

α (alpha) β (beta) Γ, γ (gamma) ∆, δ (delta) ε (epsilon) ζ (zeta)

η (eta) Θ, θ (theta) ι (iota) κ (kappa) Λ, λ (lambda) µ (mu)

ν (nu) Ξ, ξ (xi) Π, π (pi) ρ (rho) Σ, σ (sigma) τ (tau)

Φ, φ (phi) Ψ, ψ (psi) χ (chi) Ω, ω (omega)



APPENDIX F

SET OPERATIONS

F.1. UNIONS

Recall that if S and T are sets, then the union of S and T , denoted by S ∪ T , is defined to be
the set of all those elements x such that x ∈ S or x ∈ T .

That is,

S ∪ T := {x : x ∈ S or x ∈ T} .

F.1.1. Example. If S = [0, 3] and T = [2, 5], then S ∪ T = [0, 5].

The operation of taking unions of sets has several essentially obvious properties. In the next
proposition we list some of these.

F.1.2. Proposition. Let S, T , U , and V be sets. Then

(a) S ∪ (T ∪ U) = (S ∪ T ) ∪ U (associativity);
(b) S ∪ T = T ∪ S (commutativity);
(c) S ∪ ∅ = S;
(d) S ⊆ S ∪ T ;
(e) S = S ∪ T if and only if T ⊆ S; and
(f) If S ⊆ T and U ⊆ V , then S ∪ U ⊆ T ∪ V .

Proof. We prove parts (a), (c), (d), and (e). Ordinarily one would probably regard these
results as too obvious to require proof. The arguments here are presented only to display some
techniques used in writing formal proofs. Elsewhere in the text references will not be given to this
proposition when the facts (a)–(f) are used. When results are considered obvious, they may be
mentioned but are seldom cited. The proofs of the remaining parts (b) and (f) are left as problems.

Proof. (a) A standard way to show that two sets are equal is to show that an element x
belongs to one if and only if it belongs to the other. In the present case

x ∈ S ∪ (T ∪ U) iff x ∈ S or x ∈ T ∪ U
iff x ∈ S or (x ∈ T or x ∈ U)

iff (x ∈ S or x ∈ T ) or x ∈ U
iff x ∈ S ∪ T or x ∈ U
iff x ∈ (S ∪ T ) ∪ U.

Notice that the proof of the associativity of union ∪ depends on the associativity of “or” as a logical
connective.
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Since we are asked to show that two sets are equal, some persons feel it necessary to write a
chain of equalities between sets:

S ∪ (T ∪ U) = {x : x ∈ S ∪ (T ∪ U)}
= {x : x ∈ S or x ∈ T ∪ U}
= {x : x ∈ S or (x ∈ T or x ∈ U)}
= {x : (x ∈ S or x ∈ T ) or x ∈ U}
= {x : x ∈ S ∪ T or x ∈ U}
= {x : x ∈ (S ∪ T ) ∪ U}
= (S ∪ T ) ∪ U.

This second proof is virtually identical to the first; it is just a bit more cluttered. Try to avoid
clutter; mathematics is hard enough without it.

Proof. (c) An element x belongs to S ∪ ∅ if and only if x ∈ S or x ∈ ∅. Since x ∈ ∅ is never
true, x ∈ S ∪ ∅ if and only if x ∈ S. That is, S ∪ ∅ = S.

Proof. (d) To prove that S ⊆ S ∪ T , show that x ∈ S implies x ∈ S ∪ T . Suppose x ∈ S.
Then it is certainly true that x ∈ S or x ∈ T ; that is, x ∈ S ∪ T .

Proof. (e) First show that S = S ∪ T implies T ⊆ S; then prove the converse, if T ⊆ S, then
S = S ∪ T . To prove that S = S ∪ T implies T ⊆ S, it suffices to prove the contrapositive. We
suppose that T 6⊆ S and show that S 6= S ∪ T . If T 6⊆ S, then there is at least one element t in T
which does not belong to S. Thus (by parts (d) and (b))

t ∈ T ⊆ T ∪ S = S ∪ T ;

but t /∈ S. Since t belongs to S ∪ T but not to S these sets are not equal.
Now for the converse. Suppose T ⊆ S. Since we already know that S ⊆ S ∪ T (by part (d)),

we need only show that S ∪ T ⊆ S in order to prove that the sets S and S ∪ T are identical. To
this end suppose that x ∈ S ∪T . Then x ∈ S or x ∈ T ⊆ S. In either case x ∈ S. Thus S ∪T ⊆ S.

�

F.1.3. Problem. Prove parts (b) and (f) of proposition F.1.2.

On numerous occasions it is necessary for us to take the union of a large (perhaps infinite)
family of sets. When we consider a family of sets (that is, a set whose members are themselves
sets), it is important to keep one thing in mind. If x is a member of a set S and S is in turn
a member of a family S of sets, it does not follow that x ∈ S. For example, let S = {0, 1, 2},
T = {2, 3, 4}, U = {5, 6}, and S = {S, T, U}. Then 1 is a member of S and S belongs to S; but 1
is not a member of S (because S has only 3 members: S, T , and U).

F.1.4. Definition. Let S be a family of sets. We define the union of the family S to be the set
of all x such that x ∈ S for at least one set S in S. We denote the union of the family S by

⋃
S

(or by
⋃
S∈S S, or by

⋃
{S : S ∈ S}). Thus x ∈

⋃
S if and only if there exists S ∈ S such that

x ∈ S.

F.1.5. Notation. If S is a finite family of sets S1, . . . , Sn, then we may write
⋃n
k=1 Sk or S1∪S2∪

· · · ∪ Sn for
⋃
S.

F.1.6. Example. Let S = {0, 1, 3}, T = {1, 2, 3}, U = {1, 3, 4, 5}, and S = {S, T, U}. Then⋃
S = S ∪ T ∪ U = {0, 1, 2, 3, 4, 5} .

The following very simple observations are worthy of note.

F.1.7. Proposition. If S is a family of sets and T ∈ S, then T ⊆
⋃
S.
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Proof. If x ∈ T , then x belongs to at least one of the sets in S, namely T . �

F.1.8. Proposition. If S is a family of sets and each member of S is contained in a set U , then⋃
S ⊆ U .

Proof. Problem.

F.2. INTERSECTIONS

F.2.1. Definition. Let S and T be sets. The intersection of S and T is the set of all x such
that x ∈ S and x ∈ T .

F.2.2. Example. If S = [0, 3] and T = [2, 5], then S ∩ T = [2, 3].

F.2.3. Proposition. Let S, T , U , and V be sets. Then

(a) S ∩ (T ∩ U) = (S ∩ T ) ∩ U ; (associativity)
(b) S ∩ T = T ∩ S; (commutativity)
(c) S ∩ ∅ = ∅;
(d) S ∩ T ⊆ S;
(e) S = S ∩ T if and only if S ⊆ T ;
(f) If S ⊆ T and U ⊆ V , then S ∩ U ⊆ T ∩ V .

Proof. Problem.

There are two distributive laws for sets: union distributes over intersection (proposition F.2.4
below) and intersection distributes over union (proposition F.2.5).

F.2.4. Proposition. Let S, T , and U be sets. Then

S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U) .

Proof. Exercise. Hint. Use problem D.1.4. (Solution Q.31.1.)

F.2.5. Proposition. Let S, T , and U be sets. Then

S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U) .

Proof. Problem.

Just as we may take the union of an arbitrary family of sets, we may also take its intersection.

F.2.6. Definition. Let S be a family of sets. We define the intersection of the family S to be
the set of all x such that x ∈ S for every S in S. We denote the intersection of S by

⋂
S (or by⋂

S∈S S, or by
⋂
{S : S ∈ S}).

F.2.7. Notation. If S is a finite family of sets S1, . . . , Sn, then we may write
⋂n
k=1 Sk or S1∩S2∩

· · · ∩ Sn for
⋂
S. Similarly, if S = {S1, S2, . . . }, then we may write

⋂∞
k=1 Sk or S1 ∩ S2 ∩ . . . for⋂

S.

F.2.8. Example. Let S = {0, 1, 3}, T = {1, 2, 3}, U = {1, 3, 4, 5}, and S = {S, T, U}. Then⋂
S = S ∩ T ∩ U = {1, 3} .

Proposition F.2.4 may be generalized to say that union distributes over the intersection of an
arbitrary family of sets. Similarly there is a more general form of proposition F.2.5 which says that
intersection distributes over the union of an arbitrary family of sets. These two facts, which are
stated precisely in the next two propositions, are known as generalized distributive laws.

F.2.9. Proposition. Let T be a set and S be a family of sets. Then

T ∪
(⋂

S
)

=
⋂
{T ∪ S : S ∈ S} .

Proof. Exercise. (Solution Q.31.2.)
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F.2.10. Proposition. Let T be a set and S be a family of sets. Then

T ∩
(⋃

S
)

=
⋃
{T ∩ S : S ∈ S} .

Proof. Problem.

F.2.11. Definition. Sets S and T are said to be disjoint if S ∩ T = ∅. More generally, a family
S of sets is a disjoint family (or a pairwise disjoint family) if S ∩ T = ∅ whenever S and T
are distinct (that is, not equal) sets which belong to S.

CAUTION. Let S be a family of sets. Do not confuse the following two statements.

(a) S is a (pairwise) disjoint family.
(b)

⋂
S = ∅.

Certainly, if S contains more than a single set, then (a) implies (b). But if S contains three or
more sets the converse need not hold. For example, let S = {0, 1}, T = {3, 4}, U = {0, 2}, and
S = {S, T, U}. Then S is not a disjoint family (because S ∩ U is nonempty), but

⋂
S = ∅.

F.2.12. Example. Let S, T , U , and V be sets.

(a) Then (S ∩ T ) ∪ (U ∩ V ) ⊆ (S ∪ U) ∩ (T ∪ V ).
(b) Give an example to show that equality need not hold in (a).

Proof. Problem. Hint. Use propositions F.1.2(d) and F.2.3(f) to show that S ∩ T and U ∩ V
are contained in (S ∪ U) ∩ (T ∪ V ). Then use F.1.2(f).

F.3. COMPLEMENTS

Recall that we regard all the sets with which we work in a particular situation as being subsets
of some appropriate “universal” set. For each set S we define the complement of S , denoted by
Sc, to be the set of all members of our universal set which do not belong to S. That is, we write
x ∈ Sc if and only if x /∈ S.

F.3.1. Example. Let S be the closed interval (−∞, 3]. If nothing else is specified, we think of
this interval as being a subset of the real line R (our universal set). Thus Sc is the set of all x in
R such that x is not less than or equal to 3. Thus Sc is the interval (3,∞).

F.3.2. Example. Let S be the set of all points (x, y) in the plane such that x ≥ 0 and y ≥ 0.
Then Sc is the set of all points (x, y) in the plane such that either x < 0 or y < 0. That is ,

Sc = {(x, y) : x < 0} ∪ {(x, y) : y < 0} .

The two following propositions are De Morgan’s laws for sets. As you may expect, they are
obtained by translating into the language of sets the facts of logic which go under the same name.
(See D.4.1 and D.4.2.)

F.3.3. Proposition. Let S and T be sets. Then

(S ∪ T )c = Sc ∩ T c .

Proof. Exercise. Hint. Use example D.4.1. (Solution Q.31.3.)

F.3.4. Proposition. Let S and T be sets. Then

(S ∩ T )c = Sc ∪ T c .

Proof. Problem.

Just as the distributive laws can be generalized to arbitrary families of sets, so too can De
Morgan’s laws. The complement of the union of a family is the intersection of the complements
(proposition F.3.5), and the complement of the intersection of a family is the union of the comple-
ments (proposition F.3.6).
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F.3.5. Proposition. Let S be a family of sets. Then

(
⋃

S)c =
⋂
{Sc : S ∈ S} .

Proof. Exercise. (Solution Q.31.4.)

F.3.6. Proposition. Let S be a family of sets. Then

(
⋂

S)c =
⋃
{Sc : S ∈ S} .

Proof. Problem.

F.3.7. Definition. If S and T are sets we define the complement of T relative to S, denoted
by S \ T , to be the set of all x which belong to S but not to T . That is,

S \ T := S ∩ T c .
The operation \ is usually called set subtraction and S \ T is read as “S minus T”.

F.3.8. Example. Let S = [0, 5] and T = [3, 10]. Then S \ T = [0, 3).

It is a frequently useful fact that the union of two sets can be rewritten as a disjoint union (that
is, the union of two disjoint sets).

F.3.9. Proposition. Let S and T be sets. Then S \ T and T are disjoint sets whose union is
S ∪ T .

Proof. Exercise. (Solution Q.31.5.)

F.3.10. Exercise. Show that (S \ T ) ∪ T = S if and only if T ⊆ S. (Solution Q.31.6.)

F.3.11. Problem. Let S = (3,∞), T = (0, 10], U = (−4, 5), V = [−2, 8], and S = {Sc, T, U, V }.
(a) Find

⋃
S.

(b) Find
⋂
S.

F.3.12. Problem. If S, T , and U are sets, then

(S ∩ T ) \ U = (S \ U) ∩ (T \ U) .

F.3.13. Problem. If S, T , and U are sets, then

S ∩ (T \ U) = (S ∩ T ) \ (S ∩ U) .

F.3.14. Problem. If S and T are sets, then T \ S and T ∩ S are disjoint and

T = (T \ S) ∪ (T ∩ S) .

F.3.15. Problem. If S and T are sets, then S ∩ T = S \ (S \ T ).

F.3.16. Definition. A family S of sets covers (or is a cover for, or is a covering for) a set
T if T ⊆

⋃
S.

F.3.17. Problem. Find a family of open intervals which covers the set N of natural numbers and
has the property that the sum of the lengths of the intervals is 1. Hint.

∑∞
k=1 2−k = 1.





APPENDIX G

ARITHMETIC

G.1. THE FIELD AXIOMS

The set R of real numbers is the cornerstone of calculus. It is remarkable that all of its
properties can be derived from a very short list of axioms. We will not travel the rather lengthy
road of deriving from these axioms all the properties (arithmetic of fractions, rules of exponents,
etc.) of R which we use in this text. This journey, although interesting enough in itself, requires a
substantial investment of time and effort. Instead we discuss briefly one standard set of axioms for
R and, with the aid of these axioms, give sample derivations of some familiar properties of R. In
the present chapter we consider the first four axioms, which govern the operations on R of addition
and multiplication. The name we give to the collective consequences of these axioms is arithmetic.

G.1.1. Definition. A binary operation ∗ on a set S is a rule that associates with each pair x
and y of elements in S one and only one element x ∗ y in S. (More precisely, ∗ is a function from
S × S into S. See appendices K and N.)

The first four axioms say that the set R of real numbers under the binary operations of addition
and multiplication (denoted, as usual, by + and ·) form a field. We will follow conventional practice
by allowing xy as a substitute notation for x · y.

G.1.2. Axiom (I). The operations + and · on R are associative (that is, x+ (y+ z) = (x+ y) + z
and x(yz) = (xy)z for all x, y, z ∈ R) and commutative (x + y = y + x and xy = yx for all x,
y ∈ R).

G.1.3. Axiom (II). There exist distinct additive and multiplicative identities (that is, there are
elements 0 and 1 in R with 1 6= 0 such that x+ 0 = x and x · 1 = x for all x ∈ R).

G.1.4. Axiom (III). Every element x in R has an additive inverse (that is, a number −x such
that x+ (−x) = 0); and every element x ∈ R different from 0 has a multiplicative inverse (that is,
a number x−1 such that xx−1 = 1).

G.1.5. Axiom (IV). Multiplication distributes over addition (that is, x(y + z) = xy + xz for all
x, y, z ∈ R).

G.1.6. Example. Multiplication is not a binary operation on the set R′ = {x ∈ R : x 6= −1}.

Proof. The numbers 2 and −1
2 belong to R′, but their product does not. �

G.1.7. Example. Subtraction is a binary operation on the set R of real numbers, but is neither
associative nor commutative.

Proof. Problem.

G.1.8. Problem. Let R+ be the set of all real numbers x such that x > 0. On R+ define

x ∗ y =
xy

x+ y
.

Determine whether ∗ is a binary operation on R+. Determine whether ∗ is associative and whether
it is commutative. Does R+ have an identity element with respect to ∗? (That is, is there a member
e of R+ such that x ∗ e = x and e ∗ x = x for all x in R+?)
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Subtraction and division are defined in terms of addition and multiplication by

x− y := x+ (−y)

and, for y 6= 0,
x

y
:= xy−1 .

We use the familiar rule for avoiding an excess of parentheses: multiplication takes precedence
over addition. Thus, for example, wx+ yz means (wx) + (yz).

G.1.9. Problem. The rule given in Axiom IV is the left distributive law. The right distributive
law, (x+ y)z = xz + yz, is also true. Use the axioms to prove it.

G.1.10. Exercise. Show that if x is a real number such that x+x = x, then x = 0. Hint. Simplify
both sides of (x+ x) + (−x) = x+ (x+ (−x)). (Solution Q.32.1.)

G.1.11. Problem. Show that the additive identity 0 annihilates everything in R under multipli-
cation. That is, show that 0 · x = 0 for every real number x. Hint. Consider (0 + 0)x. Use G.1.9
and G.1.10.

G.1.12. Exercise. Give a careful proof using only the axioms above that if w, x, y, and z are real
numbers, then

(w + x) + (y + z) = z + (x+ (y + w)) .

Hint. Since we are to make explicit use of the associative law, be careful not to write expressions
such as w + x+ (y + z). Another set of parentheses is needed to indicate the order of operations.
Both (w + x) + (y + z) and w + (x+ (y + z)), for example, do make sense. (Solution Q.32.2.)

G.1.13. Problem. Show that if the product xy of two numbers is zero, then either x = 0 or y = 0.
(Here the word “or” is used in its inclusive sense; both x and y may be 0. It is always used that
way in mathematics.) Hint. Convince yourself that, as a matter of logic, it is enough to show that
if y is not equal to 0 then x must be. Consider (xy)y−1 and use G.1.11.

G.2. UNIQUENESS OF IDENTITIES

Axiom II guarantees only the existence of additive and multiplicative identities 0 and 1. It is
natural to enquire about their uniqueness. Could there be two real numbers which act as additive
identities? That is, could we have numbers 0′ 6= 0 which satisfy

x+ 0 = x (G.1)

and
x+ 0′ = x (G.2)

for all x in R? The answer as you would guess is no: there is only one additive identity in R. The
proof is very short.

G.2.1. Proposition. The additive identity in R is unique.

Proof. Suppose that the real numbers 0 and 0′ satisfy (G.1) and (G.2) all real numbers x.
Then

0 = 0 + 0′

= 0′ + 0

= 0′.

The three equalities are justified, respectively, by (G.2), axiom I, and (G.1). �

G.2.2. Proposition. The multiplicative identity 1 on R is unique.

Proof. Problem.
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G.3. UNIQUENESS OF INVERSES

The question of uniqueness also arises for inverses; only their existence is guaranteed by ax-
iom III. Is it possible for a number to have more than one additive inverse? That is, if x is a real
number is it possible that there are two different numbers, say −x and x, such that the equations

x+ (−x) = 0 and x+ x = 0 (G.3)

both hold? The answer is no.

G.3.1. Proposition. Additive inverses in R are unique.

Proof. Assume that the equations (G.3) are true. We show that −x and x are the same
number.

x = x+ 0

= x+ (x+ (−x))

= (x+ x) + (−x)

= (x+ x) + (−x)

= 0 + (−x)

= (−x) + 0

= −x.

�

G.3.2. Problem. The proof of proposition (G.3.1) contains seven equal signs. Justify each one.

G.3.3. Problem. Prove that in R multiplicative inverses are unique.

G.3.4. Example. Knowing that identities and inverses are unique is helpful in deriving additional
properties of the real numbers. For example, the familiar fact that

−(−x) = x

follows immediately from the equation

(−x) + x = 0. (G.4)

What proposition G.3.1 tells us is that if a + b = 0 then b must be the additive inverse of a. So
from (G.4) we conclude that x must be the additive inverse of −x; in symbols, x = −(−x).

G.3.5. Problem. Show that if x is a nonzero real number, then(
x−1

)−1
= x .

G.4. ANOTHER CONSEQUENCE OF UNIQUENESS

We can use proposition G.3.1 to show that in R

− (x+ y) = −x− y. (G.5)

Before looking at the proof of this assertion it is well to note the two uses of the “-” sign on the right
side of (G.5). The first, attached to “x”, indicates the additive inverse of x; the second indicates
subtraction. Thus −x−y means (−x) + (−y). The idea behind the proof is to add the right side of
(G.5) to x + y. If the result is 0, then the uniqueness of additive inverses, proposition G.3.1, tells
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us that −x− y is the additive inverse of x+ y. And that is exactly what we get:

(x+ y) + (−x− y) = (x+ y) + ((−x) + (−y))

= (y + x) + ((−x) + (−y))

= y + (x+ ((−x) + (−y)))

= y + ((x+ (−x)) + (−y))

= y + (0 + (−y))

= (y + 0) + (−y)

= y + (−y)

= 0.

G.4.1. Problem. Justify each step in the proof of equation (G.5).

G.4.2. Problem. Prove that if x and y are nonzero real numbers, then

(xy)−1 = y−1x−1 .

G.4.3. Problem. Show that
(−1)x = −x

for every real number x. Hint. Use the uniqueness of additive inverses.

G.4.4. Problem. Show that
−(xy) = (−x)y = x(−y)

and that
(−x)(−y) = xy

for all x and y in R. Hint. For the first equality add (−x)y to xy.

G.4.5. Problem. Use the first four axioms for R to develop the rules for adding, multiplying,
subtracting, and dividing fractions. Show for example that

a

b
+
c

d
=
ad+ bc

bd

if b and d are not zero. (Remember that, by definition,
a

b
+
c

d
is ab−1 + cd−1 and

ad+ bc

bd
is

(ad+ bc)(bd)−1.)



APPENDIX H

ORDER PROPERTIES OF R

The second group of axioms are the order axioms. They concern a subset P of R (call this the
set of strictly positive numbers).

H.1.1. Axiom (V). The set P is closed under addition and multiplication. (That is, if x and y
belong to P, so do x+ y and xy.)

H.1.2. Axiom (VI). For each real number x exactly one of the following is true: x = 0, x ∈ P, or
−x ∈ P. This is the axiom of trichotomy.

Define the relation < on R by

x < y if and only if y − x ∈ P .
Also define > on R by

x > y if and only if y < x .

We write x ≤ y if x < y or x = y, and x ≥ y if y ≤ x.

H.1.3. Proposition. On R the relation < is transitive (that is, if x < y and y < z, then x < z).

Proof. If x < y and y < z, then y − x and z − y belong to P. Thus

z − x = z + (−x)

= (z + 0) + (−x)

= (z + (y + (−y))) + (−x)

= (z + ((−y) + y)) + (−x)

= ((z + (−y)) + y) + (−x)

= (z + (−y)) + (y + (−x))

= (z − y) + (y − x) ∈ P.
This shows that x < z. �

H.1.4. Problem. Justify each of the seven equal signs in the proof of proposition H.1.3.

H.1.5. Exercise. Show that a real number x belongs to the set P if and only if x > 0. (Solu-
tion Q.33.1.)

H.1.6. Proposition. If x > 0 and y < z in R, then xy < xz.

Proof. Exercise. Hint. Use problem G.4.4. (Solution Q.33.2.)

H.1.7. Proposition. If x, y, z ∈ R and y < z, then x+ y < x+ z.

Proof. Problem. Hint. Use equation (G.5).

H.1.8. Proposition. If w < x and y < z, then w + y < x+ z.

Proof. Problem.

H.1.9. Problem. Show that 1 > 0. Hint. Keep in mind that 1 and 0 are assumed to be distinct.
(Look at the axiom concerning additive and multiplicative identities.) If 1 does not belong to P,
what can you say about the number −1? What about (−1)(−1)? Use problem G.4.4.
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H.1.10. Proposition. If x > 0, then x−1 > 0.

Proof. Problem.

H.1.11. Proposition. If 0 < x < y, then 1/y < 1/x.

Proof. Problem.

H.1.12. Proposition. If 0 < w < x and 0 < y < z, then wy < xz.

Proof. Exercise. (Solution Q.33.3.)

H.1.13. Problem. Show that x < 0 if and only if −x > 0.

H.1.14. Problem. Show that if y < z and x < 0, then xz < xy.

H.1.15. Problem. Show that x < y if and only if −y < −x.

H.1.16. Problem. Suppose that x, y ≥ 0 and x2 = y2. Show that x = y.

H.1.17. Problem. Show in considerable detail how the preceding results can be used to solve the
inequality

5

x+ 3
< 2− 1

x− 1
.

H.1.18. Problem. Let C = {(a, b) : a, b ∈ R}. On C define two binary operations + and · by:

(a, b) + (c, d) = (a+ c, b+ d)

and
(a, b) · (c, d) = (ac− bd, ad+ bc) .

Show that C under these operations is a field. (That is, C satisfies axioms I–IV.) This is the field
of complex numbers.

Determine whether it is possible to make C into an ordered field. (That is, determine whether
it is possible to choose a subset P of C which satisfies axioms V and VI.)

The axioms presented thus far define an ordered field. To obtain the particular ordered field
R of real numbers we require one more axiom. We assume that R is order complete; that is, R
satisfies the least upper bound axiom. This axiom will be stated (and discussed in some detail) in
chapter J (in particular, see J.3.1).

There is a bit more to the axiomatization of R than we have indicated in the preceding discus-
sion. For one thing, how do we know that the axioms are consistent? That is, how do we know
that they will not yield a contradiction? For this purpose one constructs a model for R, that is, a
concrete mathematical object which satisfies all the axioms for R. One standard procedure is to
define the positive integers in terms of sets: 0 is the empty set ∅, the number 1 is the set whose
only element is 0, the number 2 is the set whose only element is 1, and so on. Using the positive
integers we construct the set Z of all integers . . . ,−2,−1, 0, 1, 2, . . . . From these we construct the
set Q of rational numbers (that is, numbers of the form p/q where p and q are integers and q 6= 0).
Finally the reals are constructed from the rationals.

Another matter that requires attention is the use of the definite article in the expression “the
real numbers”. This makes sense only if the axioms are shown to be categorical; that is, if there is
“essentially” only one model for the axioms. This turns out to be correct about the axioms for R
given an appropriate technical meaning of “essentially”—but we will not pursue this matter here.
More about both the construction of the reals and their uniqueness can be found in [10].



APPENDIX I

NATURAL NUMBERS AND MATHEMATICAL INDUCTION

The principle of mathematical induction is predicated on a knowledge of the natural numbers,
which we introduce in this section. In what follows it is helpful to keep in mind that the axiomatic
development of the real numbers sketched in the preceding chapter says nothing about the natural
numbers; in fact, it provides explicit names for only three real numbers: 0, 1, and −1.

I.1.1. Definition. A collection J of real numbers is inductive if

(1) 1 ∈ J , and
(2) x+ 1 ∈ J whenever x ∈ J .

I.1.2. Example. The set R is itself inductive; so are the intervals (0,∞), [−1,∞), and [1,∞).

I.1.3. Proposition. Let A be a family of inductive subsets of R. Then ∩A is inductive.

Proof. Exercise. (Solution Q.34.1.)

I.1.4. Definition. Let J be the family of all inductive subsets of R. Define

N := ∩J .
We call N the set of natural numbers.

Notice that according to proposition I.1.3 the set N is inductive. It is the smallest inductive set,
in the sense that it is contained in every inductive set. The elements of N have standard names.
Define 2 := 1 + 1. Since 1 belongs to N and N is inductive, 2 belongs to N. Define 3 := 2 + 1. Since
2 belongs to N, so does 3. Define 4 := 3 + 1; etc.

I.1.5. Definition. The set of integers, denoted by Z, is defined to be

−N ∪ {0} ∪ N
where −N := {−n : n ∈ N}.

The next proposition is practically obvious; but as it is an essential ingredient of several subse-
quent arguments (e.g. problem I.1.16), we state it formally.

I.1.6. Proposition. If n ∈ N, then n ≥ 1.

Proof. Since the set [1,∞) is inductive, it must contain N. �

The observation made previously that N is the smallest inductive set clearly implies that no
proper subset of N can be inductive. This elementary fact has a rather fancy name: it is the
principle of mathematical induction.

I.1.7. Theorem (Principle of Mathematical Induction). Every inductive subset of N equals N.

By spelling out the definition of “inductive set” in the preceding theorem we obtain a longer,
perhaps more familiar, statement of the principle of mathematical induction.

I.1.8. Corollary. If S is a subset of N which satisfies

(1) 1 ∈ S, and
(2) n+ 1 ∈ S whenever n ∈ S,

then S = N.
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Perhaps even more familiar is the version of the preceding which refers to “a proposition (or
assertion, or statement) concerning the natural number n”.

I.1.9. Corollary. Let P (n) be a proposition concerning the natural number n. If P (1) is true, and
if P (n+ 1) is true whenever P (n) is true, then P (n) is true for all n ∈ N.

Proof. In corollary I.1.8 let S = {n ∈ N : P (n) is true}. Then 1 ∈ S and n + 1 belongs to S
whenever n does. Thus S = N. That is, P (n) is true for all n ∈ N. �

I.1.10. Exercise. Use mathematical induction to prove the following assertion: The sum of the
first n natural numbers is 1

2n(n + 1). Hint. Recall that if p and q are integers with p ≤ q and if
cp, cp+1, . . . , cq are real numbers, then the sum cp + cp+1 + · · · + cq may be denoted by

∑q
k=p ck.

Using this summation notation, we may write the desired conclusion as
∑n

k=1 k = 1
2n(n + 1).)

(Solution Q.34.2.)

It is essentially obvious that there is nothing crucial about starting inductions with n = 1. Let
m be any integer and P (n) be a proposition concerning integers n ≥ m. If we prove that P (m) is
true and that P (n+1) is true whenever P (n) is true and n ≥ m, then we may conclude that P (n) is
true for all n ≥ m. [Proof: Apply corollary I.1.9 to the proposition Q where Q(n) = P (n+m−1).]

I.1.11. Problem. Let a, b ∈ R and m ∈ N. Then

am − bm = (a− b)
m−1∑
k=0

akbm−k−1 .

Hint. Multiply out the right hand side. This is not an induction problem.

I.1.12. Problem. If r ∈ R, r 6= 1, and n ∈ N, then
n∑
k=0

rk =
1− rn+1

1− r
.

Hint. Use I.1.11

I.1.13. Definition. Let m, n ∈ N. We say that m is a factor of n if n/m ∈ N. Notice that 1
and n are always factors of n; these are the trivial factors of n. The number n is composite
if n > 1 and if it has at least one nontrivial factor. (For example, 20 has several nontrivial factors:
2, 4, 5, and 10. Therefore it is composite.) If n > 1 and it is not composite, it is prime. (For
example, 7 is prime; its only factors are 1 and 7.)

I.1.14. Problem. Prove that if n ∈ N and 2n − 1 is prime, then so is n. (Hint. Prove the
contrapositive. Use problem I.1.11.) Illustrate your technique by finding a nontrivial factor of
2403 − 1.

I.1.15. Problem. Show that
∑n

k=1 k
2 = 1

6n(n+ 1)(2n+ 1) for every n ∈ N.

I.1.16. Problem. Use only the definition of N and the results given in this section to prove (a)
and (b).

(a) If m,n ∈ N and m < n, then n −m ∈ N. Hint. One proof of this involves an induction
within an induction. Restate the assertion to be proved as follows. For every m ∈ N it is
true that:

if n ∈ N and n > m, then n−m ∈ N. (I.1)

Prove this assertion by induction on m. That is, show that (I.1) holds for m = 1, and
then show that it holds for m = k + 1 provided that it holds for m = k. To show that
(I.1) holds for m = 1, prove that the set

J := {1} ∪ {n ∈ N : n− 1 ∈ N}
is an inductive set.
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(b) Let n ∈ N. There does not exist a natural number k such that n < k < n+1. Hint. Argue
by contradiction. Use part (a).

I.1.17. Problem (The binomial theorem.). If x, y ∈ R and n ∈ N, then

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk .

Hint. Use induction. Recall that 0! = 1, that n! = n(n− 1)(n− 2) . . . 1 for n ∈ N, and that(
n

k

)
=

n!

k!(n− k)!

for 0 ≤ k ≤ n.

The final result of this section is the principle of well-ordering. It asserts that every nonempty
subset of the natural numbers has a smallest element.

I.1.18. Proposition. If ∅ 6= K ⊆ N, then there exists a ∈ K such that a ≤ k for every k ∈ K.

Proof. Exercise. Hint. Assume that K has no smallest member. Show that this implies
K = ∅ by proving that the set

J ≡ {n ∈ N : n < k for every k ∈ K}
is inductive. In the inductive step problem I.1.16(b) may prove useful. (Solution Q.34.3.)

I.1.19. Problem. (This slight modification of the principle of mathematical induction is occasion-
ally useful.) Let P (n) be a proposition concerning the natural number n. If P (n) is true whenever
P (k) is true for all k ∈ N such that k < n, then P (n) is true for all n. Hint. Use the well-ordering
principle.





APPENDIX J

LEAST UPPER BOUNDS AND GREATEST LOWER BOUNDS

The last axiom for the set R of real numbers is the least upper bound axiom. Before stating it
we make some definitions.

J.1. UPPER AND LOWER BOUNDS

J.1.1. Definition. A number u is an upper bound for a set A of real numbers if u ≥ a for every
a ∈ A. If the set A has at least one upper bound, it is said to be bounded above. Similarly,
v is a lower bound for A if v ≤ a for every a ∈ A, and a set with at least one lower bound
is bounded below. The set A is bounded if it is bounded both above and below. (Perhaps it
should be emphasized that when we say, for example, that A has an upper bound we mean only
that there is a real number u which is greater than or equal to each member of A; we do not mean
that u necessarily belongs to A—although of course it may.)

J.1.2. Example. The set A = {x ∈ R : |x− 2| < 5} is bounded.

Proof. Problem.

J.1.3. Example. The open interval (−1, 1) has infinitely many upper bounds. In fact, any set
which is bounded above has infinitely many upper bounds.

Proof. Problem.

J.1.4. Example. The set A = {x ∈ R : x3 − x ≤ 0} is not bounded.

Proof. Problem.

J.2. LEAST UPPER AND GREATEST LOWER BOUNDS

J.2.1. Definition. A number ` is the supremum(or least upper bound) of a set A if:

(1) ` is an upper bound for A, and
(2) ` ≤ u whenever u is an upper bound for A.

If ` is the least upper bound of A, we write ` = supA. Similarly, a lower bound g of a set is the
infimum(or greatest lower bound) of a set A if it is greater than or equal to every lower bound
of the set. If g is the greatest lower bound of A, we write g = inf A.

If A is not bounded above (and consequently, supA does not exist), then it is common practice
to write supA =∞. Similarly, if A is not bounded below, we write inf A = −∞.

CAUTION. The expression “supA =∞” does not mean that supA exists and equals some object
called ∞; it does mean that A is not bounded above.

It is clear that least upper bounds and greatest lower bounds, when they exist, are unique. If,
for example, ` and m are both least upper bounds for a set A, then ` ≤ m and m ≤ `; so ` = m.

J.2.2. Definition. Let A ⊆ R. If there exists a number M belonging to A such that M ≥ a for
every a ∈ A), then this element is the largest element (or greatest element, or maximum)
of A. We denote this element (when it exists) by maxA.

Similarly, if there exists a number m belonging to A such that m ≤ a for every a ∈ A), then
this element is the smallest element (or least element, or minimum) of A. We denote this
element (when it exists) by minA.
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J.2.3. Example. Although the largest element of a set (when it exists) is always a least upper
bound, the converse is not true. It is possible for a set to have a least upper bound but no maximum.
The interval (−2, 3) has a least upper bound (namely, 3), but it has no largest element.

J.2.4. Example. If A = {x ∈ R : |x| < 4}, then inf A = −4 and supA = 4. But A has no
maximum or minimum. If B = {|x| : x < 4}, then inf B = 0 but supB does not exist. (It is correct
to write supB =∞.) Furthermore, B has a smallest element, minB = 0, but no largest element.

Incidentally, the words “maximum”, “supremum”, “minimum”, and “infimum” are all singular.
The preferred plurals are, respectively, “maxima”, “suprema”, “minima”, and “infima”.

J.2.5. Problem. For each of the following sets find the least upper bound and the greatest lower
bound (if they exist).

(a) A = {x ∈ R : |x− 3| < 5}.
(b) B = {|x− 3| : x < 5}.
(c) C = {|x− 3| : x > 5}.

J.2.6. Problem. Show that the set P of positive real numbers has an infimum but no smallest
element.

J.2.7. Exercise. Let f(x) = x2 − 4x + 3 for every x ∈ R, let A = {x : f(x) < 3}, and let
B = {f(x) : x < 3}.

(a) Find supA and inf A (if they exist).
(b) Find supB and inf B (if they exist).

(Solution Q.35.1.)

J.2.8. Example. Let A =

{
x ∈ R :

5

x− 3
− 3 ≥ 0

}
. Then supA = maxA = 14/3, inf A = 3, and

minA does not exist.

Proof. Problem.

J.2.9. Example. Let f(x) = −1
2 + sinx for x ∈ R.

(a) If A = {f(x) : x ∈ R}, then inf A = −3
2 and supA = 1

2 .

(b) If B = {|f(x)| : x ∈ R}, then inf B = 0 and supB = 3
2 .

Proof. Problem.

J.2.10. Example. Let f(x) = x20 − 2 for 0 < x < 1.

(a) If A = {f(x) : 0 < x < 1}, then inf A = −2 and supA = −1.
(b) If B = {|f(x)| : 0 < x < 1}, then inf B = 1 and supB = 2.

Proof. Problem.

J.2.11. Example. Let f(x) = x20 − 1
4 for 0 ≤ x ≤ 1.

(a) If A = {f(x) : 0 ≤ x ≤ 1}, then inf A = −1
4 and supA = 3

4 .

(b) If B = {|f(x)| : 0 ≤ x ≤ 1}, then inf B = 0 and supB = 3
4 .

Proof. Problem.

J.2.12. Problem. Let f(x) = −4x2 − 4x+ 3 for every x ∈ R, let A = {x ∈ R : f(x) > 0}, and let
B = {f(x) : − 2 < x < 2}.

(a) Find supA and inf A (if they exist).
(b) Find supB and inf B (if they exist).

J.2.13. Problem. For c > 0 define a function f on [0,∞) by f(x) = x e−cx. Find sup{|f(x)| : x ≥ 0}.

J.2.14. Problem. For each n = 1, 2, 3, . . . , define a function fn on R by fn(x) =
x

1 + nx2
. For

each n ∈ N let An = {fn(x) : x ∈ R}. For each n find inf An and supAn.
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J.3. THE LEAST UPPER BOUND AXIOM FOR R

We now state our last assumption concerning the set R of real numbers. This is the least upper
bound (or order completeness) axiom.

J.3.1. Axiom (VII). Every nonempty set of real numbers which is bounded above has a least upper
bound.

J.3.2. Notation. If A and B are subsets of R and α ∈ R, then

A+B := {a+ b : a ∈ A and b ∈ B},
AB := {ab : a ∈ A and b ∈ B},
αB := {α}B = {αb : b ∈ B}, and

−A := (−1)A = {−a : a ∈ A}.

J.3.3. Proposition. If A is a nonempty subset of R which is bounded below, then A has a greatest
lower bound. In fact,

inf A = − sup(−A) .

Proof. Let b be a lower bound for A. Then since b ≤ a for every a ∈ A, we see that −b ≥ −a
for every a ∈ A. This says that −b is an upper bound for the set −A. By the least upper bound
axiom (J.3.1) the set −A has a least upper bound, say `. We show that −` is the greatest lower
bound for A. Certainly it is a lower bound [` ≥ −a for all a ∈ A implies −` ≤ a for all a ∈ A].

Again letting b be an arbitrary lower bound for A, we see, as above, that −b is an upper bound
for −A. Now ` ≤ −b, since ` is the least upper bound for −A. Thus −` ≥ b. We have shown

inf A = −` = − sup(−A) .

�

J.3.4. Corollary. If A is a nonempty set of real numbers which is bounded above, then

supA = − inf(−A) .

Proof. If A is bounded above, then −A is bounded below. By the preceding proposition
inf(−A) = − supA. �

J.3.5. Proposition. Suppose ∅ 6= A ⊆ B ⊆ R.

(a) If B is bounded above, so is A and supA ≤ supB.
(b) If B is bounded below, so is A and inf A ≥ inf B.

Proof. Problem.

J.3.6. Proposition. If A and B are nonempty subsets of R which are bounded above, then A+B
is bounded above and

sup(A+B) = supA+ supB .

Proof. Problem. Hint. It is easy to show that if ` is the least upper bound for A and m is
the least upper bound for B, then `+m is an upper bound for A+B.

One way to show that `+m is the least upper bound for A+B, is to argue by contradiction.
Suppose there exists an upper bound u for A+B which is strictly less than `+m. Find numbers
a in A and b in B which are close enough to ` and m, respectively, so that their sum exceeds u.

An even nicer proof results from taking u to be an arbitrary upper bound for A+B and proving
directly that ` + m ≤ u. Start by observing that u − b is an upper bound for A for every b ∈ B,
and consequently l ≤ u− b for every b ∈ B.

J.3.7. Proposition. If A and B are nonempty subsets of [0,∞) which are bounded above, then
the set AB is bounded above and

sup(AB) = (supA)(supB) .
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Proof. Exercise. Hint. The result is trivial if A = {0} or if B = {0}. So suppose that both A
and B contain elements strictly greater than 0, in which case ` := supA > 0 and m := supB > 0.
Show that the set AB is bounded above. (If x ∈ AB, there exist a ∈ A and b ∈ B such that
x = ab.) Then AB has a least upper bound, say c. To show that `m ≤ c, assume to the contrary
that c < `m. Let ε = `m − c. Since ` is the least upper bound for A, we may choose a ∈ A so
that a > ` − ε(2m)−1. Having chosen this a, explain how to choose b ∈ B so that ab > `m − ε.
(Solution Q.35.2.)

J.3.8. Proposition. If B is a nonempty subset of [0,∞) which is bounded above and if α ≥ 0,
then αB is bounded above and

sup(αB) = α supB .

Proof. Problem. Hint. This is a very easy consequence of one of the previous propositions. �

J.4. THE ARCHIMEDEAN PROPERTY

One interesting property that distinguishes the set of real numbers from many other ordered
fields is that for any real number a (no matter how large) and any positive number ε (no matter
how small) it is possible by adding together enough copies of ε to obtain a sum greater than a.
This is the Archimedean property of the real number system. It is an easy consequence of the order
completeness of the reals; that is, it follows from the least upper bound axiom(J.3.1).

J.4.1. Proposition (The Archimedean Property of R). If a ∈ R and ε > 0, then there exists n ∈ N
such that nε > a.

Proof. Problem. Hint. Argue by contradiction. Assume that the setA := {nε : n belongs to N}
is bounded above.

It is worth noting that the preceding proposition shows that the set N of natural numbers is
not bounded above. [Take ε = 1.]

Another useful consequence of the least upper bound axiom is the existence of nth roots of
numbers a ≥ 0. Below we establish the existence of square roots; but the proof we give can be
modified without great difficulty to show that every number a ≥ 0 has an nth root (see project J.4.5).

J.4.2. Proposition. Let a ≥ 0. There exists a unique number x ≥ 0 such that x2 = a.

Proof. Exercise. Hint. Let A = {t > 0: t2 < a}. Show that A is not empty and that it is
bounded above. Let x = supA. Show that assuming x2 < a leads to a contradiction. [Choose ε in
(0, 1) so that ε < 3−1x−2(a− x2) and prove that x(1 + ε) belongs to A.] Also show that assuming
x2 > a produces a contradiction. [Choose ε in (0, 1) so that ε < (3a)−1(x2− a), and prove that the
set A ∩

(
x(1 + ε)−1, x

)
is not empty. What can be said about x(1 + ε)−1?] (Solution Q.35.3.)

J.4.3. Notation. The unique number x guaranteed by the preceding proposition is denoted by√
a or by a

1
2 . Similarly, nth roots are denoted by either n

√
a or a

1
n .

J.4.4. Problem. Prove the following properties of the square root function.

(a) If x, y ≥ 0, then
√
xy =

√
x
√
y.

(b) If 0 < x < y, then
√
x <
√
y. Hint. Consider (

√
y)2 − (

√
x)2.

(c) If 0 < x < 1, then x2 < x and x <
√
x.

(d) If x > 1, then x < x2 and
√
x < x.

J.4.5. Problem. Restate the assertions of the preceding problem for nth roots (and nth powers).
Explain what alterations in the proofs must be made to accommodate this change.

J.4.6. Definition. Let x ∈ R. The absolute value of x, denoted by |x|, is defined to be
√
x2.

In light of the preceding proposition it is clear that if x ≥ 0, then |x| = x; and if x < 0, then
|x| = −x. From this observation it is easy to deduce two standard procedures for establishing an
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inequality of the form |x| < c (where c > 0). One is to show that x2 < c2. The other is to show
that −c < x < c (or what is the same thing: that both x < c and −x < c hold). Both methods
are used extensively throughout the text, especially in chapter 3 when we discuss continuity of real
valued functions.

J.4.7. Problem. Prove that if a, b ∈ R, then

(a) |ab| = |a| |b|;
(b) |a+ b| ≤ |a|+ |b|; and
(c)

∣∣|a| − |b|∣∣ ≤ |a− b|.
J.4.8. Problem. Prove that if a, b ∈ R, then |ab| ≤ 1

2(a2 + b2). Hint. Consider the square of a− b
and of a+ b.





APPENDIX K

PRODUCTS, RELATIONS, AND FUNCTIONS

K.1. CARTESIAN PRODUCTS

Ordered pairs are familiar objects. They are used among other things for coordinates of points
in the plane. In the first sentence of chapter B it was promised that all subsequent mathematical
objects would be defined in terms of sets. So here just for the record is a formal definition of
“ordered pair”.

K.1.1. Definition. Let x and y be elements of arbitrary sets. Then the ordered pair (x, y) is
defined to be {{x, y}, {x}}. This definition reflects our intuitive attitude: an ordered pair is a set
{x, y} with one of the elements, here x, designated as being “first”. Thus we specify two things:
{x, y} and {x}.

Ordered pairs have only one interesting property: two of them are equal if and only if both
their first coordinates and their second coordinates are equal. As you will discover by proving the
next proposition, this fact follows easily from the definition.

K.1.2. Proposition. Let x, y, u, and v be elements of arbitrary sets. Then (x, y) = (u, v) if and
only if x = u and y = v.

Proof. Exercise. Hint. Do not assume that the set {x, y} has two elements. If x = y, then
{x, y} has only one element. (Solution Q.36.1.)

K.1.3. Problem. Asked to define an “ordered triple”, one might be tempted to try a definition
analogous to the definition of ordered pairs: let (a, b, c) be {{a, b, c}, {a, b}, {a}}. This appears to
specify the entries, to pick out a “first” element, and to identify the “first two” elements. Explain
why this won’t work. (See K.1.8 for a definition that does work.)

K.1.4. Definition. Let S and T be sets. The Cartesian product of S and T , denoted by S×T ,
is defined to be {(x, y) : x ∈ S and y ∈ T}. The set S × S is often denoted by S2.

K.1.5. Example. Let S = {1, x} and T = {x, y, z}. Then

S × T = {(1, x), (1, y), (1, z), (x, x), (x, y), (x, z)} .
K.1.6. Problem. Let S = {0, 1, 2} and T = {1, 2, 3}. List all members of (T × S) \ (S × T ).

K.1.7. Problem. Let S, T , U , and V be sets. Then

(a) (S × T ) ∩ (U × V ) = (S ∩ U)× (T ∩ V );
(b) (S × T ) ∪ (U × V ) ⊆ (S ∪ U)× (T ∪ V ); and
(c) equality need not hold in (b).

The proofs of (a) and (b) in the preceding problem are not particularly difficult. Nonetheless,
before one can write down a proof one must have a conjecture as to what is true. How could we
have guessed initially that equality holds in (a) but not in (b)? The answer is, as it frequently
is in mathematics, by looking at pictures. Try the following: Make a sketch where S and U are
overlapping intervals on the x-axis and T and V are overlapping intervals on the y-axis. Then S×T
and U × V are overlapping rectangles in the plane. Are not (a) and (b) almost obvious from your
sketch?

We will also have occasion to use ordered n-tuples and n-fold Cartesian products for n greater
than 2.
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K.1.8. Definition. Let n ≥ 3. We define ordered n-tuples inductively. Suppose ordered
(n− 1)-tuples

(
x1, . . . , xn−1

)
have been defined. Let

(
x1, . . . , xn

)
:=
((
x1, . . . , xn−1

)
, xn
)
. An easy

inductive proof shows that
(
x1, . . . , xn

)
=
(
y1, . . . , yn

)
if and only if xk = yk for k = 1, . . . , n.

K.1.9. Definition. If S1, . . . , Sn are sets, we define the Cartesian product S1 × · · · × Sn to be
the set of all ordered n-tuples

(
x1, . . . , xn) where xk ∈ Sk for 1 ≤ k ≤ n. We write Sn for S×· · ·×S

(n factors).

K.1.10. Example. The n-fold Cartesian product of the set R of real numbers is the set Rn of all
n-tuples of real numbers and is often called (Euclidean) n-space.

K.2. RELATIONS

Calculus is primarily about functions. We differentiate functions, we integrate them, we rep-
resent them as infinite series. A function is a special kind of relation. So it is convenient before
introducing functions to make a few observations concerning the more general concept—relations.

K.2.1. Definition. A relation from a set S to a set T is a subset of the Cartesian product S×T .
A relation from the set S to itself is often called a relation on S or a relation among members of S.

There is a notational oddity concerning relations. To indicate that an ordered pair (a, b) belongs
to a relation R ⊆ S × T , we almost always write something like aRb rather than (a, b) ∈ R, which
we would expect from the definition. For example, the relation “less than” is a relation on the
real numbers. (We discussed this relation in appendix H.) Technically then, since < is a subset
of R × R, we could (correctly) write expressions such as (3, 7) ∈<. Of course we don’t. We write
3 < 7 instead. And we say, “3 is less than 7”, not “the pair (3, 7) belongs to the relation less than”.
This is simply a matter of convention; it has no mathematical or logical content.

K.3. FUNCTIONS

Functions are familiar from beginning calculus. Informally, a function consists of a pair of sets
and a “rule” which associates with each member of the first set (the domain) one and only one
member of the second (the codomain). While this informal “definition” is certainly adequate for
most purposes and seldom leads to any misunderstanding, it is nevertheless sometimes useful to
have a more precise formulation. This is accomplished by defining a function to be a special type
of relation between two sets.

K.3.1. Definition. A function f is an ordered triple (S, T,G) where S and T are sets and G is
a subset of S × T satisfying:

(1) for each s ∈ S there is a t ∈ T such that (s, t) ∈ G, and
(2) if (s, t1) and (s, t2) belong to G, then t1 = t2.

In this situation we say that f is a function from S into T (or that f maps S into T ) and write
f : S → T . The set S is the domain (or the input space) of f . The set T is the codomain
(or target space, or the output space) of f . And the relation G is the graph of f . In order
to avoid explicit reference to the graph G it is usual to replace the expression “(x, y) ∈ G ” by
“y = f(x)”; the element f(x) is the image of x under f . In this text (but not everywhere!) the
words “transformation”, “map”, and “mapping” are synonymous with “function”. The domain of
f is denoted by dom f .

K.3.2. Example. There are many ways of specifying a function. Statements (1)–(4) below define
exactly the same function. We will use these (and other similar) notations interchangeably.

(1) For each real number x we let f(x) = x2.
(2) Let f = (S, T,G) where S = T = R and G = {(x, x2) : x ∈ R}.
(3) Let f : R→ R be defined by f(x) = x2.
(4) Consider the function f : R→ R : x 7→ x2.
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K.3.3. Notation. If S and T are sets we denote by F(S, T ) the family of all functions from S
into T .

K.3.4. Convention. A real valued function is a function whose codomain lies in R. A function
of a real variable is a function whose domain is contained in R. Some real valued functions of a
real variable may be specified simply by writing down a formula. When the domain and codomain
are not specified, the understanding is that the domain of the function is the largest set of real
numbers for which the formula makes sense and the codomain is taken to be R.

In the case of real valued functions on a set S, we frequently write F(S) instead of F(S,R).

K.3.5. Example. Let f(x) = (x2 + x)−1. Since this formula is meaningful for all real numbers
except −1 and 0, we conclude that the domain of f is R \ {−1, 0}.

K.3.6. Example. Let f(x) = (x2 + x)−1 for x > 0. Here the domain of f is specified: it is the
interval (0,∞).

K.3.7. Exercise. Let f(x) = (1− 2(1 + (1− x)−1)−1)−1.

(a) Find f(12).
(b) Find the domain of f .

(Solution Q.36.2.)

K.3.8. Exercise. Let f(x) = (−x2 − 4x− 1)−1/2. Find the domain of f . (Solution Q.36.3.)

K.3.9. Problem. Let f(x) = (1− (2 + (3− (1 + x)−1)−1)−1)−1

(a) Find f(12).
(b) Find the domain of f .

K.3.10. Problem. Let f(x) = (−x2 − 7x− 10)−1/2.

(a) Find f(−3).
(b) Find the domain of f .

K.3.11. Problem. Let f(x) =

√
x2 − 4

5−
√

36− x2
. Find the domain of f . Express your answer as a

union of intervals.

K.3.12. Problem. Explain carefully why two functions f and g are equal if and only if their
domains and codomains are equal and f(x) = g(x) for every x in their common domain.





APPENDIX L

PROPERTIES OF FUNCTIONS

L.1. IMAGES AND INVERSE IMAGES

L.1.1. Definition. If f : S → T and A ⊆ S, then f→(A), the image of A under f , is {f(x) : x ∈ A}.
It is common practice to write f(A) for f→(A). The set f→(S) is the range (or image) of f ;
usually we write ran f for f→(S).

L.1.2. Exercise. Let

f(x) =


−1, for x < −2

7− x2, for −2 ≤ x < 1
1

x
, for x ≥ 1

and A = (−4, 4). Find f→(A). (Solution Q.37.1.)

L.1.3. Exercise. Let f(x) = 3x4 + 4x3 − 36x2 + 1. Find ran f . ( Solution Q.37.2.)

L.1.4. Definition. Let f : S → T and B ⊆ T . Then f←(B), the inverse image of B under f ,
is {x ∈ S : f(x) ∈ B}. In many texts f←(B) is denoted by f−1(B). This may cause confusion by
suggesting that functions always have inverses (see section M.2 of chapter M).

L.1.5. Exercise. Let f(x) = arctanx and B = (π4 , 2). Find f←(B). (Solution Q.37.3.)

L.1.6. Exercise. Let f(x) = −
√

9− x2 and B = (1, 3). Find f←(B). (Solution Q.37.4.)

L.1.7. Problem. Let

f(x) =


−x− 4, for x ≤ 0

x2 + 3, for 0 < x ≤ 2

(x− 1)−1, for x > 2

and A = (−3, 4). Find f→(A).

L.1.8. Problem. Let f(x) = 4− x2 and B = (1, 3]. Find f←(B).

L.1.9. Problem. Let f(x) =
x

1− x
.

(a) Find f←([0, a]) for a > 0.
(b) Find f←([−3

2 ,−
1
2 ]).

L.1.10. Problem. Let f(x) = −x2 + 4 arctanx. Find ran f .

L.1.11. Problem. Let

f(x) =

{
x+ 1, for x < 1

8 + 2x− x2, for x ≥ 1.

Let A = (−2, 3) and B = [0, 1]. Find f→(A) and f←(B).
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L.2. COMPOSITION OF FUNCTIONS

Let f : S → T and g : T → U . The composite of g and f , denoted by g ◦ f , is the function
taking S to U defined by

(g ◦ f)(x) = g(f(x))

for all x in S. The operation ◦ is composition. We again make a special convention for real valued
functions of a real variable: The domain of g ◦ f is the set of all x in R for which the expression
g(f(x)) makes sense.

L.2.1. Example. Let f(x) = (x− 1)−1 and g(x) =
√
x. Then the domain of g ◦ f is the interval

(1,∞), and for all x in that interval

(g ◦ f)(x) = g(f(x)) =
1√
x− 1

.

Proof. The square root of x− 1 exists only when x ≥ 1; and since we take its reciprocal, we
exclude x = 1. Thus dom(g ◦ f) = (1,∞). �

L.2.2. Exercise. Let

f(x) =


0, for x < 0

3x, for 0 ≤ x ≤ 2

2, for x > 2

and

g(x) =

{
x2, for 1 < x < 3

−1, otherwise.

Sketch the graph of g ◦ f . (Solution Q.37.5.)

L.2.3. Proposition. Composition of functions is associative but not necessarily commutative.

Proof. Exercise. Hint. Let f : S → T , g : T → U , and h : U → V . Show that h ◦ (g ◦ f) =
(h ◦ g) ◦ f . Give an example to show that f ◦ g and g ◦ f may fail to be equal. (Solution Q.37.6.)

L.2.4. Problem. Let f(x) = x2 + 2x−1, g(x) = 2(2x+ 3)−1, and h(x) =
√

2x. Find (h ◦ g ◦ f)(4).

L.2.5. Problem. If f : S → T and g : T → U , then

(a) (g ◦ f)→(A) = g→(f→(A)) for every A ⊆ S.
(b) (g ◦ f)←(B) = f←(g←(B)) for every B ⊆ U .

L.3. The IDENTITY FUNCTION

The family of all functions mapping a set S into a set T is denoted by F(S, T ). One member
of F(S, S) is particularly noteworthy, the identity function on S. It is defined by

IS : S → S : x 7→ x.

When the set S is understood from context, we write I for IS .
The identity function is characterized algebraically by the conditions:

if f : R→ S, then IS ◦ f = f

and
if g : S → T , then g ◦ IS = g.

L.3.1. Definition. More general than the identity function are the inclusion maps. If A ⊆ S, then
the inclusion map taking A into S is defined by

ιA,S : A→ S : x 7→ x.

When no confusion is likely to result, we abbreviate ιA,S to ι. Notice that ιS,S is just the identity
map IS .
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L.4. DIAGRAMS

It is frequently useful to think of functions as arrows in diagrams. For example, the situation
f : R→ S, h : R→ T , j : T → U , g : S → U may be represented by the following diagram.

T U
j

//

R

T

h

��

R S
f // S

U

g

��
T

S??

The diagram is said to commute if j ◦ h = g ◦ f .
Diagrams need not be rectangular. For instance,

S Tg
//

R

S

f

��

R

T

k

��

is a commutative diagram if k = g ◦ f .

L.4.1. Example. Here is a diagrammatic way of stating the associative law for composition of
functions. If the triangles in the diagram

S T
k

//

R

S

f

��

R U
j // U

T

h

��
S

U

g

??

commute, then so does the rectangle.

L.5. RESTRICTIONS AND EXTENSIONS

If f : S → T and A ⊆ S, then the restriction of f to A, denoted by f
∣∣
A

, is the function
f ◦ ιA,S . That is, it is the mapping from A into T whose value at each x in A is f(x).

A T
f
∣∣
A

//

S

A

OO

ι
AS

S

T

f

��

Suppose that g : A→ T and A ⊆ S. A function f : S → T is an extension of g to S if f
∣∣
A

= g,
that is, if the diagram

A Tg
//

S

A

OO

ι
AS

S

T

f

��

commutes.





APPENDIX M

FUNCTIONS WHICH HAVE INVERSES

M.1. INJECTIONS, SURJECTIONS, AND BIJECTIONS

A function f is injective (or one-to-one) if x = y whenever f(x) = f(y). That is, f is
injective if no two distinct elements in its domain have the same image. For a real valued function
of a real variable this condition may be interpreted graphically: A function is one-to-one if and
only if each horizontal line intersects the graph of the function at most once. An injective map is
called an injection.

M.1.1. Example. The sine function is not injective (since, for example, sin 0 = sinπ).

M.1.2. Example. Let f(x) =
x+ 2

3x− 5
. The function f is injective.

Proof. Exercise. (See Q.38.1.)

M.1.3. Exercise. Find an injective mapping from {x ∈ Q : x > 0} into N. (Solution Q.38.2.)

M.1.4. Problem. Let f(x) =
2x− 5

3x+ 4
. Show that f is injective.

M.1.5. Problem. Let f(x) = 2x2 − x− 15. Show that f is not injective.

M.1.6. Problem. Let f(x) = x3 − 2x2 + x− 3. Is f injective?

M.1.7. Problem. Let f(x) = x3 − x2 + x− 3. Is f injective?

M.1.8. Definition. A function is surjective (or onto) if its range is equal to its codomain.

M.1.9. Example. Define f : R → R by f(x) = x2 and g : R → [0,∞) by g(x) = x2. Then the
function g is surjective while f is not (even though the two functions have the same graph!).

M.1.10. Exercise. Find a surjection (that is, a surjective map) from [0, 1] onto [0,∞). (Solu-
tion Q.38.3.)

M.1.11. Definition. A function is bijective if it is both injective and surjective. A bijective
map is called a bijection or a one-to-one correspondence.

M.1.12. Exercise. Give an explicit formula for a bijection between Z and N. (Solution Q.38.4.)

M.1.13. Exercise. Give an explicit formula for a bijection between R and the open interval (0, 1).
(Solution Q.38.5.)

M.1.14. Exercise. Give a formula for a bijection between the interval [0, 1) and the unit circle
x2 + y2 = 1 in the plane. (Solution Q.38.6.)

M.1.15. Exercise. Let f : [1, 2] → [0, 3] be defined by f(x) = 1/x. Find an extension g of f to
the interval [0, 3] such that g : [0, 3]→ [0, 3] is a bijection. (Solution Q.38.7.)

M.1.16. Exercise. Let f : R → [−1, 1] be defined by f(x) = sinx. Find a set A ⊆ R such that
the restriction of f to A is a bijection from A onto [−1, 1]. (Solution Q.38.8.)

M.1.17. Problem. Let f : S → T and g : T → U . Prove the following.

(a) If f and g are injective, so is g ◦ f .
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(b) If f and g are surjective, so is g ◦ f .
(c) If f and g are bijective, so is g ◦ f .

M.1.18. Problem. Find a bijection between the open intervals (0, 1) and (−8, 5). Prove that the
function you use really is a bijection between the two intervals.

M.1.19. Problem. Find a bijection between the open intervals (0, 1) and (3,∞). (Proof not
required.)

M.1.20. Problem. Find a bijection between the interval (0, 1) and the parabola y = x2 in the
plane. (Proof not required.)

M.1.21. Problem. Let f : [1, 2]→ [0, 11] be defined by f(x) = 3x2 − 1. Find an extension g of f
to [0, 3] which is a bijection from [0, 3] onto [0, 11]. (Proof not required.)

It is important for us to know how the image f→ and the inverse image f← of a function f
behave with respect to unions, intersections, and complements of sets. The basic facts are given
in the next 10 propositions. Although these results are quite elementary, we make extensive use of
them in studying continuity.

M.1.22. Proposition. Let f : S → T and B ⊆ T .

(a) f→(f←(B)) ⊆ B.
(b) Equality need not hold in (a).
(c) Equality does hold in (a) if f is surjective.

Proof. Exercise. (Solution Q.38.9.)

M.1.23. Proposition. Let f : S → T and A ⊆ S.

(a) A ⊆ f←(f→(A)).
(b) Equality need not hold in (a).
(c) Equality does hold in (a) if f is injective.

Proof. Problem.

M.1.24. Problem. Prove the converse of proposition M.1.23. That is, show that if f : S → T
and f←(f→(A)) = A for all A ⊆ S, then f is injective. Hint. Suppose f(x) = f(y). Let A = {x}.
Show that y ∈ f←(f→(A)).

M.1.25. Proposition. Let f : S → T and A,B ⊆ S. Then

f→(A ∪B) = f→(A) ∪ f→(B).

Proof. Exercise. (Solution Q.38.10.)

M.1.26. Proposition. Let f : S → T and C, D ⊆ T . Then

f←(C ∪D) = f←(C) ∪ f←(D) .

Proof. Problem.

M.1.27. Proposition. Let f : S → T and C, D ⊆ T . Then

f←(C ∩D) = f←(C) ∩ f←(D) .

Proof. Exercise. (Solution Q.38.11.)

M.1.28. Proposition. Let f : S → T and A, B ⊆ S.

(a) f→(A ∩B) ⊆ f→(A) ∩ f→(B).
(b) Equality need not hold in (a).
(c) Equality does hold in (a) if f is injective.

Proof. Problem.
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M.1.29. Proposition. Let f : S → T and D ⊆ T . Then

f←(Dc) =
(
f←(D)

)c
.

Proof. Problem.

M.1.30. Proposition. Let f : S → T and A ⊆ S.

(a) If f is injective, then f→(Ac) ⊆
(
f→(A)

)c
.

(b) If f is surjective, then f→(Ac) ⊇
(
f→(A)

)c
.

(c) If f is bijective, then f→(Ac) =
(
f→(A)

)c
.

Proof. Problem. Hints. For part (a), let y ∈ f→(Ac). To prove that y ∈
(
f→(A)

)c
, assume

to the contrary that y ∈ f→(A) and derive a contradiction. For part (b), let y ∈
(
f→(A)

)c
. Since

f is surjective, there exists x ∈ S such that y = f(x). Can x belong to A?.

M.1.31. Proposition. Let f : S → T and A ⊆ P(S).

(a) f→(
⋂
A) ⊆

⋂
{f→(A) : A ∈ A}.

(b) If f is injective, equality holds in (a).
(c) f→(

⋃
A) =

⋃
{f→(A) : A ∈ A}.

Proof. Exercise. (Solution Q.38.12.)

M.1.32. Proposition. Let f : S → T and B ⊆ P(T ).

(a) f←(
⋂
B) =

⋂
{f←(B) : B ∈ B}.

(b) f←(
⋃
B) =

⋃
{f←(B) : B ∈ B}.

Proof. Problem.

M.2. INVERSE FUNCTIONS

Let f : S → T and g : T → S. If g ◦ f = IS , then g is a left inverse of f and, equivalently,
f is a right inverse of g. We say that f is invertible if there exists a function from T into
S which is both a left and a right inverse for f . Such a function is denoted by f−1 and is called
the inverse of f . (Notice that the last “the” in the preceding sentence requires justification. See
proposition M.2.1 below.) A function is invertible if it has an inverse. According to the definition
just given, the inverse f−1 of a function f must satisfy

f ◦ f−1 = IT and f−1 ◦ f = IS .

A simple, but important, consequence of this is that for an invertible function, y = f(x) if and
only if x = f−1(y). [Proof: if y = f(x), then f−1(y) = f−1(f(x)) = IS(x) = x. Conversely, if
x = f−1(y), then f(x) = f(f−1(y)) = IT (y) = y.]

M.2.1. Proposition. A function can have at most one inverse.

Proof. Exercise. (Solution Q.38.13.)

M.2.2. Proposition. If a function has both a left inverse and a right inverse, then the left and
right inverses are equal (and therefore the function is invertible).

Proof. Problem.

M.2.3. Exercise. The arcsine function is defined to be the inverse of what function? (Hint. The
answer is not sine.) What about arccosine? arctangent? (Solution Q.38.14.)

The next two propositions tell us that a necessary and sufficient condition for a function to have
right inverse is that it be surjective and that a necessary and sufficient condition for a function to
have a left inverse is that it be injective. Thus, in particular, a function is invertible if and only if
it is bijective. In other words, the invertible members of F(S, T ) are the bijections.
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M.2.4. Proposition. Let S 6= ∅. A function f : S → T has a right inverse if and only if it is
surjective.

Proof. Exercise. (Solution Q.38.15.)

M.2.5. Proposition. Let S 6= ∅. A function f : S → T has a left inverse if and only if it is
injective.

Proof. Problem.

M.2.6. Problem. Prove: if a function f is bijective, then
(
f−1

)←
= f→.

M.2.7. Problem. Let f(x) =
ax+ b

cx+ d
where a, b, c, d ∈ R and not both c and d are zero.

(a) Under what conditions on the constants a, b, c, and d is f injective?
(b) Under what conditions on the constants a, b, c, and d is f its own inverse?



APPENDIX N

PRODUCTS

The Cartesian product of two sets, which was defined in appendix K, is best thought of not just
as a collection of ordered pairs but as this collection together with two distinguished “projection”
mappings.

N.1.1. Definition. Let S1 and S2 be nonempty sets. For k = 1, 2 define the coordinate
projections πk : S1 × S2 → Sk by πk(s1, s2) = sk. We notice two simple facts:

(1) π1 and π2 are surjections; and
(2) z = (π1(z), π2(z)) for all z ∈ S1 × S2.

If T is a nonempty set and if g : T → S1 and h : T → S2, then we define the function (g, h) : T →
S1 × S2 by

(g, h)(t) = (g(t), h(t)) .

N.1.2. Example. If g(t) = cos t and h(t) = sin t, then (g, h) is a map from R to the unit circle in
the plane. (This is a parametrization of the unit circle.)

N.1.3. Definition. Let S1, S2, and T be nonempty sets and let f : T → S1 × S2. For k = 1, 2 we
define functions fk : T → Sk by fk = πk◦f ; these are the components of f . (The superscripts have
nothing to do with powers. We use them because we wish later to attach subscripts to functions
to indicate partial differentiation.) Notice that f(t) = (π1(f(t)), π2(f(t))) for all t ∈ T , so that

f = (π1 ◦ f, π2 ◦ f) = (f1, f2) .

If we are given the function f , the components f1 and f2 have been defined so as to make the
following diagram commute.

S1 S1 × S2oo
π1

S1 × S2 S2π2
//

T

S1

f1

��

T

S1 × S2

f

��

T

S2

f2

��

On the other hand, if the functions f1 : T → S1 and f2 : T → S2 are given, then there exists
a function f , namely (f1, f2), which makes the diagram commute. Actually, (f1, f2) is the only
function with this property, a fact which we prove in the next exercise.

N.1.4. Exercise. Suppose that f1 ∈ F(T, S1) and f2 ∈ F(T, S2). Then there exists a unique
function g ∈ F(T, S1 × S2) such that π1 ◦ g = f1 and π2 ◦ g = f2. (Solution Q.39.1.)

The following problem, although interesting, is not needed elsewhere in this text, so it is listed
as optional. It says, roughly, that any set which “behaves like a Cartesian product” must be in
one-to-one correspondence with the Cartesian product.

N.1.5. Problem (optional). Let S1, S2, and P be nonempty sets and ρk : P → Sk be surjections.
Suppose that for every set T and every pair of functions fk ∈ F(T, Sk) (k = 1, 2), there exists a
unique function g ∈ F(T, P ) such that fk = ρk ◦ g (k = 1, 2). Then there exists a bijection from P
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onto S1 × S2. Hint. Consider the following diagrams.

S1 S1 × S2oo
π1

S1 × S2 S2π2
//

P

S1

ρ1

��

P

S1 × S2

ρ

��

P

S2

ρ2

��
(N.1)

S1 Poo
ρ1

P S2ρ2
//

S1 × S2

S1

π1

��

S1 × S2

P

π

��

S1 × S2

S2

π2

��
(N.2)

S1 Poo
ρ1

P S2ρ2
//

P

S1

ρ1

��

P

P

ρ

��

P

S2

ρ2

��
(N.3)

Exercise N.1.4 tells us that there exists a unique map ρ which makes diagram (N.1) commute,
and by hypothesis there exists a unique map π which makes diagram (N.2) commute. Conclude
from (N.1) and (N.2) that (N.3) commutes when g = π ◦ρ. It is obvious that (N.3) commutes when
g = IP . Then use the uniqueness part of the hypothesis to conclude that π is a left inverse for ρ.
Now construct a new diagram replacing P by S1 × S2 and ρk by πk in (N.3).



APPENDIX O

FINITE AND INFINITE SETS

There are a number of ways of comparing the “sizes” of sets. In this chapter and the next we
examine perhaps the simplest of these, cardinality. Roughly speaking, we say that two sets have
the “same number of elements” if there is a one-to-one correspondence between the elements of
the sets. In this sense the open intervals (0, 1) and (0, 2) have the same number of elements. (The
map x 7→ 2x is a bijection.) Clearly this is only one sense of the idea of “size”. It is certainly also
reasonable to regard (0, 2) as being bigger than (0, 1) because it is twice as long.

We derive only the most basic facts concerning cardinality. In this appendix we discuss some
elementary properties of finite and infinite sets, and in the next we distinguish between countable
and uncountable sets. This is all we will need.

O.1.1. Definition. Two sets S and T are cardinally equivalent if there exists a bijection
from S onto T , in which case we write S ∼ T . It is easy to see that cardinal equivalence is indeed
an equivalence relation; that is, it is reflexive, symmetric, and transitive.

O.1.2. Proposition. Cardinal equivalence is an equivalence relation. Let S, T , and U be sets.
Then

(a) S ∼ S;
(b) if S ∼ T , then T ∼ S; and
(c) if S ∼ T and T ∼ U , then S ∼ U .

Proof. Problem.

O.1.3. Definition. A set S is finite if it is empty or if there exists n ∈ N such that S ∼ {1, . . . , n}.
A set is infinite if it is not finite. The next few facts concerning finite and infinite sets probably
appear obvious, but writing down the proofs may in several instances require a bit of thought.
Here is a question which merits some reflection: if one is unable to explain exactly why a result is
obvious, is it really obvious?

One “obvious” result is that if two initial segments {1, . . . ,m} and {1, . . . , n} of the set of
natural numbers are cardinally equivalent, then m = n. We prove this next.

O.1.4. Proposition. Let n ∈ N. If m ∈ N and {1, . . . ,m} ∼ {1, . . . , n}, then m = n.

Proof. Exercise. Hint. Use induction on n. (Solution Q.40.1.)

O.1.5. Definition. We define card ∅, the cardinal number of the empty set, to be 0. If S is a
nonempty finite set, then by the preceding proposition there exists only one positive integer n such
that S ∼ {1, . . . , n}. This integer, cardS, is the cardinal number of the set S, or the number
of elements in S. Notice that if S is finite with cardinal number n and T ∼ S, then T is also
finite and has cardinal number n. Thus for finite sets the expressions “cardinally equivalent” and
“have the same cardinal number” are interchangeable.

O.1.6. Example. Let S = {a, b, c, d}. Then cardS = 4, since {a, b, c, d} ∼ {1, 2, 3, 4}.
One simple fact about cardinal numbers is that the number of elements in the union of two

disjoint finite sets is the sum of the numbers of elements in each.

O.1.7. Proposition. If S and T are disjoint finite sets, then S ∪ T is finite and

card(S ∪ T ) = cardS + cardT .
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274 O. FINITE AND INFINITE SETS

Proof. Exercise. (Solution Q.40.2.)

A variant of the preceding result is given in problem O.1.10. We now take a preliminary step
toward proving that subsets of finite sets are themselves finite (proposition O.1.9).

O.1.8. Lemma. If C ⊆ {1, . . . , n}, then C is finite and cardC ≤ n.

Proof. Exercise. Hint. Use mathematical induction. If C ⊆ {1, . . . , k+1}, then C \{k+1} ⊆
{1, . . . , k}. Examine the cases k + 1 /∈ C and k + 1 ∈ C separately. (Solution Q.40.3.)

O.1.9. Proposition. Let S ⊆ T . If T is finite, then S is finite and cardS ≤ cardT .

Proof. Problem. Hint. The case T = ∅ is trivial. Suppose T 6= ∅. Let ι : S → T be the
inclusion map of S into T (see chapter L). There exist n ∈ N and a bijection f : T → {1, . . . , n}.
Let C = ran(f ◦ ι). The map from S to C defined by x 7→ f(x) is a bijection. Use lemma O.1.8.)

The preceding proposition “subsets of finite sets are finite” has a useful contrapositive: “sets
which contain infinite sets are themselves infinite.”

O.1.10. Problem. Let S be a set and T be a finite set. Prove that

card(T \ S) = cardT − card(T ∩ S) .

Hint. Use problem F.3.14 and proposition O.1.7.

Notice that it is a consequence of the preceding result O.1.10 that if S ⊆ T (where T is finite),
then

card(T \ S) = cardT − cardS.

How do we show that a set S is infinite? If our only tool were the definition, we would face
the prospect of proving that there does not exist a bijection from S onto an initial segment of
the natural numbers. It would be pleasant to have a more direct approach than establishing the
nonexistence of maps. This is the point of our next proposition.

O.1.11. Proposition. A set is infinite if and only if it is cardinally equivalent to a proper subset
of itself.

Proof. Exercise. Hint. Suppose a set S is infinite. Show that it is possible to choose induc-
tively a sequence of distinct elements a1, a2, a3, . . . in S. (Suppose a1, . . . , an have already been
chosen. Can S \ {a1, . . . , an} be empty?) Map each ak to ak+1 and map each member of S which
is not an ak to itself.

For the converse argue by contradiction. Suppose that T ∼ S where T is a proper subset of
S, and assume that S ∼ {1, . . . , n}. Prove that S \ T ∼ {1, . . . , p} for some p ∈ N. Write T as
S \ (S \ T ) and obtain n = n − p by computing the cardinality of T in two ways. (Make use of
problem O.1.10.) What does n = n− p contradict? (Solution Q.40.4.)

O.1.12. Example. The set N of natural numbers is infinite.

Proof. The map n 7→ n + 1 is a bijection from N onto N \ {1}, which is a proper subset
of N. �

O.1.13. Exercise. The interval (0, 1) is infinite. (Solution Q.40.5.)

O.1.14. Example. The set R of real numbers is infinite.

The next two results tell us that functions take finite sets to finite sets and that for injective
functions finite sets come from finite sets.

O.1.15. Proposition. If T is a set, S is a finite set, and f : S → T is surjective, then T is finite.

Proof. Exercise. Hint. Use propositions M.2.4 and M.2.5. (Solution Q.40.6.)

O.1.16. Proposition. If S is a set, T is a finite set, and f : S → T is injective, then S is finite.
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Proof. Exercise. (Solution Q.40.7.)

O.1.17. Problem. Let S and T be finite sets. Prove that S ∪ T is finite and that

card(S ∪ T ) = cardS + cardT − card(S ∩ T ) .

Hint. Use problem O.1.10.

O.1.18. Problem. If S is a finite set with cardinal number n, what is the cardinal number of P(S)?





APPENDIX P

COUNTABLE AND UNCOUNTABLE SETS

There are many sizes of infinite sets—infinitely many in fact. In our subsequent work we need
only distinguish between countably infinite and uncountable sets. A set is countably infinite if it is
in one-to-one correspondence with the set of positive integers; if it is neither finite nor countably
infinite, it is uncountable. In this section we present some basic facts about and examples of
both countable and uncountable sets. This is all we will need. Except for problem P.1.21, which
is presented for general interest, we ignore the many intriguing questions which arise concerning
various sizes of uncountable sets. For a very readable introduction to such matters see [7], chapter 2.

P.1.1. Definition. A set is countably infinite (or denumerable) if it is cardinally equivalent
to the set N of natural numbers. A bijection from N onto a countably infinite set S is an enumer-
ation of the elements of S. A set is countable if it is either finite or countably infinite. If a set
is not countable it is uncountable.

P.1.2. Example. The set E of even integers in N is countable.

Proof. The map n 7→ 2n is a bijection from N onto E. �

The first proposition of this section establishes the fact that the “smallest” infinite sets are the
countable ones.

P.1.3. Proposition. Every infinite set contains a countably infinite subset.

Proof. Problem. Hint. Review the proof of proposition O.1.11.

If we are given a set S which we believe to be countable, it may be extremely difficult to
prove this by exhibiting an explicit bijection between N and S. Thus it is of great value to know
that certain constructions performed with countable sets result in countable sets. The next five
propositions provide us with ways of generating new countable sets from old ones. In particular,
we show that each of the following is countable.

(1) Any subset of a countable set.
(2) The range of a surjection with countable domain.
(3) The domain of an injection with countable codomain.
(4) The product of any finite collection of countable sets.
(5) The union of a countable family of countable sets.

P.1.4. Proposition. If S ⊆ T where T is countable, then S is countable.

Proof. Exercise. Hint. Show first that every subset of N is countable. (Solution Q.41.1.)

The preceding has an obvious corollary: if S ⊆ T and S is uncountable, then so is T .

P.1.5. Proposition. If f : S → T is injective and T is countable, then S is countable.

Proof. Problem. Hint. Adapt the proof of proposition O.1.16.

P.1.6. Proposition. If f : S → T is surjective and S is countable, then T is countable.

Proof. Problem. Hint. Adapt the proof of proposition O.1.15.

P.1.7. Lemma. The set N× N is countable.
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Proof. Exercise. Hint. Consider the map (m,n) 7→ 2m−1(2n− 1). (Solution Q.41.2.)

P.1.8. Example. The set Q+ \ {0} = {x ∈ Q : x > 0} is countable.

Proof. Suppose that the rational number m/n is written in lowest terms. (That is, m and
n have no common factors greater than 1.) Define f(m/n) = (m,n). It is easy to see that the
map f : Q+ \ {0} → N × N is injective. By proposition P.1.5 and the preceding lemma, Q+ is
countable. �

P.1.9. Proposition. If S and T are countable sets, then so is S × T .

Proof. Problem. Hint. Either S ∼ {1, . . . , n} or else S ∼ N. In either case there exists
an injective map f : S → N. Similarly there exists an injection g : T → N. Define the function
f × g : S × T → N× N by (f × g)(x, y) = (f(x), g(y)).

P.1.10. Corollary. If S1, . . . , Sn are countable sets, then S1 × · · · × Sn is countable.

Proof. Proposition P.1.9 and induction. �

Finally we show that a countable union of countable sets is countable.

P.1.11. Proposition. Suppose that A is a countable family of sets and that each member of A is
itself countable. Then

⋃
A is countable.

Proof. Exercise. Hint. Use lemma P.1.7 and proposition P.1.6. (Solution Q.41.3.)

P.1.12. Example. The set Q of rational numbers is countable.

Proof. Let A = Q+ \ {0} and B = −A = {x ∈ Q : x < 0}. Then Q = A ∪B ∪ {0}. The set A
is countable by example P.1.8. Clearly A ∼ B (the map x 7→ −x is a bijection); so B is countable.
Since Q is the union of three countable sets, it is itself countable by the preceding proposition. �

By virtue of P.1.4–P.1.11 we have a plentiful supply of countable sets. We now look at an
important example of a set which is not countable.

P.1.13. Example. The set R of real numbers is uncountable.

Proof. We take it to be known that if we exclude decimal expansions which end in an infinite
string of 9’s, then every real number has a unique decimal expansion. (For an excellent and thorough
discussion of this matter see Stromberg’s beautiful text on classical real analysis [11], especially
Theorem 2.57.) By (the corollary to) proposition P.1.4 it will suffice to show that the open unit
interval (0, 1) is uncountable. Argue by contradiction: assume that (0, 1) is countably infinite. (We
know, of course, from exercise O.1.13 that it is not finite.) Let r1, r2, r3, . . . be an enumeration of
(0, 1). For each j ∈ N the number rj has a unique decimal expansion

0.rj1 rj2 rj3 . . . .

Construct another number x = 0.x1 x2 x3 . . . as follows. For each k choose xk = 1 if rkk 6= 1 and
xk = 2 if rkk = 1. Then x is a real number between 0 and 1, and it cannot be any of the numbers
rk in our enumeration (since it differs from rk at the kth decimal place). But this contradicts the
assertion that r1, r2, r3, . . . is an enumeration of (0, 1). �

P.1.14. Problem. Prove that the set of irrational numbers is uncountable.

P.1.15. Problem. Show that if S is countable and T is uncountable, then T \ S ∼ T .

P.1.16. Problem. Let ε be an arbitrary number greater than zero. Show that the rationals in
[0, 1] can be covered by a countable family of open intervals the sum of whose lengths is no greater
than ε. (Recall that a family U of sets is said to cover a set A if A ⊆

⋃
U.) Is it possible to cover

the set Q of all rationals in R by such a family? Hint.
∑∞

k=1 2−k = 1.
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P.1.17. Problem. (Definition: The open disk in R2 with radius r > 0 and center (p, q) is defined
to be the set of all points (x, y) in R2 such that (x− p)2 + (y − q)2 < r2.) Prove that the family of
all open disks in the plane whose centers have rational coordinates and whose radii are rational is
countable.

P.1.18. Problem. (Definition: A real number is algebraic if it is a root of some polynomial of
degree greater than 0 with integer coefficients. A real number which is not algebraic is transcen-
dental. It can be shown that the numbers π and e, for example, are transcendental.) Show that
the set of all transcendental numbers in R is uncountable. Hint. Start by showing that the set of
polynomials with integer coefficients is countable.

P.1.19. Problem. Prove that the set of all sequences whose terms consist of only 0’s and 1’s is
uncountable. Hint. Something like the argument in example P.1.13 works.

P.1.20. Problem. Let J be a disjoint family of intervals in R each with length greater than 0.
Show that J is countable.

P.1.21. Problem. Find an uncountable set which is not cardinally equivalent to R. Hint. Let
F = F(R,R). Assume there exists a bijection φ : R→ F . What about the function f defined by

f(x) = 1 +
(
φ(x)

)
(x)

for all x ∈ R?





APPENDIX Q

SOLUTIONS TO EXERCISES

Q.1. Exercises in chapter 01

Q.1.1. (Solution to 1.1.3) Find those numbers x such that d(x,−2) ≤ 5. In other words, solve the
inequality

|x+ 2| = |x− (−2)| ≤ 5.

This may be rewritten as

−5 ≤ x+ 2 ≤ 5,

which is the same as

−7 ≤ x ≤ 3.

Thus the points in the closed interval [−7, 3] are those that lie within 5 units of −2.

Q.1.2. (Solution to 1.1.12) If x ∈ Jδ(a), then |x− a| < δ ≤ ε. Thus x lies within ε units of a; that
is, x ∈ Jε(a).

Q.1.3. (Solution to 1.2.6) Factor the left side of the inequality x2 − x − 6 ≥ 0. This yields
(x+2)(x−3) ≥ 0. This inequality holds for those x satisfying x ≤ −2 and for those satisfying x ≥ 3.
Thus A = (−∞,−2]∪[3,∞). No neighborhood of −2 or of 3 lies in A. Thus A◦ = (−∞,−2)∪(3,∞)
and A◦ 6= A.

Q.1.4. (Solution to 1.2.11) Since A∩B ⊆ A we have (A∩B)◦ ⊆ A◦ by 1.2.9. Similarly, (A∩B)◦ ⊆
B◦. Thus (A∩B)◦ ⊆ A◦ ∩B◦. To obtain the reverse inclusion take x ∈ A◦ ∩B◦. Then there exist
ε1, ε2 > 0 such that Jε1(x) ⊆ A and Jε2(x) ⊆ B. Then Jε(x) ⊆ A ∩ B where ε = min{ε1, ε2}. This
shows that x ∈ (A ∩B)◦.

Q.1.5. (Solution to 1.2.12) Since A ⊆
⋃

A for every A ∈ A, we can conclude from proposition 1.2.9
that A◦ ⊆

(⋃
A
)◦

for every A ∈ A. Thus
⋃
{A◦ : A ∈ A} ⊆

(⋃
A
)◦

. (See F.1.8.)

Q.2. Exercises in chapter 02

Q.2.1. (Solution to 2.1.7) (a) Let S be a family of open subsets of R. By proposition 2.1.4 each
nonempty member of S is a union of bounded open intervals. But then

⋃
S is itself a union of

bounded open intervals. So
⋃

S is open.
(b) We show that if S1 and S2 are open subsets of R, then S1∩S2 is open. From this it follows

easily by mathematical induction that if S1, . . . , Sn are all open in R, then S1 ∩ · · · ∩ Sn is open.
Let us suppose then that S1 and S2 are open subsets of R. If S1∩S2 = ∅, there is nothing to prove;
so we assume that S1 ∩ S2 6= ∅. Let x be an arbitrary point in S1 ∩ S2. Since x ∈ S1 = S1

◦, there
exists ε1 > 0 such that Jε1(x) ⊆ S1. Similarly, there exists ε2 > 0 such that Jε2(x) ⊆ S2. Let ε be
the smaller of ε1 and ε2. Then clearly Jε(x) ⊆ S1 ∩ S2, which shows that x is an interior point of
S1 ∩ S2. Since every point of the set S1 ∩ S2 is an interior point of the set, S1 ∩ S2 is open.

Q.2.2. (Solution to 2.2.5) Since no point in R has an ε-neighborhood consisting entirely of rational
numbers, A◦ = ∅. If x ≥ 0, then every ε-neighborhood of x contains infinitely many positive
rational numbers. Thus each such x belongs to A′. If x < 0, it is possible to find an ε-neighborhood
of x which contains no positive rational number. Thus A′ = [0,∞) and A = A ∪A′ = [0,∞).
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Q.2.3. (Solution to 2.2.9) (a) First we show that Ac ⊆ A◦c. If x ∈ Ac, then either x ∈ Ac or
x is an accumulation point of Ac. If x ∈ Ac, then x is certainly not in the interior of A; that is,
x ∈ A◦c. On the other hand, if x is an accumulation point of Ac, then every ε-neighborhood of x
contains points of Ac. This means that no ε-neighborhood of x lies entirely in A. So, in this case
too, x ∈ A◦c.

For the reverse inclusion suppose x ∈ A◦c. Since x is not in the interior of A, no ε-neighborhood
of x lies entirely in A. Thus either x itself fails to be in A, in which case x belongs to Ac and therefore
to Ac, or else every ε-neighborhood of x contains a point of Ac different from x. In this latter case
also, x belongs to the closure of Ac.

Remark. It is interesting to observe that the proof of (a) can be accomplished by a single string
of “iff” statements. That is, each step of the argument uses a reversible implication. One needs
to be careful, however, with the negation of quantifiers (see section D.4 of appendix D). It will be
convenient to let J∗ε (x) denote the ε-neighborhood of x with x deleted; that is, J∗ε (x) = (x− ε, x)∪
(x, x+ ε). The proof goes like this:

x ∈ A◦c iff ∼ (x ∈ A◦)
iff ∼ ((∃ε > 0) Jε(x) ⊆ A)

iff (∀ε > 0) Jε(x) * A

iff (∀ε > 0) Jε(x) ∩Ac 6= ∅
iff (∀ε > 0) (x ∈ Ac or J∗ε (x) ∩Ac 6= ∅)
iff (x ∈ Ac or (∀ε > 0) J∗ε (x) ∩Ac 6= ∅)
iff (x ∈ Ac or x ∈ (Ac)′)

iff x ∈ Ac.
Proofs of this sort are not universally loved. Some people admire their precision and efficiency.
Others feel that reading such a proof has all the charm of reading computer code.

(b) The easiest proof of (b) is produced by substituting Ac for A in part (a). Then A = Acc =

Ac◦c. Take complements to get A
c

= Ac◦.

Q.3. Exercises in chapter 03

Q.3.1. (Solution to 3.2.4) Let a ∈ R. Given ε > 0, choose δ = ε/5. If |x − a| < δ, then
|f(x)− f(a)| = 5|x− a| < 5δ = ε.

Q.3.2. (Solution to 3.2.5)Given ε > 0, choose δ = min{1, ε/7}, the smaller of the numbers 1 and
ε/7. If |x− a| = |x+ 1| < δ, then |x| = |x+ 1− 1| ≤ |x+ 1|+ 1 < δ + 1 ≤ 2. Therefore,

|f(x)− f(a)| = |x3 − (−1)3| (i)

= |x3 + 1| (ii)

= |x+ 1| |x2 − x+ 1| (iii)

≤ |x+ 1|(x2 + |x|+ 1) (iv)

≤ |x+ 1| (4 + 2 + 1) (v)

= 7|x+ 1| (vi)

< 7δ (vii)

≤ ε. (viii)

Remark. How did we know to choose δ = min{1, ε/7}? As scratch work we do steps (i)–(iv), a
purely algebraic process, and obtain

|f(x)− f(a)| ≤ |x+ 1|(x2 + |x|+ 1) .
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Now how do we guarantee that the quantity in parentheses doesn’t get “too large”. The answer is
to require that x be “close to” a = −1. What do we mean by close? Almost anything will work.
Here it was decided, arbitrarily, that x should be no more than 1 unit from −1. In other words, we
wish δ to be no larger than 1. Then |x| ≤ 2 and consequently x2 + |x|+ 1 ≤ 7; so we arrive at step
(vi)

|f(x)− f(a)| ≤ 7|x+ 1| .
Since we assume that |x− (−1)| = |x+ 1| < δ, we have (vii)

|f(x)− f(a)| < 7δ .

What we want is |f(x)− f(a)| < ε. This can be achieved by choosing δ to be no greater than ε/7.
Notice that we have required two things of δ:

δ ≤ 1 and δ ≤ ε/7 .

The easiest way to arrange that δ be no larger than each of two numbers is to make it the smaller
of the two. Thus our choice is δ = min{1, ε/7}.

A good exercise is to repeat the preceding argument, but at (iv) require x to be within 2 units
of −1 (rather than 1 unit as above). This will change some things in the proof, but should not
create any difficulty.

Q.3.3. (Solution to 3.2.6) Let a ∈ R. Given ε > 0, choose δ = min{1, (4|a|+ 2)−1ε}. If |x− a| < δ,
then

|x| ≤ |x− a|+ |a| < 1 + |a|.
Therefore

|f(x)− f(a)| = |(2x2 − 5)− (2a2 − 5)|
= 2|x2 − a2|
= 2|x− a| |x+ a|
≤ 2|x− a| (|x|+ |a|)
≤ 2|x− a| (1 + |a|+ |a|)
≤ (4|a|+ 2)|x− a|
< (4|a|+ 2)δ

≤ ε.

Q.3.4. (Solution to 3.2.12) Suppose f is continuous. Let V be an open subset of R. To show that
f←(V ) is open it suffices to prove that each point of f←(V ) is an interior point of that set. (Notice
that if f←(V ) is empty, then there is nothing to prove. The null set is open.) If a ∈ f←(V ), then
V is a neighborhood of f(a). Since f is continuous at a, the set f←(V ) contains a neighborhood
of a, from which we infer that a is an interior point of f←(V ).

Conversely, suppose that f←(V )
◦
⊆ R whenever V

◦
⊆ R. To see that f is continuous at an

arbitrary point a in R, notice that if V is a neighborhood of f(a), then a ∈ f←(V )
◦
⊆ R. That is,

f←(V ) is a neighborhood of a. So f is continuous at a.

Q.4. Exercises in chapter 04

Q.4.1. (Solution to 4.1.11) Let ε > 0. Notice that xn ∈ Jε(0) if and only if |xn| ∈ Jε(0). Thus (xn)
is eventually in Jε(0) if and only if (|xn|) is eventually in Jε(0).

Q.4.2. (Solution to 4.3.7) Let xn → a where (xn) is a sequence of real numbers. Then by problem
4.1.7(a) there exists n0 ∈ N such that n ≥ n0 implies |xn − a| < 1. Then by J.4.7(c)∣∣|xn| − |a|∣∣ ≤ |xn − a| < 1
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for all n ≥ n0. Thus, in particular,
|xn| < |a|+ 1

for all n ≥ n0. If M = max{|x1|, |x2|, . . . , |xn0−1|, |a|+ 1}, then |xn| ≤M for all n ∈ N.

Q.4.3. (Solution to 4.4.3) Let (an) be a sequence in R. As suggested in the hint, consider two
cases. First, suppose that there is a subsequence (ank) consisting of peak terms. Then for each k,

ank ≥ ank+1
.

That is, the subsequence (ank) is decreasing.
Now consider the second possibility: there exists a term ap beyond which there are no peak

terms. Let n1 = p + 1. Since an1 is not a peak term, there exists n2 > n1 such that an2 > an1 .
Since an2 is not a peak term, there exists n3 > n2 such that an3 > an2 . Proceeding in this way we
choose an increasing (in fact, strictly increasing) subsequence (ank) of the sequence (an).

In both of the preceding cases we have found a monotone subsequence of the original sequence.

Q.4.4. (Solution to 4.4.11) Suppose that b ∈ A. There are two possibilities; b ∈ A or b ∈ A′. If
b ∈ A, then the constant sequence (b, b, b, . . . ) is a sequence in A which converges to b. On the
other hand, if b ∈ A′, then for every n ∈ N there is a point an ∈ J1/n(b) such that an ∈ A and
an 6= b. Then (an) is a sequence in A which converges to b.

Conversely, suppose there exists a sequence (an) in A such that an → b. Either an = b for some
n (in which case b ∈ A) or else an is different from b for all n. In the latter case every neighborhood
of b contains points of A—namely, the an’s for n sufficiently large—other than b. Thus in either
case b ∈ A. �

Q.4.5. (Solution to 4.4.17) If ` = limn→∞ xn exists, then taking limits as n→∞ of both sides of
the expression 4xn+1 = xn

3 yields 4` = `3. That is,

`3 − 4` = `(`− 2)(`+ 2) = 0.

Thus if ` exists, it must be −2, 0, or 2. Next notice that

xn+1 − xn =
1

4
xn

3 − xn

=
1

4
xn(xn − 2)(xn + 2).

Therefore
xn+1 > xn if xn ∈ (−2, 0) ∪ (2,∞) (Q.1)

and
xn+1 < xn if xn ∈ (−∞,−2) ∪ (0, 2). (Q.2)

Now consider the seven cases mentioned in the hint. Three of these are trivial: if x1 = −2, 0,
or 2, then the resulting sequence is constant (therefore certainly convergent).

Next suppose x1 < −2. Then xn < −2 for every n. [The verification is an easy induction: If
xn < −2, then xn

3 < −8; so xn+1 = 1
4xn

3 < −2.] From this and (Q.2) we see that xn+1 < xn for
every n. That is, the sequence (xn) decreases. Since the only possible limits are −2, 0, and 2, the
sequence cannot converge. (It must, in fact, be unbounded.)

The case x1 > 2 is similar. We see easily that xn > 2 for all n and therefore [by (Q.1)] the
sequence (xn) is increasing. Thus it diverges (and is unbounded).

If −2 < x1 < 0, then −2 < xn < 0 for every n. [Again an easy inductive proof: If −2 < xn < 0,
then −8 < xn

3 < 0; so −2 < 1
4xn

3 = xn+1 < 0.] From (Q.1) we conclude that (xn) is increasing.
Being bounded above it must converge [see proposition 4.3.3] to some real number `. The only
available candidate is ` = 0.

Similarly, if 0 < x1 < 2, then 0 < xn < 2 for all n and (xn) is decreasing. Again the limit is
` = 0.

We have shown that the sequence (xn) converges if and only if x1 ∈ [−2, 2]. If x1 ∈ (−2, 2),
then limxn = 0; if x1 = −2, then limxn = −2; and if x1 = 2, then limxn = 2.
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Q.5. Exercises in chapter 05

Q.5.1. (Solution to 5.1.2) Suppose there exists a nonempty set U which is properly contained in
A and which is both open and closed in A. Then, clearly, the sets U and U c (both open in A)
disconnect A. Conversely, suppose that A is disconnected by sets U and V (both open in A). Then
the set U is not the null set, is not equal to A (because V , its complement with respect to A, is
nonempty), is open in A, and is closed in A (because V is open in A).

Q.5.2. (Solution to 5.2.1) Let A be a subset of R and f : A → R be continuous. Suppose that
ran f is disconnected. Then there exist disjoint nonempty sets U and V both open in ran f whose
union is ran f . By 3.3.11 the sets f←(U) and f←(V ) are open subsets of A. Clearly these two sets
are nonempty, they are disjoint, and their union is A. This shows that A is disconnected.

Q.5.3. (Solution to 5.2.3) The continuous image of an interval is an interval (by theorem 5.2.2).
Thus the range of f (that is, f→(J)) is an interval. So a point belongs to the range of f if it lies
between two other points which belong to the range of f . That is, if a, b ∈ ran f and z lies between
a and b, then there exists a point x in the domain of f such that z = f(x).

Q.5.4. (Solution to 5.2.4) Let

f(x) = x27 + 5x13 + x− x3 − x5 − 2√
1 + 3x2

for all x ∈ R. The function f is defined on an interval (the real line), and it is easy, using the results
of chapter 3, to show that f is continuous. Notice that f(0) = −2 and that f(1) = 4. Since −2
and 4 are in the range of f and 0 lies between −2 and 4, we conclude from the intermediate value
theorem that 0 is in the range of f . In fact, there exists an x such that 0 < x < 1 and f(x) = 0.
Such a number x is a solution to (5.3). Notice that we have not only shown the existence of a
solution to (5.3) but also located it between consecutive integers.

Q.5.5. (Solution to 5.2.5) Let f : [a, b] → [a, b] be continuous. If f(a) = a or f(b) = b, then the
result is obvious; so we suppose that f(a) > a and f(b) < b. Define g(x) = x− f(x). The function
g is continuous on the interval [a, b]. (Verify the last assertion.) Notice that g(a) = a − f(a) < 0
and that g(b) = b− f(b) > 0. Since g(a) < 0 < g(b), we may conclude from the intermediate value
theorem that 0 ∈ ran g. That is, there exists z in (a, b) such that g(z) = z − f(z) = 0. Thus z is a
fixed point of f .

Q.6. Exercises in chapter 06

Q.6.1. (Solution to 6.2.3) Let A be a compact subset of R. To show that A is closed, prove that
Ac is open. Let y be a point of Ac. For each x ∈ A choose numbers rx > 0 and sx > 0 such that
the open intervals Jrx(x) and Jsx(y) are disjoint. The family {Jrx(x) : x ∈ A} is an open cover for
A. Since A is compact there exist x1, . . . , xn ∈ A such that {Jrxi (xi) : 1 ≤ i ≤ n} covers A. It is
easy to see that if

t = min{sx1 , . . . , sxn}
then Jt(y) is disjoint from

⋃n
i=1 Jrxi (xi) and hence from A. This shows that y ∈ Ac◦. Since y was

arbitrary, Ac is open.
To prove that A is bounded, we need consider only the case where A is nonempty. Let a be

any point in A. Then {Jn(a) : n ∈ N} covers A (it covers all of R!). Since A is compact a finite
subcollection of these open intervals will cover A. In this finite collection there is a largest open
interval; it contains A.

Q.6.2. (Solution to 6.3.2) Let V be a family of open subsets of R which covers f→(A). The family

U := {f←(V ) : V ∈ V}
is a family of open sets which covers A (see 3.2.12). Since A is compact we may choose sets
V1, . . . , Vn ∈ V such that

⋃n
k=1 f

←(Vk) ⊇ A. We complete the proof by showing that f→(A) is



286 Q. SOLUTIONS TO EXERCISES

covered by the finite subfamily {V1, . . . , Vn} of V. If y ∈ f→(A), then y = f(x) for some x ∈ A.
This element x belongs to at least one set f←(Vk); so (by proposition M.1.22)

y = f(x) ∈ f→(f←(Vk)) ⊆ Vk .
Thus f→(A) ⊆

⋃n
k=1 Vk.

Q.6.3. (Solution to 6.3.3) We prove that f assumes a maximum on A. (To see that f has a
minimum apply the present result to the function −f .) By theorem 6.3.2 the image of f is a
compact subset of R and is therefore (see 6.2.3) closed and bounded. Since it is bounded the image
of f has a least upper bound, say l. By example 2.2.7 the number l is in the closure of ran f . Since
the range of f is closed, l ∈ ran f . Thus there exists a point a in A such that f(a) = l ≥ f(x) for
all x ∈ A.

Q.7. Exercises in chapter 07

Q.7.1. (Solution to 7.1.3) Argue by contradiction. If b 6= c, then ε := |b− c| > 0. Thus there exists
δ1 > 0 such that |f(x)− b| < ε/2 whenever x ∈ A and 0 < |x− a| < δ1 and there exists δ2 > 0 such
that |f(x)− c| < ε/2 whenever x ∈ A and 0 < |x− a| < δ2. Let δ = min{δ1, δ2}. Since a ∈ A′, the
set A ∩ Jδ(a) is nonempty. Choose a point x in this set. Then

ε = |b− c| ≤ |b− f(x)|+ |f(x)− c| < ε/2 + ε/2 = ε .

This is a contradiction.
It is worth noticing that the preceding proof cannot be made to work if a is not required to be an

accumulation point of A. To obtain a contradiction we must know that the condition 0 < |x−a| < δ
is satisfied for at least one x in the domain of f .

Q.7.2. (Solution to 7.2.3) Both halves of the proof make use of the fact that in A the open interval
about a of radius δ is just Jδ(a) ∩A where Jδ(a) denotes the corresponding open interval in R.

Suppose f is continuous at a. Given ε > 0 choose δ > 0 so that x ∈ Jδ(a) ∩ A implies
f(x) ∈ Jε(f(a)). If x ∈ A and 0 < |x− a| < δ, then |f(x)− f(a)| < ε. That is, limx→a f(x) = f(a).

Conversely, suppose that limx→a f(x) = f(a). Given ε > 0 choose δ > 0 so that |f(x)−f(a)| < ε
whenever x ∈ A and 0 < |x − a| < δ. If x = a, then |f(x) − f(a)| = 0 < ε. Thus x ∈ Jδ(a) ∩ A
implies f(x) ∈ Jε(f(a)). This shows that f is continuous at a.

Q.7.3. (Solution to 7.2.4) Let g : h 7→ f(a+h). Notice that h ∈ dom g if and only if a+h ∈ dom f ;

dom f = a+ dom g . (Q.3)

That is, dom f = {a+ h : h ∈ dom g}.
First we suppose that

l := lim
h→0

g(h) = lim
h→0

f(a+ h) exists. (Q.4)

We show that limx→a f(x) exists and equals l. Given ε > 0 there exists (by (Q.4)) a number δ > 0
such that

|g(h)− l| < ε whenever h ∈ dom g and 0 < |h| < δ. (Q.5)

Now suppose that x ∈ dom f and 0 < |x− a| < δ. Then by (Q.3)

x− a ∈ dom g

and by (Q.5)
|f(x)− l| = |g(x− a)− l| < ε .

Thus given ε > 0 we have found δ > 0 such that |f(x) − l| < ε whenever x ∈ dom f and 0 <
|x− a| < δ. That is, limx→a f(x) = l.

The converse argument is similar. Suppose l := limx→a f(x) exists. Given ε > 0 there exists
δ > 0 such that |f(x)−l| < ε whenever x ∈ dom f and 0 < |x−a| < δ. If h ∈ dom g and 0 < |h| < δ,
then a+h ∈ dom f and 0 < |(a+h)−a| < δ. Therefore |g(h)− l| = |f(a+h)− l| < ε, which shows
that limh→0 g(h) = l.
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Q.8. Exercises in chapter 08

Q.8.1. (Solution to 8.1.9) Suppose that T ∈ L ∩ o. Let ε > 0. Since T ∈ o, there exists δ > 0 so
that |Ty| ≤ ε|y| whenever |y| < δ. Since T ∈ L there exists m ∈ R such that Tx = mx for all x
(see example 8.1.7). Now, suppose 0 < |y| < δ. Then

|m| |y| = |Ty| ≤ εy
so |m| ≤ ε. Since ε was arbitrary, we conclude that m = 0. That is, T is the constant function 0.

Q.8.2. (Solution to 8.1.10) Let f , g ∈ O. Then there exist positive numbers M , N , δ, and η such
that |f(x)| ≤ M |x| whenever |x| < δ and |g(x)| < N |x| whenever |x| < η. Then |f(x) + g(x)| ≤
(M +N)|x| whenever |x| is less than the smaller of δ and η. So f + g ∈ O.

If c is a constant, then |cf(x)| = |c| |f(x)| ≤ |c|M |x| whenever |x| < δ; so cf ∈ O.

Q.8.3. (Solution to 8.1.13) (The domain of f ◦ g is taken to be the set of all numbers x such
that g(x) belongs to the domain of f ; that is, dom(f ◦ g) = g←(dom f).) Since f ∈ O there exist
M, δ > 0 such that |f(y)| ≤M |y| whenever |y| < δ. Let ε > 0. Since g ∈ o there exists η > 0 such
that |g(x)| ≤ εM−1|x| whenever |x| ≤ η.

Now if |x| is less than the smaller of η and Mε−1δ, then |g(x)| ≤ εM−1|x| < δ, so that

|(f ◦ g)(x)| ≤M |g(x)| ≤ ε|x|.
Thus f ◦ g ∈ o.

Q.8.4. (Solution to 8.1.14) Since φ and f belong to O, there exist positive numbers M , N , δ, and
η such that |φ(x)| ≤M |x| whenever |x| < δ and |f(x)| < N |x| whenever |x| < η. Suppose ε > 0. If
|x| is less than the smallest of εM−1N−1, δ, and η, then

|(φf)(x)| = |φ(x)| |f(x)| ≤MNx2 ≤ ε|x| .

Q.8.5. (Solution to 8.2.3) Clearly f(0)− g(0) = 0. Showing that lim
x→0

f(x)− g(x)

x
= 0 is a routine

computation:

lim
x→0

f(x)− g(x)

x
= lim

x→0

1

x

(
x2 − 4x− 1− 1

3x2 + 4x− 1

)
= lim

x→0

3x4 − 8x3 − 20x2

x(3x2 + 4x− 1)
= 0.

Q.8.6. (Solution to 8.2.4) Reflexivity is obvious. Symmetry: if f ' g, then f − g ∈ o; so g − f =
(−1)(f − g) ∈ o (by proposition 8.1.11). Thus g ' f . Transitivity: if f ' g and g ' h, then
g − f ∈ o and h− g ∈ o; so h− f = (h− g) + (g − f) ∈ o (again by 8.1.11). Thus f ' h.

Q.8.7. (Solution to 8.2.5) Since S ' f and T ' f , we conclude from proposition 8.2.4 that S ' T .
Then S − T ∈ L ∩ o and thus S − T = 0 by proposition 8.1.9.

Q.8.8. (Solution to 8.3.4) For each h in the domain of ∆(f + g)a we have

∆(f + g)a(h) = (f + g)(a+ h)− (f + g)(a)

= f(a+ h) + g(a+ h)− f(a)− g(a)

= ∆fa(h) + ∆ga(h)

= (∆fa + ∆ga)(h).

Q.8.9. (Solution to 8.3.6) For every h in the domain of ∆(g ◦ f)a we have

∆(g ◦ f)a(h) = g(f(a+ h))− g(f(a))

= g(f(a) + f(a+ h)− f(a))− g(f(a))

= g(f(a) + ∆fa(h))− g(f(a))

=
(
∆gf(a) ◦∆fa

)
(h).
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Q.8.10. (Solution to 8.4.8) If f is differentiable at a, then

∆fa =
(
∆fa − dfa

)
+ dfa ∈ o + L ⊆ O + O ⊆ O .

Q.8.11. (Solution to 8.4.9) If f ∈ Da , then ∆fa ∈ O ⊆ C0. Since ∆fa is continuous at 0, f is
continuous at a.

Q.8.12. (Solution to 8.4.10) Since f is differentiable at a, its differential exists and ∆fa ' dfa.
Then

∆(αf)a = α∆fa ' αdfa
by propositions 8.3.3 and 8.2.6. Since αdfa is a linear function which is tangent to ∆(αf)a, we
conclude that it must be the differential of αf at a (see proposition 8.4.2). That is, αdfa = d(αf)a.

Q.8.13. (Solution to 8.4.12) It is easy to check that φ(a)dfa + f(a)dφa is a linear function. From
∆fa ' dfa we infer that φ(a)∆fa ' φ(a)dfa (by proposition 8.2.6), and from ∆φa ' dφa we infer
that f(a)∆φa ' f(a)dφa (also by 8.2.6). From propositions 8.4.8 and 8.1.14 we see that

∆φa ·∆fa ∈ O ·O ⊆ o ;

that is, ∆φa ·∆fa ' 0. Thus by propositions 8.3.5 and 8.2.6

∆(φf)a = φ(a)∆fa + f(a)∆φa + ∆φa ·∆fa
' φ(a)dfa + f(a)dφa + 0

= φ(a)dfa + f(a)dφa.

Q.8.14. (Solution to 8.4.13) By hypothesis ∆fa ' dfa and ∆gf(a) ' dgf(a). By proposition 8.4.8
∆fa ∈ O. Then by proposition 8.2.8

∆gf(a) ◦∆fa ' dgf(a) ◦∆fa ; (Q.6)

and by proposition 8.2.7

dgf(a) ◦∆fa ' dgf(a) ◦ dfa . (Q.7)

According to proposition 8.3.6

∆(g ◦ f)a = ∆gf(a) ◦∆fa . (Q.8)

From (Q.6), (Q.7) , and (Q.8), and proposition 8.2.4 we conclude that

∆(g ◦ f)a ' dgf(a) ◦ dfa .

Since dgf(a) ◦ dfa is a linear function, the desired conclusion is an immediate consequence of propo-
sition 8.4.2.

Q.9. Exercises in chapter 09

Q.9.1. (Solution to 9.1.2) If x, y ∈M , then

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2 d(x, y) .

Q.9.2. (Solution to 9.3.2) It is clear that max{a, b} ≤ a+b. Expanding the right side of 0 ≤ (a±b)2
we see that 2|ab| ≤ a2 + b2. Thus

(a+ b)2 ≤ a2 + 2|ab|+ b2

≤ 2(a2 + b2) .

Taking square roots we get a+ b ≤
√

2
√
a2 + b2. Finally,

√
2
√
a2 + b2 ≤

√
2
√

2(max{a, b})2

= 2 max{a, b} .
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We have established the claim made in the hint. Now if x = (x1, x2) and y = (y1, y2) are points in
R2, then

max{|x1 − y1|, |x2 − y2|} ≤ |x1 − y1|+ |x2 − y2|

≤
√

2
√

(x1 − y1)2 + (x2 − y2)2

≤ 2 max{|x1 − y1|, |x2 − y2|} .

In other words

du(x, y) ≤ d1(x, y) ≤
√

2 d(x, y) ≤ 2 du(x, y) .

Q.10. Exercises in chapter 10

Q.10.1. (Solution to 10.1.3) The three open balls are B1(−1) = {−1}, B1(0) = [0, 1), and B2(0) =
{−1} ∪ [0, 2).

Q.10.2. (Solution to 10.1.14) (a) A◦ = ∅; A′ = {0}; A = ∂A = {0} ∪A.
(b) A◦ = ∅; A′ = A = ∂A = [0,∞).
(c) A◦ = A; A′ = A = A ∪ {0}; ∂A = {0}.

Q.10.3. (Solution to 10.2.1) Let t = r − d(a, c). (Note that t > 0.) If x ∈ Bt(c), then d(a, x) ≤
d(a, c) + d(c, x) < (r − t) + t = r; so x ∈ Br(a). (Easier solution: This is just a special case of
proposition 9.2.19. Take b = a and s = r there.)

Q.10.4. (Solution to 10.2.2) (a) If x ∈ A◦, then there exists r > 0 such that Br(x) ⊆ A ⊆ B. So
x ∈ B◦.

(b) Since A◦ ⊆ A we may conclude from (a) that A◦◦ ⊆ A◦. For the reverse inclusion take
a ∈ A◦. Then there exists r > 0 such that Br(a) ⊆ A. By lemma 10.2.1, about each point b in
the open ball Br(a) we can find an open ball Bs(b) contained in Br(a) and hence in A. This shows
that Br(a) ⊆ A◦. Since some open ball about a lies inside A◦, we conclude that a ∈ A◦◦.

Q.10.5. (Solution to 10.2.4) (a) Since A ⊆
⋃
A for every A ∈ A, we can conclude from proposition

10.2.2(a) that A◦ ⊆
(⋃

A
)◦

for every A ∈ A. Thus
⋃
{A◦ : A ∈ A} ⊆

(⋃
A
)◦

.
(b) Let R be the metric space and A = {A,B} where A = Q and B = Qc. Then A◦ ∪B◦ = ∅

while (A ∪B)◦ = R.

Q.11. Exercises in chapter 11

Q.11.1. (Solution to 11.1.6) Since A◦ is an open set contained in A (by 10.2.2(b)), it is contained
in the union of all such sets. That is,

A◦ ⊆
⋃
{U : U ⊆ A and U is open}.

On the other hand, if U is an open subset of A, then (by 10.2.2(a)) U = U◦ ⊆ A◦. Thus⋃
{U : U ⊆ A and U is open} ⊆ A◦ .

Q.11.2. (Solution to 11.1.9) Let A be a subset of a metric space. Using problem 10.3.6 we see that

A is open iff A = A◦

iff Ac =
(
A◦
)c

= Ac

iff Ac is closed.

Q.11.3. (Solution to 11.1.22) Suppose that D is dense in M . Argue by contradiction. If there is
an open ball B which contains no point of D (that is, B ⊆ Dc), then

B = B◦ ⊆
(
Dc
)◦

=
(
D
)c

= M c = ∅ ,

which is not possible.
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Conversely, suppose that D is not dense in M . Then D is a proper closed subset of M , making(
D
)c

a nonempty open set. Choose an open ball B ⊆
(
D
)c

. Since
(
D
)c ⊆ Dc, the ball B

contains no point of D.

Q.11.4. (Solution to 11.2.3) It is enough to show that T1 ⊆ T2. Thus we suppose that U is an
open subset of (M,d1) and prove that it is an open subset of (M,d2). For a ∈ M , r > 0, and
k = 1, 2 let Bk

r (a) be the open ball about a of radius r in the space (M,dk); that is,

Bk
r (a) = {x ∈M : dk(x, a) < r} .

To show that U is an open subset of (M,d2) choose an arbitrary point x in U and find an open ball
B2
r (x) about x contained in U . Since U is assumed to be open in (M,d1) there exists s > 0 such

that B1
s (x) ⊆ U . The metrics d1 and d2 are equivalent, so, in particular, there is a constant α > 0

such that d1(u, v) ≤ αd2(u, v) for all u, v ∈M . Let r = s α−1. Then if y ∈ B2
r (x), we see that

d1(y, x) ≤ αd2(y, x) < αr = s .

Thus B2
r (x) ⊆ B1

s (x) ⊆ U .

Q.12. Exercises in chapter 12

Q.12.1. (Solution to 12.2.2) Suppose that A is closed in M . Let (an) be a sequence in A which
converges to a point b in M . If b is in Ac then, since Ac is a neighborhood of b, the sequence (an)
is eventually in Ac, which is not possible. Therefore b ∈ A.

Conversely, if A is not closed, there exists an accumulation point b of A which does not belong
to A. Then for every n ∈ N we may choose a point an in B1/n(b) ∩A. The sequence (an) lies in A
and converges to b; but b /∈ A.

Q.12.2. (Solution to 12.3.2) As in 12.3.1, let ρ1 be the metric on M1 and ρ2 be the metric on M2.
Use the inequalities given in the hint to 9.3.2 with a = ρ1(x1, y1) and b = ρ2(x2, y2) to obtain

du(x, y) ≤ d1(x, y) ≤
√

2 d(x, y) ≤ 2 du(x, y) .

Q.13. Exercises in chapter 13

Q.13.1. (Solution to 13.1.6) Let C be the set of all functions defined on [0, 1] such that 0 < g(x) < 2
for all x ∈ [0, 1]. It is clear that B1(f) ⊆ C. The reverse inclusion, however, is not correct. For
example, let

g(x) =

{
1, if x = 0

x, if 0 < x ≤ 1.

Then g belongs to C; but it does not belong to B1(f) since

du(f, g) = sup{|f(x)− g(x)| : 0 ≤ x ≤ 1} = 1 .

Q.13.2. (Solution to 13.1.10) Let f , g, h ∈ B(S). There exist positive constants M , N , and P
such that |f(x)| ≤M , |g(x)| ≤ N , and |h(x)| ≤ P for all x in S.

First show that du is real valued. (That is, show that du is never infinite.) This is easy:

du(f, g) = sup{|f(x)− g(x)| : x ∈ S}
≤ sup{|f(x)|+ |g(x)| : x ∈ S}
≤M +N.

Now verify conditions (1)–(3) of the definition of “metric” in 9.1.1. Condition (1) follows from the
observation that

|f(x)− g(x)| = |g(x)− f(x)| for all x ∈ S.
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To establish condition (2) notice that for every x ∈ S
|f(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)|

≤ du(f, g) + du(g, h);

and therefore
du(f, h) = sup{|f(x)− h(x)| : x ∈ S} ≤ du(f, g) + du(g, h) .

Finally, condition (3) holds since

du(f, g) = 0 iff |f(x)− g(x)| = 0 for all x ∈ S
iff f(x) = g(x) for all x ∈ S
iff f = g.

Q.13.3. (Solution to 13.2.2) Let (fn) be a sequence of functions in F(S,R) and suppose that
fn → g (unif) in F(S,R). Then for every x ∈ S

|fn(x)− g(x)| ≤ sup{|fn(y)− g(y)| : y ∈ S} → 0 as n→∞.
Thus fn → g (ptws).

On the other hand, if we define for each n ∈ N a function fn on R by

fn(x) =

{
1, if x ≥ n
0, if x < n,

then it is easy to see that the sequence (fn) converges pointwise to the zero function 0; but since
du(fn,0) = 1 for every n, the sequence does not converge uniformly to 0.

Q.13.4. (Solution to 13.2.4) (a) Since fn → g (unif), there exists m ∈ N such that

|fn(x)− g(x)| ≤ sup{|fn(y)− g(y)| : y ∈ S} < 1

whenever n ≥ m and x ∈ S. Thus, in particular,

|g(x)| ≤ |fm(x)− g(x)|+ |fm(x)| < 1 +K

where K is a number satisfying |fm(x)| ≤ K for all x ∈ S.
(b) Let

fn(x) =

{
x, if |x| ≤ n
0, if |x| > n

and g(x) = x for all x in R. Then fn → g (ptws), each fn is bounded, but g is not.

Q.13.5. (Solution to 13.2.5) If 0 ≤ x < 1, then

fn(x) = xn − x2n → 0 as n→∞ .

This and the obvious fact that fn(1) = 0 for every n tell us that

fn → 0 (ptws) .

Observe that x2n ≤ xn whenever 0 ≤ x ≤ 1 and n ∈ N. Thus fn ≥ 0 for each n. Use techniques
from beginning calculus to find the maximum value of each fn. Differentiating we see that

f ′n(x) = nxn−1 − 2nx2n−1 = nxn−1(1− 2xn)

for n > 1. Thus the function fn has a critical point, in fact assumes a maximum, when 1−2xn = 0;
that is, when x = 2−1/n. But then

sup{|fn(x)− 0| : 0 ≤ x ≤ 1} = fn(2−1/n) = 1
2 −

1
4 = 1

4

for all n > 1. Since sup{|fn(x)− 0| : 0 ≤ x ≤ 1}9 0 as n→∞, the convergence is not uniform.
Is it possible that the sequence fn converges uniformly to some function g other than the

zero function? The answer is no. According to proposition 13.2.2 if fn → g 6= 0 (unif), then
fn → g (ptws). But this contradicts what we have already shown, namely, fn → 0 (ptws).
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Note: Since each of the functions fn belongs to B([0, 1]), it is permissible, and probably desirable,
in the preceding proof to replace each occurrence of the rather cumbersome expression sup{|fn(x)−
0| : 0 ≤ x ≤ 1} by du(fn,0).

Q.14. Exercises in chapter 14

Q.14.1. (Solution to 14.1.5) Suppose f is continuous. Let U
◦
⊆ M2. To show that f←(U) is an

open subset of M1, it suffices to prove that each point of f←(U) is an interior point of f←(U). If
a ∈ f←(U), then f(a) ∈ U . Since f is continuous at a, the set U , which is a neighborhood of f(a),
must contain the image under f of a neighborhood V of a. But then

a ∈ V ⊆ f←(f→(V )) ⊆ f←(U)

which shows that a lies in the interior of f←(U).

Conversely, suppose that f←(U)
◦
⊆ M1 whenever U

◦
⊆ M2. To see that f is continuous at an

arbitrary point a in M1, notice that if V is a neighborhood of f(a), then a ∈ f←(V )
◦
⊆ M1. Thus

f←(V ) is a neighborhood of a whose image f→(f←(V )) is contained in V . Thus f is continuous
at a.

Q.14.2. (Solution to 14.1.9) Show that M is continuous at an arbitrary point (a, b) in R2. Since
the metric d1 (defined in 9.2.10) is equivalent to the usual metric on R2, proposition 14.1.8 assures
us that it is enough to establish continuity of the function M with respect to the metric d1. Let
K = |a| + |b| + 1. Given ε > 0, choose δ = min{ε/K, 1}. If (x, y) is a point in R2 such that
|x− a|+ |y − b| = d1((x, y), (a, b)) < δ, then

|x| ≤ |a|+ |x− a| < |a|+ δ ≤ |a|+ 1 ≤ K.
Thus for all such points (x, y)

|M(x, y)−M(a, b)| = |xy − xb+ xb− ab|
≤ |x| |y − b|+ |x− a| |b|
≤ K|y − b|+K|x− a|
< Kδ

≤ ε.

Q.14.3. (Solution to 14.1.26) Suppose that f is continuous at a. Let xn → a and B2 be a
neighborhood of f(a). There exists a neighborhood B1 of a such that f→(B1) ⊆ B2. Choose
n0 ∈ N so that xn ∈ B1 whenever n ≥ n0. Then f(xn) ∈ f→(B1) ⊆ B2 whenever n ≥ n0. That is,
the sequence

(
f(xn)

)
is eventually in the neighborhood B2. Since B2 was arbitrary, f(xn)→ f(a).

Conversely, suppose that f is not continuous at a. Then there exists ε > 0 such that the image
under f of Bδ(a) contains points which do not belong to Bε(f(a)), no matter how small δ > 0 is
chosen. Thus for every n ∈ N there exists xn ∈ B1/n(a) such that f(xn) /∈ Bε(f(a)). Then clearly
xn → a but f(xn) 9 f(a).

Q.14.4. (Solution to 14.2.1) Let (a, b) be an arbitrary point in M1 ×M2. If (xn, yn) → (a, b) in
M1 ×M2, then proposition 12.3.4 tells us that π1(xn, yn) = xn → a = π1(a, b). This shows that π1
is continuous at (a, b). Similarly, π2 is continuous at (a, b).

Q.14.5. (Solution to 14.2.3) Suppose f is continuous. Then the components f1 = π1 ◦ f and
f2 = π2 ◦ f , being composites of continuous functions, are continuous. Conversely, suppose that f1

and f2 are continuous. Let a be an arbitrary point in N . If xn → a, then (by proposition 14.1.26)
f1(xn)→ f1(a) and f2(xn)→ f2(a). From proposition 12.3.4 we conclude that

f(xn) = (f1(xn), f2(xn))→ (f1(a), f2(a)) = f(a) ;

so f is continuous at a.
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Q.14.6. (Solution to 14.2.4) (a) The function fg is the composite of continuous functions (that
is, fg = M ◦ (f, g)); so it is continuous by corollary 14.1.4.

(b) This is just a special case of (a) where f is the constant function whose value is α.

Q.14.7. (Solution to 14.2.12) For each a ∈M1 let ja : M2 →M1×M2 be defined by ja(y) = (a, y).
Then ja is continuous. (Proof: If yn → c, then ja(yn) = (a, yn) → (a, c) = ja(c).) Since f(a, · ) =
f ◦ ja, it too is continuous. The continuity of each f( · b) is established in a similar manner.

Q.14.8. (Solution to 14.2.15) Show that g is continuous at an arbitrary point a in M . Let ε > 0.
Since fn → g (unif) there exists n ∈ N such that

|fm(x)− g(x)| ≤ sup{|fn(y)− g(y)| : y ∈M} < ε/3

whenever m ≥ n and x ∈M . Since fn is continuous at a, there exists δ > 0 such that

|fn(x)− fn(a)| < ε/3

whenever d(x, a) < δ. Thus for x ∈ Bδ(a)

|g(x)− g(a)| ≤ |g(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− g(a)|
< ε

3 + ε
3 + ε

3 = ε .

This shows that g is continuous at a.

Q.14.9. (Solution to 14.3.3) Argue by contradiction. If b 6= c, then ε = d(b, c) > 0. Thus there
exists δ1 > 0 such that d(f(x), b) < ε/2 whenever x ∈ A and 0 < d(x, a) < δ1, and there exists
δ2 > 0 such that d(f(x), c) < ε/2 whenever x ∈ A and 0 < d(x, a) < δ2. Let δ = min{δ1, δ2}. Since
a ∈ A′, the set A ∩Bδ(a) is nonempty. Choose a point x in this set. Then

ε = d(b, c) ≤ d(b, f(x)) + d(f(x), c) < ε
2 + ε

2 = ε .

This is a contradiction.

It is worth noticing that the preceding proof cannot be made to work if a is not required
to be an accumulation point of A. To obtain a contradiction we must know that the condition
0 < d(x, a) < δ is satisfied for at least one x in the domain of f .

Q.14.10. (Solution to 14.3.8) Let g(x) = limy→b f(x, y) for all x ∈ R. It is enough to show that
limx→a

(
limy→b f(x, y)

)
= limx→a g(x) = l. Given ε > 0, choose δ > 0 so that |f(x, y) − l| < ε/2

whenever 0 < d
(
(x, y), (a, b)

)
< δ. (This is possible because l = lim(x,y)→(a,b) f(x, y).) Suppose that

0 < |x−a| < δ/
√

2. Then (by the definition of g) there exists ηx > 0 such that |g(x)−f(x, y)| < ε/2
whenever 0 < |y − b| < ηx. Now choose any y such that 0 < |y − b| < min{δ/

√
2, ηx}. Then (still

supposing that 0 < |x− a| < δ/
√

2) we see that

0 < d
(
(x, y), (a, b)

)
=
(
(x− a)2 + (y − b)2

)1/2
<
(
(δ2/2 + δ2/2

)1/2
= δ

so

|f(x, y)− l| < ε/2

and therefore

|g(x)− l| ≤ |g(x)− f(x, y)|+ |f(x, y)− l|
< ε

2 + ε
2 = ε.

That is, limx→a g(x) = l.
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Q.14.11. (Solution to 14.3.9) By the remarks preceding this exercise, we need only find two distinct
values which the function f assumes in every neighborhood of the origin. This is easy. Every
neighborhood of the origin contains points (x, 0) distinct from (0, 0) on the x-axis. At every such
point f(x, y) = f(x, 0) = 0. Also, every neighborhood of the origin contains points (x, x) distinct
from (0, 0) which lie on the line y = x. At each such point f(x, y) = f(x, x) = 1/17. Thus f has
no limit at the origin since in every neighborhood of (0, 0) it assumes both the values 0 and 1/17.
(Notice, incidentally, that both iterated limits, limx→0

(
limy→0 f(x, y)

)
and limy→0

(
limx→0 f(x, y)

)
exist and equal 0.)

Q.15. Exercises in chapter 15

Q.15.1. (Solution to 15.1.2) Suppose that A is compact. Let V be a family of open subsets of M
which covers A. Then

U := {V ∩A : V ∈ V}
is a family of open subsets of A which covers A. Since A is compact we may choose a subfamily
{U1, . . . , Un} ⊆ U which covers A. For 1 ≤ k ≤ n choose Vk ∈ V so that Uk = Vk ∩ A. Then
{V1, . . . , Vn} is a finite subfamily of V which covers A.

Conversely, Suppose every cover of A by open subsets of M has a finite subcover. Let U be a
family of open subsets of A which covers A. According to proposition 11.2.1 there is for each U
in U a set VU open in M such that U = VU ∩ A. Let V be {VU : U ∈ U}. This is a cover for A
by open subsets of M . By hypothesis there is a finite subfamily {V1, . . . , Vn} of V which covers A.
For 1 ≤ k ≤ n let Uk = Vk ∩A. Then {U1, . . . , Un} is a finite subfamily of U which covers A. Thus
A is compact.

Q.16. Exercises in chapter 16

Q.16.1. (Solution to 16.1.7) If a metric space M is not totally bounded then there exists a positive
number ε such that for every finite subset F of M there is a point a in M such that F ∩Bε(a) = ∅.
Starting with an arbitrary point x1 in M , construct a sequence (xk) inductively as follows: having
chosen x1, . . . , xn no two of which are closer together than ε, choose xn+1 ∈M so that

Bε(xn+1) ∩ {x1, . . . , xn} = ∅ .
Since no two terms of the resulting sequence are closer together than ε, it has no convergent
subsequence.

Q.16.2. (Solution to 16.2.1) (1) ⇒ (2): Suppose that there exists an infinite subset A of M which
has no accumulation point in M . Then A = A, so that A is closed. Each point a ∈ A has a
neighborhood Ba which contains no point of A other than a. Thus {Ba : a ∈ A} is a cover for A by
open subsets of M no finite subfamily of which covers A. This shows that A is not compact. We
conclude from proposition 15.1.3 that M is not compact.

(2) ⇒ (3): Suppose that (2) holds. Let a be a sequence in M . If the range of a is finite, then a
has a constant (therefore convergent) subsequence. Thus we assume that the image of a is infinite.
By hypothesis ran a has an accumulation point m ∈ M . We define n : N → N inductively: let
n(1) = 1; if n(1), . . . , n(k) have been defined, let n(k+ 1) be an integer greater than n(k) such that
ank+1

∈ B1/(k+1)(m). (This is possible since B1/(k+1)(m) contains infinitely many distinct points of
the range of a.) It is clear that a ◦ n is a subsequence of a and that ank → m as k →∞.

(3) ⇒ (1): Let U be an open cover for M . By corollary 16.1.13 the space M is separable.
Let A be a countable dense subset of M and B be the family of all open balls B(a; r) such that

(i) a ∈ A;

(ii) r ∈ Q and;

(iii) Br(a) is contained in at least one member of U.
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Then for each B ∈ B choose a set UB in U which contains B. Let

V = {UB ∈ U : B ∈ B} .

It is clear that V is countable; we show that V covers M .
Let x ∈ M . There exist U0 in U and r > 0 such that Br(x) ⊆ U0. Since A is dense in M ,

proposition 11.1.22 allows us to select a point a in A ∩B 1
3
r(x). Next let s be any rational number

such that 1
3r < s < 2

3r. Then x ∈ Bs(a) ⊆ Br(x) ⊆ U0. [Proof: if y ∈ Bs(a), then

d(y, x) ≤ d(y, a) + d(a, x) < s+
1

3
r < r ;

so y ∈ Br(x).] This shows that Bs(a) belongs to B and that x ∈ UBs(a) ∈ V. Thus V covers M .
Now enumerate the members of V as a sequence (V1, V2, V3, . . . ) and let Wn = ∪nk=1Vk for each
n ∈ N. To complete the proof it suffices to find an index n such that Wn = M . Assume there is no
such n. Then for every k we may choose a point xk in Wk

c. The sequence (xk) has, by hypothesis,
a convergent subsequence (xnk). Let b be the limit of this sequence. Then for some m in N we have
b ∈ Vm ⊆Wm. Thus Wm is an open set which contains b but only finitely many of the points xnk .
(Wm contains at most the points x1, . . . , xm−1.) Since xnk → b, this is not possible.

Q.16.3. (Solution to 16.4.1) A compact subset of any metric space is closed and bounded (by
problem 15.1.5). It is the converse we are concerned with here.

Let A be a closed and bounded subset of Rn. Since it is bounded, there exist closed bounded
intervals J1, . . . , Jn in R such that

A ⊆ J ≡ J1 × · · · × Jn .

Each Jk is compact by example 6.3.5. Their product J is compact by corollary 16.3.2. Since J
is a compact subset of Rn under the product metric, it is a compact subset of Rn under its usual
Euclidean metric (see proposition 11.2.3 and the remarks preceding it). Since A is a closed subset
of J , it is compact by proposition 15.1.3.

Q.17. Exercises in chapter 17

Q.17.1. (Solution to 17.1.6) Suppose there exists a nonempty set U which is properly contained
in M and which is both open and closed. Then, clearly, the open sets U and U c disconnect M .
Conversely, suppose that the space M is disconnected by sets U and V . Then the set U is not the
null set, is not equal to M (because its complement V is nonempty), is open, and is closed (because
V is open).

Q.17.2. (Solution to 17.1.8) If N is disconnected, it can be written as the union of two disjoint
nonempty sets U and V which are open in N . (These sets need not, of course, be open in M .) We
show that U and V are mutually separated. It suffices to prove that U ∩ V is empty, that is, that
U ⊆ V c

. To this end suppose that u ∈ U . Since U is open in N , there exists δ > 0 such that

N ∩Bδ(u) = {x ∈ N : d(x, u) < δ} ⊆ U ⊆ V c .

Clearly Bδ(u) is the union of two sets: N ∩ Bδ(u) and N c ∩ Bδ(u). We have just shown that the
first of these is contained in V c. The second contains no points of N and therefore no points of V .
Thus Bδ(u) ⊆ V c. This shows that u does not belong to the closure (in M) of the set V ; so u ∈ V c

.

Since u was an arbitrary point of U , we conclude that U ⊆ V c
.

Conversely, suppose that N = U ∪ V where U and V are nonempty sets mutually separated
in M . To show that the sets U and V disconnect N , we need only show that they are open in N ,
since they are obviously disjoint.

We prove that U is open in N . Let u ∈ U and notice that since U ∩ V is empty, u cannot
belong to V . Thus there exists δ > 0 such that Bδ(u) is disjoint from V . Then certainly N ∩Bδ(u)
is disjoint from V . Thus N ∩Bδ(u) is contained in U . Conclusion: U is open in N .
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Q.17.3. (Solution to 17.1.11) Let G = {(x, y) : y = sinx}. The function x 7→ (x, sinx) is a
continuous surjection from R (which is connected by proposition 5.1.9) onto G ⊆ R2. Thus G is
connected by theorem 17.1.10.

Q.17.4. (Solution to 17.1.13) Let the metric space M be the union of a family C of connected
subsets of M and suppose that

⋂
C 6= ∅. Argue by contradiction. Suppose that M is disconnected

by disjoint nonempty open sets U and V . Choose an element p in
⋂

C. Without loss of generality
suppose that p ∈ U . Choose v ∈ V . There is at least one set C in C such that v ∈ C. We reach a
contradiction by showing that the sets U ∩ C and V ∩ C disconnect C. These sets are nonempty
[p belongs to C ∩ U and v to C ∩ V ] and open in C. They are disjoint because U and V are, and
their union is C, since

(U ∩ C) ∪ (V ∩ C) = (U ∪ V ) ∩ C = M ∩ C = C .

Q.17.5. (Solution to 17.1.15) Between an arbitrary point x in the unit square and the origin
there is a straight line segment, denote it by [0, x]. Line segments are connected because they are
continuous images of (in fact, homeomorphic to) intervals in R. The union of all the segments [0, x]
where x is in the unit square is the square itself. The intersection of all these segments is the origin.
Thus by proposition 17.1.13 the square is connected.

Q.17.6. (Solution to 17.2.7) The set B = {(x, sinx−1) : 0 < x ≤ 1} is a connected subset of R2

since it is the continuous image of the connected set (0, 1] (see theorem 17.1.10). Then by proposi-
tion 17.1.9 the set M := B is also connected. Notice that M = A ∪B where A = {(0, y) : |y| ≤ 1}.

To show that M is not arcwise connected, argue by contradiction. Assume that there exists a
continuous function f : [0, 1]→M such that f(0) ∈ A and f(1) ∈ B. We arrive at a contradiction
by showing that the component function f2 = π2 ◦f is not continuous at the point t0 = sup f←(A).

To this end notice first that, since A is closed in M and f is continuous, the set f←(A) is
closed in [0, 1]. By example 2.2.7 the point t0 belongs to f←(A). Without loss of generality we may
suppose that f2(t0) ≤ 0. We need only show that for every δ > 0 there exists a number t ∈ [0, 1]
such that |t− t0| < δ and |f2(t)− f2(t0)| ≥ 1.

Let δ > 0. Choose a point t1 in (t0, t0 + δ) ∩ [0, 1]. By proposition 5.1.9 the interval [t0, t1] is
connected, so its image

(
f1
)→

[t0, t1] under the continuous function f1 = π1 ◦ f is also a connected

subset of [0, 1] (by theorem 17.1.10) and therefore itself an interval. Let c = f1(t1). From t1 > t0
infer that t1 ∈ f←(B) and that therefore c > 0. Since t0 ∈ f←(A) it is clear that f1(t0) = 0. Thus
the interval [0, c] is not a single point and it is contained in

(
f1
)→

[t0, t1]. Choose n ∈ N sufficiently
large that

x =
2

(4n+ 1)π
< c .

Since x belongs to
(
f1
)→

[t0, t1], there exists t ∈ [t0, t1] such that x = f1(t). And since x > 0 the
point f(t) belongs to B. This implies that

f(t) =
(
f1(t), f2(t)

)
= (x, sinx−1) = (x, sin(4n+ 1)π2 ) = (x, 1) .

But then (since f2(t0) ≤ 0)

|f2(t)− f2(t0)| = |1− f2(t0)| ≥ 1 .

Q.17.7. (Solution to 17.2.8) Let A be a connected open subset of Rn. If A is empty the result is
obvious, so suppose that it is not. Choose a ∈ A. Let U be the set of all points x in A for which
there exists a continuous function f : [0, 1] → A such that f(0) = a and f(1) = x. The set U is
nonempty [it contains a]. Let V = A \ U . We wish to show that V is empty. Since A is connected
it suffices to show that both U and V are open.

To show that U is open let u ∈ U and let f : [0, 1] → A be a continuous function such that
f(0) = a and f(1) = u. Since A is an open subset of Rn there exists δ > 0 such that Bδ(u) ⊆ A.
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Every point b in Bδ(u) can be joined to u by the parametrized line segment ` : [0, 1] → A defined
by

`(t) =
(
(1− t)u1 + tb1, . . . , (1− t)un + tbn

)
.

It is easy to see that since b can be joined to u and u to a, the point b can be joined to a. [Proof:
If f : [0, 1]→ A and ` : [0, 1]→ A are continuous functions satisfying f(0) = a, f(1) = u, `(0) = u,
and `(1) = b, then the function g : [0, 1]→ A defined by

g(t) =

{
f(2t), for 0 ≤ t ≤ 1

2

`(2t− 1), for 1
2 < t ≤ 1

is continuous, g(0) = a, and g(1) = b.] This shows that Bδ(u) ⊆ U .
To see that V is open let v ∈ V and choose ε > 0 so that Bε(v) ⊆ A. If some point y in Bε(v)

could be joined to a by an arc in A, then v could be so joined to a (via y). Since this is not possible,
we have that Bε(v) ⊆ V .

Q.18. Exercises in chapter 18

Q.18.1. (Solution to 18.1.4) Suppose (xn) is a convergent sequence in a metric space and a is its
limit. Given ε > 0 choose n0 ∈ N so that d(xn, a) < 1

2ε whenever n ≥ n0. Then d(xm, xn) ≤
d(xm, a) + d(a, xn) < 1

2ε+ 1
2ε = ε whenever m,n ≥ n0. This shows that (xn) is Cauchy.

Q.18.2. (Solution to 18.1.5) Suppose that (xnk) is a convergent subsequence of a Cauchy sequence
(xn) and that xnk → a. Given ε > 0 choose n0 such that d(xm, xn) < 1

2ε whenever m, n ≥ n0.

Next choose k ∈ N such that nk ≥ n0 and d (xnk , a) < 1
2ε. Then for all m ≥ n0

d(xm, a) ≤ d (xm, xnk) + d (xnk , a) < 1
2ε+ 1

2ε = ε .

Q.18.3. (Solution to 18.1.6) A sequence in a metric space M , being a function, is said to be
bounded if its range is a bounded subset of M . If (xn) is a Cauchy sequence in M , then there exists
n0 ∈ N such that d(xm, xn) < 1 whenever m,n ≥ n0. For 1 ≤ k ≤ n0 − 1, let dk = d (xk, xn0); and
let r = max {d1, . . . , dn0−1, 1}. Then for every k ∈ N it is clear that xk belongs to Cr (xn0) (the
closed ball about xn0 of radius r). Thus the range of the sequence (xn) is bounded.

Q.18.4. (Solution to 18.2.9) Let (M,d) and (N, ρ) be complete metric spaces. Let d1 be the usual
product metric on M ×N (see 12.3.3). If ((xn, yn))∞n=1 is a Cauchy sequence in M ×N , then (xn)
is a Cauchy sequence in M since

d(xm, xn) ≤ d(xm, xn) + ρ(ym, yn)

= d1 ((xm, ym) , (xn, yn))→ 0

as m, n→∞.
Similarly, (yn) is a Cauchy sequence in N . Since M and N are complete, there are points a and

b in M and N respectively such that xn → a and yn → b. By proposition 12.3.4, (xn, yn)→ (a, b).
Thus M ×N is complete.

Q.18.5. (Solution to 18.2.10) It suffices to show that if (M,d) is complete, then (M,ρ) is. There
exist α, β > 0 such that d(x, y) ≤ αρ(x, y) and ρ(x, y) ≤ β d(x, y) for all x, y ∈ M . Let (xn) be a
Cauchy sequence in (M,ρ). Then since

d(xm, xn) ≤ αρ(xm, xn)→ 0 as m, n→∞ ,

the sequence (xn) is Cauchy in (M,d). By hypothesis (M,d) is complete; so there is a point a in
M such that xn → a in (M,d). But then xn → a in (M,ρ) since

ρ(xn, a) ≤ β d(xn, a)→ 0 as n→∞ .

This shows that (M,ρ) is complete.
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Q.18.6. (Solution to 18.2.12) Let (fn) be a Cauchy sequence in B(S,R). Since for every x ∈ S

|fm(x)− fn(x)| ≤ du(fm, fn)→ 0 as m, n→∞ ,

it is clear that
(
fn(x)

)
is a Cauchy sequence in R for each x ∈ S. Since R is complete, there exists,

for each x ∈ S, a real number g(x) such that fn(x) → g(x) as n → ∞. Consider the function g
defined by

g : S → R : x 7→ g(x) .

We show that g is bounded and that fn → g (unif). Given ε > 0 choose n0 ∈ N so that du(fm, fn) < ε
whenever m, n ≥ n0. Then for each such m and n

|fm(x)− fn(x)| < ε whenever x ∈ S .

Take the limit as m→∞ and obtain

|g(x)− fn(x)| ≤ ε

for every n ≥ n0 and x ∈ S. This shows that g − fn is bounded and that du(g, fn) ≤ ε. Therefore
the function

g = (g − fn) + fn

is bounded and du(g, fn)→ 0 as n→∞.

Q.19. Exercises in chapter 19

Q.19.1. (Solution to 19.1.2) 19.1.2 Let f : M → N be a contraction and let a ∈ M . We show
f is continuous at a. Given ε > 0, choose δ = ε. If d(x, a) < δ then d(f(x), f(a)) ≤ cd(x, a) ≤
d(x, a) < δ = ε, where c is a contraction constant for f .

Q.19.2. (Solution to 19.1.3) If (x, y) and (u, v) are points in R2, then

d
(
f(x, y), f(u, v)

)
= 1

3

[
(u− x)2 + (y − v)2 + (x− y − u+ v)2

]1/2
= 1

3

[
2(x− u)2 + 2(y − v)2 − 2(x− u)(y − v)

]1/2
≤ 1

3

[
2(x− u)2 + 2(y − v)2 + 2|x− u| |y − v|

]1/2
≤ 1

3

[
2(x− u)2 + 2(y − v)2 + (x− u)2 + (y − v)2

]1/2
=
√
3
3

[
(x− u)2 + (y − v)2

]1/2
= 1√

3
d
(
(x, y), (u, v)

)
.

Q.19.3. (Solution to 19.1.5) Let M be a complete metric space and f : M → M be contractive.
Since f is contractive, there exists c ∈ (0, 1) such that

d(f(x), f(y)) ≤ c d(x, y) (Q.9)

for all x, y ∈ M . First we establish the existence of a fixed point. Define inductively a sequence(
xn
)∞
n=0

of points in M as follows: Let x0 be an arbitrary point in M . Having chosen x0, . . . , xn
let xn+1 = f(xn). We show that (xn) is Cauchy. Notice that for each k ∈ N

d(xk, xk+1) ≤ ckd(x0, x1) . (Q.10)

[Inductive proof: If k = 1, then d(x1, x2) = d (f(x0), f(x1)) ≤ c d(x0, x1). Suppose that (Q.10)
holds for k = n. Then d

(
xn+1, xn+2

)
= d

(
f(xn), f(xn+1)

)
≤ c d

(
xn, xn+1

)
≤ c · cn d

(
x0, x1

)
=
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cn+1d
(
x0, x1

)
.) Thus whenever m < n

d
(
xm, xn

)
≤

n−1∑
k=m

d
(
xk, xk+1

)
≤

n−1∑
k=m

ckd
(
x0, x1

)
≤ d
(
x0, x1

) ∞∑
k=m

ck

= d
(
x0, x1

) cm

1− c
. (Q.11)

Since cm → 0 as m→∞, we see that

d(xm, xn)→ 0 as m, n→∞ .

That is, the sequence (xn) is Cauchy. Since M is complete there exists a point p in M such that
xn → p. The point p is fixed under f since f is continuous and therefore

f(p) = f(limxn) = lim f(xn) = limxn+1 = p .

Finally, to show that there is at most one point fixed by f , argue by contradiction. Assume
that f(p) = p, f(q) = q, and p 6= q. Then

d(p, q) = d
(
f(p), f(q)

)
≤ c d(p, q)

< d(p, q)

which certainly cannot be true.

Q.19.4. (Solution to 19.1.9) (a) In inequality (19.5) of example 19.1.6 we found that c = 0.4 is a
contraction constant for the mapping T . Thus, according to 19.1.7,

d1(x4, p) ≤ d1(x0, x1)
c4

1− c

= (0.7 + 1.1)
(0.4)4

1− 0.4
= 0.0768.

(b) The d1 distance between x4 and p is

d1(x4, p) = |1.0071− 1.0000|+ |0.9987− 1.0000|
= 0.0084 .

(c) We wish to choose n sufficiently large that d1(xn, p) ≤ 10−4. According to corollary 19.1.7
it suffices to find n such that

d1(x0, x1)
cn

1− c
≤ 10−4 .

This is equivalent to requiring

(0.4)n ≤ 10−4(0.6)

1.8
= 1

310−4 .

For this, n = 12 suffices.
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Q.19.5. (Solution to 19.2.1) Define T on C([0, 1],R) as in the hint. The space C([0, 1],R) is a
complete metric space by example 18.2.13. To see that T is contractive, notice that for f, g ∈
C([0, 1],R) and 0 ≤ x ≤ 1

|Tf(x)− Tg(x)| =
∣∣∣∣∫ x

0
t2f(t) dt−

∫ x

0
t2g(t) dt

∣∣∣∣
=

∣∣∣∣∫ x

0
t2(f(t)− g(t)) dt

∣∣∣∣
≤
∫ x

0
t2|f(t)− g(t)| dt

≤ du(f, g)

∫ x

0
t2 dt

= 1
3x

3 du(f, g) .

Thus

du(Tf, Tg) = sup{|Tf(x)− Tg(x)| : 0 ≤ x ≤ 1}
≤ 1

3 du(f, g) .

This shows that T is contractive.
Theorem 19.1.5 tells us that the mapping T has a unique fixed point in C([0, 1],R). That is,

there is a unique continuous function on [0, 1] which satisfies (19.6).
To find this function we start, for convenience, with the function g0 = 0 and let gn+1 = Tgn for

all n ≥ 0. Compute g1, g2, g3, and g4.

g1(x) = Tg0(x) = 1
3x

3,

g2(x) = Tg1(x)

= 1
3x

3 +

∫ x

0
t2
(
1
3 t

3
)
dt

= 1
3x

3 + 1
3·6x

6 ,

g3(x) = Tg2(x)

= 1
3x

3 +

∫ x

0
t2
(
1
3 t

3 + 1
3·6x

6
)
dt

= 1
3x

3 + 1
3·6x

6 + 1
3·6·9x

9 ,

It should now be clear that for every n ∈ N

gn(x) =

n∑
k=1

1

3k k!
x3k =

n∑
k=1

1

k!

(
x3

3

)k
and that the uniform limit of the sequence (gn) is the function f represented by the power series

∞∑
k=1

1

k!

(
x3

3

)k
.

Recall from elementary calculus that the power series expansion for ey (also written exp(y)) is

∞∑
k=0

1

k!
yk
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for all y in R; that is,
∞∑
k=1

1

k!
yk = ey − 1 .

Thus

f(x) =
∞∑
k=1

1

k!

(
x3

3

)k
= exp

(
1
3x

3
)
− 1 .

Finally we check that this function satisfies (19.6) for all x in R.

1
3x

3 +

∫ x

0
t2f(t) dt = 1

3x
3 +

∫ x

0
t2
(
exp

(
1
3 t

3
)
− 1
)
dt

= 1
3x

3 +
(
exp

(
1
3 t

3
)
− 1

3 t
3
)∣∣x

0

= exp
(
1
3x

3
)
− 1

= f(x).

Q.20. Exercises in chapter 20

Q.20.1. (Solution to 20.1.2) Suppose that 0 and 0′ are vectors in V such that x + 0 = x and
x+ 0′ = x for all x ∈ V . Then

0′ = 0′ + 0 = 0 + 0′ = 0 .

Q.20.2. (Solution to 20.1.4) The proof takes one line:

x = x+ 0 = x+ (x+ (−x)) = (x+ x) + (−x) = x+ (−x) = 0 .

Q.20.3. (Solution to 20.1.5) Establish (a), (b), and (c) of the hint.

(a) Since α0 + α0 = α(0 + 0) = α0, we conclude from 20.1.4 that α0 = 0.
(b) Use the same technique as in (a): since 0x + 0x = (0 + 0)x = 0x, we deduce from 20.1.4

that 0x = 0.
(c) We suppose that α 6= 0 and that αx = 0. We prove that x = 0. Since the real number α

is not zero, its reciprocal a−1 exists. Then

x = 1 · x =
(
α−1α

)
x = α−1(αx) = α−10 = 0 .

(The last equality uses part (a).)

Q.20.4. (Solution to 20.1.6) Notice that (−x) +x = x+ (−x) = 0. According to 20.1.3, the vector
x must be the (unique) additive inverse of −x. That is, x = −(−x).

Q.20.5. (Solution to 20.1.13) The set W is closed under addition and scalar multiplication; so
vector space axioms (1) and (4) through (8) hold in W because they do in V . Choose an arbitrary
vector x in W . Then using (c) we see that the zero vector 0 of V belongs to W because it is just
the result of multiplying x by the scalar 0 (see exercise 20.1.5). To show that (3) holds we need
only verify that if x ∈ W , then its additive inverse −x in V also belongs to W . But this is clear
from problem 20.1.7 since the vector −x is obtained by multiplying x by the scalar −1.

Q.20.6. (Solution to 20.1.19) Use proposition 20.1.13.
(a) The zero vector belongs to every member of S and thus to

⋂
S. Therefore

⋂
S 6= ∅.

(b) Let x, y ∈
⋂
S. Then x, y ∈ S for every S ∈ S. Since each member of S is a subspace,

x+ y belongs to S for every S ∈ S. Thus x+ y ∈
⋂
S.

(c) Let x ∈
⋂
S and α ∈ R. Then x ∈ S for every S ∈ S. Since each member of S is closed

under scalar multiplication, αx belongs to S for every S ∈ S. Thus αx ∈
⋂

S.
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Q.20.7. (Solution to 20.2.2) We wish to find scalars α, β, γ, and δ such that

α(1, 0, 0) + β(1, 0, 1) + γ(1, 1, 1) + δ(1, 1, 0) = (0, 0, 0) .

This equation is equivalent to

(α+ β + γ + δ, γ + δ, β + γ) = (0, 0, 0) .

Thus we wish to find a (not necessarily unique) solution to the system of equations:

α+β+γ+δ = 0

+γ+δ = 0

β+γ+ = 0

One solution is α = γ = 1, β = δ = −1.

Q.20.8. (Solution to 20.3.2) We must find scalars α, β, γ ≥ 0 such that α+ β + γ = 1 and

α(1, 0) + β(0, 1) + γ(3, 0) = (2, 1/4) .

This last vector equation is equivalent to the system of scalar equations{
α+ 3γ = 2

β = 1
4 .

From α+ 1
4 + γ = 1 and α+ 3γ = 2, we conclude that α = 1

8 and γ = 5
8 .

Q.20.9. (Solution to 20.3.10) In order to say that the intersection of the family of all convex sets
which contain A is the “smallest convex set containing A”, we must know that this intersection
is indeed a convex set. This is an immediate consequence of the fact that the intersection of any
family of convex sets is convex. (Proof. Let A be a family of convex subsets of a vector space and
let x, y ∈

⋂
A. Then x, y ∈ A for every A ∈ A. Since each A in A is convex, the segment [x, y]

belongs to A for every A. Thus [x, y] ⊆
⋂

A.)

Q.21. Exercises in chapter 21

Q.21.1. (Solution to 21.1.2) If x, y ∈ R3 and α ∈ R, then

T (x+ y) = T (x1 + y1, x2 + y2, x3 + y3)

= (x1 + y1 + x3 + y3, x1 + y1 − 2x2 − 2y2)

= (x1 + x3, x1 − 2x2) + (y1 + y3, y1 − 2y2)

= Tx+ Ty

and

T (αx) = T (αx1, αx2, αx3)

= (αx1 + αx3, αx1 − 2αx2)

= α(x1 + x3, x1 − 2x2)

= αTx.

Q.21.2. (Solution to 21.1.4) Write (2, 1, 5) as 2e1 + e2 + 5e3. Use the linearity of T to see that

T (2, 1, 5) = T (2e1 + e2 + 5e3)

= 2Te1 + Te2 + 5Te3

= 2(1, 0, 1) + (0, 2,−1) + 5(−4,−1, 3)

= (2, 0, 2) + (0, 2,−1) + (−20,−5, 15)

= (−18,−3, 16).
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Q.21.3. (Solution to 21.1.6) (a) Let x be any vector in V ; then (by proposition 20.1.5) 0x = 0.
Thus T (0) = T (0x) = 0Tx = 0.

(b) By proposition 20.1.7

T (x− y) = T (x+ (−y))

= T (x+ (−1)y)

= Tx+ (−1)Ty

= Tx− Ty.

Q.21.4. (Solution to 21.1.13) First we determine where T takes an arbitrary vector (x, y, z) in its
domain.

T (x, y, z) = T (xe1 + ye2 + ze3)

= xTe1 + yTe2 + zTe3

= x(1,−2, 3) + y(0, 0, 0) + z(−2, 4,−6)

= (x− 2z,−2x+ 4z, 3x− 6z).

A vector (x, y, z) belongs to the kernel of T if and only if T (x, y, z) = (0, 0, 0); that is, if and
only if x − 2z = 0. (Notice that the two remaining equations, −2x + 4z = 0 and 3x − 6z = 0,
have exactly the same solutions.) Thus the kernel of T is the set of points (x, y, z) in R3 such that
x = 2z. This is a plane in R3 which contains the y-axis. A vector (u, v, w) belongs to the range of
T if an only if there exists a vector (x, y, z) ∈ R3 such that (u, v, w) = T (x, y, z). This happens if
an only if

(u, v, w) = (x− 2z,−2x+ 4z, 3x− 6z) ;

that is, if an only if

u = x− 2z

v = −2x+ 4z = −2u

w = 3x− 6z = 3u.

Consequently, only points of the form (u,−2u, 3u) = u(1,−2, 3) belong to ranT . Thus the range
of T is the straight line in R3 through the origin which contains the point (1,−2, 3).

Q.21.5. (Solution to 21.1.17) According to proposition 20.1.13 we must show that ranT is nonempty
and that it is closed under addition and scalar multiplication. That it is nonempty is clear from
proposition 21.1.6(a): 0 = T0 ∈ ranT . Suppose that u, v ∈ ranT . Then there exist x, y ∈ V such
that u = Tx and v = Ty. Thus

u+ v = Tx+ Ty = T (x+ y) ;

so u+v belongs to ranT . This shows that ranT is closed under addition. Finally, to show that it is
closed under scalar multiplication let u ∈ ranT and α ∈ R. There exists x ∈ V such that u = Tx;
so

αu = αTx = T (αx)

which shows that αu belongs to ranT .

Q.21.6. (Solution to 21.2.1) Recall from example 20.1.11 that under pointwise operations of addi-
tion and scalar multiplication F(V,W ) is a vector space. To prove that L(V,W ) is a vector space
it suffices to show that it is a vector subspace of F(V,W ). This may be accomplished by invoking
proposition 20.1.13, according to which we need only verify that L(V,W ) is nonempty and is closed
under addition and scalar multiplication. Since the zero transformation (the one which takes every
x in V to the zero vector in W ) is certainly linear, L(V,W ) is not empty. To prove that it is closed
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under addition we verify that the sum of two linear transformations is itself linear. To this end let
S and T be members of L(V,W ). Then for all x and y in V

(S + T )(x+ y) = S(x+ y) + T (x+ y)

= Sx+ Sy + Tx+ Ty

= (S + T )x+ (S + T )y.

(Q.12)

(It is important to be cognizant of the reason for each of these steps. There is no “distributive law”
ate work here. The first and last use the definition of addition as a pointwise operation, while the
middle one uses the linearity of S and T .) Similarly, for all x in V and α in R

(S + T )(αx) = S(αx) + T (αx)

= αSx+ αTx

= α(Sx+ Tx)

= α(S + T )x.

(Q.13)

Equations (Q.12) and (Q.13) show that S + T is linear and therefore belongs to L(V,W ).
We must also prove that L(V,W ) is closed under scalar multiplication. Let T ∈ L(V,W ) and

α ∈ R, and show that the function αT is linear. For all x, y ∈ V
(αT )(x+ y) = α(T (x+ y))

= α(Tx+ Ty)

= α(Tx) + α(Ty)

= (αT )x+ (αT )y.

(Q.14)

Finally, for all x in V and β in R
(αT )(βx) = α(T (βx))

= α(β(Tx))

= (αβ)Tx

= (βα)Tx

= β(α(Tx))

= β((αT )x) .

(Q.15)

Equations (Q.14) and (Q.15) show that αT belongs to L(V,W ).

Q.21.7. (Solution to 21.2.2) Since T is bijective there exists a function T−1 : W → V satisfying
T−1 ◦ T = IV and T ◦ T−1 = IW . We must show that this function is linear. To this end let
u, v ∈W . Then

T (T−1(u+ v)) = IW (u+ v)

= u+ v

= IW (u) + IW (v)

= T (T−1(u) + T (T−1(v)

= T (T−1u+ T−1v).

Since T is injective the preceding computation implies that

T−1(u+ v) = T−1u+ T−1v.

Similarly, from
TT−1(αx) = αx = αTT−1x = T (αT−1x)

we infer that
T−1(αx) = αT−1x.
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Q.21.8. (Solution to 21.3.1)

a+ b =

[
5 −3 3 −2
2 −2 1 4

]
3a =

[
12 6 0 −3
−3 −9 3 15

]
a− 2b =

[
2 12 −6 1
−7 −5 1 7

]
.

Q.21.9. (Solution to 21.3.3) ab =

[
2(1) + 3(2) + (−1)1 2(0) + 3(−1) + (−1)(−2)
0(1) + 1(2) + 4(1) 0(0) + 1(−1) + 4(−2)

]
=

[
7 −1
6 −9

]
.

Q.21.10. (Solution to 21.3.8) ax = (1, 4, 1).

Q.21.11. (Solution to 21.3.10(a)) To show that the vectors a(x + y) and ax + ay are equal show
that (a(x+ y))j (that is, the jth component of a(x+ y)) is equal to (ax+ ay)j (the jth component
of ax+ ay) for each j in Nm. This is straight forward

(a(x+ y))j =

n∑
k=1

ajk(x+ y)k

=

n∑
k=1

ajk(xk + yk)

=

n∑
k=1

(ajkxk + ajkyk)

=

n∑
k=1

ajkxk +

n∑
k=1

ajkyk

= (ax)j + (ay)j

= (ax+ ay)j .

Q.21.12. (Solution to 21.3.13)

xay =
[
1 −2 0

] 1 3 −1
0 2 4
1 −1 1

3
0
1


=
[
1 −2 0

] 2
4
4

 = −6 .

Q.21.13. (Solution to 21.3.17) Suppose a is an n × n-matrix with inverses b and c. Then ab =
ba = In and ac = ca = In. Thus

b = bIn = b(ac) = (ba)c = Inc = c .

Q.21.14. (Solution to 21.3.18) Multiply a and b to obtain ab = I3 and ba = I3. By the uniqueness
of inverses (proposition 21.3.17) b is the inverse of a.

Q.21.15. (Solution to 21.4.9) Expanding the determinant of a along the first row (fact 5) we obtain

det a =
3∑

k=1

a1kC
1
k

= 1 · (−1)1+1 det

[
3 −1
−1 1

]
+ 0 · (−1)1+2 det

[
0 −1
1 1

]
+ 2 · (−1)1+3 det

[
0 3
1 −1

]
= 2 + 0− 6 = −4.
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Since det a 6= 0, the matrix a is invertible. Furthermore,

a−1 = (det a)−1

C1
1 C1

2 C1
3

C2
1 C2

2 C2
3

C3
1 C3

2 C3
3

t

= −1

4

C1
1 C2

1 C3
1

C1
2 C2

2 C3
2

C1
3 C2

3 C3
3

t

= −1

4

 2 −2 −6
−1 −1 1
−3 1 3


=

−1
2

1
2

3
2

1
4

1
4 −1

4
3
4 −1

4 −3
4

 .
Q.21.16. (Solution to 21.5.4) Since Te1 = T (1, 0) = (1, 0, 2,−4) and Te2 = T (0, 1) = (−3, 7, 1, 5)
the matrix representation of T is given by

[T ] =


1 −3
0 7
2 1
−4 5

 .
Q.21.17. (Solution to 21.5.5) Let a = [T ]. Then ajk = (Tek)j for each j and k. Notice that the
map

S : Rn → Rm : x 7→ ax

is linear by proposition 21.3.10 (a) and (b). We wish to show that S = T . According to prob-
lem 21.1.19 (b) it suffices to show that Sek = Tek for 1 ≤ k ≤ n. But this is essentially obvious:
for each j ∈ Nm

(Sek)j = (aek)j =
n∑
l=1

ajl e
k
l = ajk = (Tek)j .

To prove the last assertion of the proposition, suppose that Tx = ax for all x in Rn. By the
first part of the proposition [T ]x = ax for all x in Rn. But then proposition 21.3.11 implies that
[T ] = a.

Q.21.18. (Solution to 21.5.6) First we show that the map T 7→ [T ] is surjective. Given an m× n-
matrix a we wish to find a linear map T such that a = [T ]. This is easy: let T : Rn → Rm : x 7→ ax.
By proposition 21.3.10 (a) and (b) the map T is linear. By proposition 21.5.5

[T ]x = Tx = ax for all x ∈ Rn.

Then proposition 21.3.11 tells us that [T ] = a.
Next we show that the map T 7→ [T ] is injective. If [T ] = [S], then by proposition 21.5.5

Tx = [T ]x = [S]x = Sx for all x ∈ Rn.

This shows that T = S.

Q.21.19. (Solution to 21.5.7) By proposition 21.3.11 it suffices to show that [S+T ]x = ([S]+[T ])x
for all x in Rn. By proposition 21.5.5

[S + T ]x = (S + T )x = Sx+ Tx = [S]x+ [T ]x = ([S] + [T ])x .

The last step uses proposition 21.3.10(c).
(b) Show that [αT ]x = (α[T ])x for all x in Rn.

[αT ]x = (αT )x = α(Tx) = α([T ]x) = (α[T ])x .



Q.22. EXERCISES IN CHAPTER 22 307

The last step uses proposition 21.3.10(d).

Q.22. Exercises in chapter 22

Q.22.1. (Solution to 22.1.6) Here of course we use the usual norm on R4.

‖f(a+ λh)‖ = ‖f
(
(4, 2,−4) + (−1

2
)(2, 4,−4)

)
‖

= ‖f(3, 0,−2)‖

= ‖(−6, 9, 3,−3
√

2)‖

= 3
[
(−2)2 + 32 + 12 + (−

√
2)2
]1/2

= 12

Q.22.2. (Solution to 22.1.7) Since

f(a+ h)− f(a)−mh = f(1 + h1, h2,−2 + h3)− f(1, 0,−2)−
[
6 0 0
0 1 −1

]h1h2
h3


=
(
3(1 + 2h1 + h1

2), h2 + h1h2 + 2− h3
)
− (3, 2)− (6h1, h2 − h3)

= (3h1
2, h1h2),

we have

‖f(a+ h)− f(a)−mh‖ = (9h1
4 + h1

2h2
2)1/2 = |h1|(9h12 + h2

2)1/2 .

Q.22.3. (Solution to 22.1.10) Using the second derivative test from beginning calculus (and check-
ing the value of f + g at the endpoints of the interval) we see that f(x) + g(x) assumes a maximum
value of

√
2 at x = π/4 and a minimum value of −

√
2 at x = 5π/4. So

‖f + g‖u = sup{|f(x) + g(x)| : 0 ≤ x ≤ 2π} =
√

2 .

Q.22.4. (Solution to 22.1.12) Let x ∈ V . Then

(a) ‖0‖ = ‖0 · x‖ = |0| ‖x‖ = 0.
(b) ‖−x‖ = ‖(−1)x‖ = |−1| ‖x‖ = ‖x‖.
(c) 0 = ‖0‖ = ‖x+ (−x)‖ ≤ ‖x‖+ ‖−x‖ = 2‖x‖.

Q.22.5. (Solution to 22.2.2(a)) By proposition 22.1.12(b) it is clear that ‖x‖ < r if and only if
‖−x‖ < r. That is, d(x,0) < r if and only d(−x,0) < r. Therefore, x ∈ Br(0) if and only if
−x ∈ Br(0), which in turn holds if and only if x = −(−x) ∈ −Br(0).

Q.22.6. (Solution to 22.3.2) Suppose ‖ ‖1 and ‖ ‖2 are equivalent norms on V. Let d1 and
d2 be the metrics induced by ‖ ‖1 and ‖ ‖2, respectively. (That is, d1(x, y) = ‖x − y‖1 and
d2(x, y) = ‖x − y‖2 for all x, y ∈ V .) Then d1 and d2 are equivalent metrics. Thus there exist
α, β > 0 such that d1(x, y) ≤ αd2(x, y) and d2(x, y) ≤ βd1(x, y) for all x, y ∈ V . Then in particular

‖x‖1 = ‖x− 0‖1 = d1(x,0) ≤ αd2(x,0) = α‖x− 0‖2 = α‖x‖2
and similarly

‖x‖2 = d2(x,0) ≤ βd1(x,0) = β‖x‖1
for all x in V . Conversely, suppose there exist α, β > 0 such that ‖x‖1 ≤ α‖x‖2 and ‖x‖2 ≤ β‖x‖1
for all x in V . Then for all x, y ∈ V

d1(x, y) = ‖x− y‖1 ≤ α‖x− y‖2 = αd2(x, y)

and similarly

d2(x, y) ≤ βd1(x, y) .

Thus d1 and d2 are equivalent metrics.
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Q.22.7. (Solution to 22.3.5) Let f : R× V → V : (β, x) 7→ βx. We show that f is continuous at an
arbitrary point (α, a) in R×V . Given ε > 0 let M be any number larger than both |α| and ‖a‖+1.
Choose δ = min{1, ε/M}. Notice that

|β − α|+ ‖x− a‖ = ‖(β − α, x− a)‖1
= ‖(β, x)− (α, a)‖1.

Thus whenever ‖(β, x)− (α, a)‖1 < δ we have

‖x‖ ≤ ‖a‖+ ‖x− a‖ < ‖a‖+ δ ≤ ‖a‖+ 1 ≤M

so that

‖f(β, x)− f(α, a)‖ = ‖βx− αa‖
≤ ‖βx− αx‖+ ‖αx− αa‖
= |β − α| ‖x‖+ |α| ‖x− a‖
≤M(|β − α|+ ‖x− a‖)
< M δ

≤ ε.

Q.22.8. (Solution to 22.3.6) If βn → α in R and xn → a in V , then (βn, xn)→ (α, a) in R× V by
proposition 12.3.4). According to the previous proposition

f : R× V → V : (β, x) 7→ βx

is continuous. Thus it follows immediately from proposition 14.1.26 that

βnxn = f(βn, xn)→ f(α, a) = αa .

Q.22.9. (Solution to 22.4.2) We know from example 20.1.11 that F(S, V ) is a vector space. We
show that B(S, V ) is a vector space by showing that it is a subspace of F(S, V ). Since B(S, V ) is
nonempty (it contains every constant function), we need only verify that f +g and αf are bounded
when f , g ∈ B(S, V ) and α ∈ R. There exist constants M , N > 0 such that ‖f(x)‖ ≤ M and
‖g(x)‖ ≤ N for all x in S. But then

‖(f + g)(x)‖ ≤ ‖f(x) + g(x)‖ ≤ ‖f(x)‖+ ‖g(x)‖ ≤M +N

and

‖(αf)(x)‖ = ‖αf(x)‖ = |α| ‖f(x)‖ ≤ |α|M .

Thus the functions f + g and αf are bounded.

Q.23. Exercises in chapter 23

Q.23.1. (Solution to 23.1.4)
(a) =⇒ (b): Obvious.
(b) =⇒ (c): Suppose T is continuous at a point a in V . Given ε > 0 choose δ > 0 so

that ‖Tx − Ta‖ < ε whenever ‖x − a‖ < δ. If ‖h − 0‖ = ‖h‖ < δ then ‖(a + h) − a‖ < δ and
‖Th− T0‖ = ‖Th‖ = ‖T (a+ h)− Ta‖ < ε. Thus T is continuous at 0.

(c) =⇒ (d): Argue by contradiction. Assume that T is continuous at 0 but is not bounded.

Then for each n ∈ N there is a vector xn in V such that ‖Txn‖ > n‖xn‖. Let yn =
(
n‖xn‖

)−1
xn.

Then ‖yn‖ = n−1; so yn → 0. Since T is continuous at 0 we conclude that Tyn → 0 as n → ∞.
On the other hand

‖Tyn‖ =
(
n‖xn‖

)−1‖Txn‖ > 1

for every n. This shows that Tyn 6→ 0 as n→∞, which contradicts the preceding assertion.
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(d) =⇒ (a): If T is bounded, there exists M > 0 such that ‖Tx‖ ≤ M‖x‖ for all x in V . It
is easy to see that T is continuous at an arbitrary point a in V . Given ε > 0 choose δ = ε/M . If
‖x− a‖ < δ, then

‖Tx− Ta‖ = ‖T (x− a)‖ ≤M‖x− a‖ < Mδ = ε .

Q.23.2. (Solution to 23.1.6) The first equality is an easy computation.

sup{‖x‖−1 ‖Tx‖ : x 6= 0} = inf{M > 0: M ≥ ‖x‖−1‖Tx‖for all x 6= 0}
= inf{M > 0: ‖Tx‖ ≤M‖x‖for all x}
= ‖T‖

The second is even easier.

sup{‖x‖−1 ‖Tx‖ : x 6= 0} = sup{‖T
(
‖x‖−1x

)
‖}

= sup{‖Tu‖ : ‖u‖ = 1}.
To obtain the last equality notice that since

{‖Tu‖ : ‖u‖ = 1} ⊆ {‖Tx‖ : ‖x‖ ≤ 1}
it is obvious that

sup{‖Tu‖ : ‖u‖ = 1} ≤ sup{‖Tx‖ : ‖x‖ ≤ 1} .
On the other hand, if ‖x‖ ≤ 1 and x 6= 0, then v := ‖x‖−1x is a unit vector, and so

‖Tx‖ ≤ ‖x‖−1‖Tx‖
= ‖Tv‖
≤ sup{‖Tu‖ : ‖u‖ = 1}.

Therefore
sup{‖Tx‖ : ‖x‖ ≤ 1} ≤ sup{‖Tu‖ : ‖u‖ = 1} .

Q.23.3. (Solution to 23.1.11)
(a) Let I : V → V : x 7→ x. Then (by lemma 23.1.6)

‖I‖ = sup{‖Ix‖ : ‖x‖ = 1} = sup{‖x‖ : ‖x‖ = 1} = 1 .

(b) Let 0̂ : V →W : x 7→ 0. Then ‖0̂‖ = sup{‖0̂x‖ : ‖x‖ = 1} = sup{0} = 0.
(c) We suppose k = 1. (The case k = 2 is similar.) Let x be a nonzero vector in V1 and

u = ‖x‖−1x. Since ‖(u,0)‖1 = ‖u‖+ ‖0‖ = ‖u‖ = 1, we see (from lemma 23.1.6) that

‖π1‖ = sup{‖π1(x1, x2)‖ : ‖(x1, x2)‖ = 1}
≥ ‖π1(u,0)‖
= ‖u‖
= 1.

On the other hand since ‖π1(x1, x2)‖ = ‖x1‖ ≤ ‖(x1, x2)‖1 for all (x1, x2) in V1×V2, it follows from
the definition of the norm of a transformation that ‖π1‖ ≤ 1.

Q.23.4. (Solution to 23.1.12) Let f , g ∈ C and α ∈ R. Then

J(f + g) =

∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx = Jf + Jg

and

J(αf) =

∫ b

a
αf(x) dx = α

∫ b

a
f(x) dx = αJf.

Thus J is linear. If f ∈ C, then

|Jf | = |
∫ b

a
f(x) dx| ≤

∫ b

a
|f(x)| dx ≤

∫ b

a
‖f‖u dx = (b− a)‖f‖u .
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This shows that J is bounded and that ‖J‖ ≤ b − a. Let g(x) = 1 for all x in [a, b]. Then g is a

unit vector in C (that is, ‖g‖u = 1) and Jg =
∫ b
a g(x) dx = b− a. From lemma 23.1.6 we conclude

that ‖J‖ ≥ b− a. This and the preceding inequality prove that ‖J‖ = b− a.

Q.23.5. (Solution to 23.1.14) It was shown in proposition 21.2.1 that L(V,W ) is a vector space.
Since B(V,W ) is a nonempty subset of L(V,W ) [it contains the zero transformation], we need only
show that sums and scalar multiples of bounded linear maps are bounded in order to establish that
B(V,W ) is a vector space. This is done below in the process of showing that the map T 7→ ‖T‖ is
a norm.

Let S, T ∈ B(V,W ) and α ∈ R. To show that ‖S + T‖ ≤ ‖S‖ + ‖T‖ and ‖αT‖ = |α|‖T‖ we
make use of the characterization ‖T‖ = sup{‖Tu‖ : ‖u‖ = 1} given in lemma 23.1.6. If v is a unit
vector in V , then

‖(S + T )v‖ = ‖Sv + Tv‖
≤ ‖Sv‖+ ‖Tv‖
≤ sup{‖Su‖ : ‖u‖ = 1}+ sup{‖Tv‖ : ‖v‖ = 1}
= ‖S‖+ ‖T‖.

This shows that S + T is bounded and that

‖S + T‖ = sup{‖(S + T )v‖ : ‖v‖ = 1}
≤ ‖S‖+ ‖T‖.

Also

sup{‖αTv‖ : ‖v‖ = 1} = |α| sup{‖Tv‖ : ‖v‖ = 1}
= |α|‖T‖,

which shows that αT is bounded and that ‖αT‖ = |α|‖T‖.
Finally, if sup{‖x‖−1‖Tx‖ : x 6= 0} = ‖T‖ = 0, then ‖x‖−1‖Tx‖ = 0 for all x in V , so that

Tx = 0 for all x and therefore T = 0.

Q.23.6. (Solution to 23.1.15) The composite of linear maps is linear by proposition 21.1.11. From
corollary 23.1.7 we have

‖TSx‖ ≤ ‖T‖ ‖Sx‖ ≤ ‖T‖ ‖S‖ ‖x‖
for all x in U . Thus TS is bounded and ‖TS‖ ≤ ‖T‖ ‖S‖.

Q.23.7. (Solution to 23.2.1) First deal with the case ‖f‖u ≤ 1. Let (pn) be a sequence of poly-
nomials on [0, 1] which converges uniformly to the square root function (see 15.3.5). Given ε > 0,
choose n0 ∈ N so that n ≥ n0 implies |pn((t)−

√
t| ≤ ε for all t ∈ [0, 1]. Since ‖f‖u ≤ 1∣∣pn([f(x)]2

)
− |f(x)|

∣∣ =
∣∣∣pn([f(x)]2

)
−
√

[f(x)]2
∣∣∣ < ε

whenever x ∈ M and n ≥ n0. Thus pn ◦ f2 → |f | (unif). For every n ∈ N the function pn ◦ f2
belongs to A. Consequently, |f | is the uniform limit of functions in A and therefore belongs to A.

If ‖f‖u > 1 replace f in the argument above by g = f/‖f‖u.

Q.23.8. (Solution to 23.2.5) Let f ∈ C(M,R), a ∈M , and ε > 0. According to proposition 23.2.4
we can choose, for each y 6= a in M , a function φy ∈ A such that

φy(a) = f(a) and φy(y) = f(y) .

And for y = a let φy be the constant function whose value is f(a). Since in either case φy and f
are continuous functions which agree at y, there exists a neighborhood Uy of y such that

φy(x) < f(x) + ε

for all x ∈ Uy. Clearly {Uy : y ∈M} covers M . Since M is compact there exist points y1, . . . , yn in
M such that the family {Uy1 , . . . , Uyn} covers M . Let g = φy1 ∧ · · · ∧ φyn . By corollary 23.2.2 the
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function g belongs to A. Now g(a) = φy1(a) ∧ · · · ∧ φyn(a) = f(a). Furthermore, given any x in M
there is an index k such that x ∈ Uyk . Thus

g(x) ≤ φyk(x) < f(x) + ε .

Q.23.9. (Solution to 23.3.6) Let (Tn) be a Cauchy sequence in the normed linear space B(V,W ).
For each x in V

‖Tmx− Tnx‖ ≤ ‖Tm − Tn‖ ‖x‖ → 0

as m, n→∞. Thus (Tnx) is a Cauchy sequence in W for each x. Since W is complete, there exists
a vector Sx in W such that Tnx→ Sx. Define the map

S : V →W : x 7→ Sx .

It is easy to see that S is linear: S(x+ y) = limTn(x+ y) = lim(Tnx+ Tny) = limTnx+ limTny =
Sx + Sy; S(αx) = limTn(αx) = α limTnx = αSx. For every ε > 0 there exists N ∈ N such that
‖Tm − Tn‖ < 1

2ε whenever m, n ≥ N . Then for all such m and n and for all x in V

‖(S − Tn)x‖ = ‖Sx− Tnx‖
≤ ‖Sx− Tmx‖+ ‖Tmx− Tnx‖
≤ ‖Sx− Tmx‖+ ‖Tm − Tn‖‖x‖
≤ ‖Sx− Tmx‖+ 1

2ε‖x‖.

Taking limits as m→∞ we obtain

‖(S − Tn)x‖ ≤ 1
2ε‖x‖

for all n ≥ N and x ∈ V . This shows that S − Tn is bounded and that ‖S − Tn‖ ≤ 1
2ε < ε for

n ≥ N . Therefore the transformation

S = (S − Tn) + Tn

is bounded and

‖S − Tn‖ → 0

as n→∞. Since the Cauchy sequence (Tn) converges in the space B(V,W ), that space is complete.

Q.23.10. (Solution to 23.4.5) We wish to show that if g ∈ W ∗, then T ∗g ∈ V ∗. First we check
linearity: if x, y ∈ V and α ∈ R, then

(T ∗g)(x+ y) = gT (x+ y)

= g(Tx+ Ty)

= gTx+ gTy

= (T ∗g)(x) + (T ∗g)(y)

and

(T ∗g)(αx) = gT (αx) = g(αTx) = αgTx = α(T ∗g)(x) .

To see that T ∗g is bounded use corollary 23.1.7. For every x in V

|(T ∗g)(x)| = |gTx| ≤ ‖g‖ ‖Tx‖ ≤ ‖g‖ ‖T‖ ‖x‖ .

Thus T ∗g is bounded and ‖T ∗g‖ ≤ ‖T‖ ‖g‖.
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Q.24. Exercises in chapter 24

Q.24.1. (Solution to 24.1.4) Given ε > 0 choose δ = ε. Assume |x− y| < δ. Then

|f(x)− f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ =

∣∣∣∣y − xxy

∣∣∣∣ =

∣∣∣∣x− yxy

∣∣∣∣ ≤ |x− y| < δ = ε .

Q.24.2. (Solution to 24.1.5) We must show that

(∃ε > 0)(∀δ > 0)(∃x, y ∈ (0, 1])|x− y| < δ and |f(x)− f(y)| ≥ ε .
Let ε = 1. Suppose δ > 0. Let δ0 = min{1, δ}, x = 1

2δ0, and y = δ0. Then x, y ∈ (0, 1],

|x− y| = 1
2δ0 ≤

1
2δ < δ, and |f(x)− f(y)| = | 2δ0 −

1
δ0
| = 1

δ 0
≥ 1.

Q.24.3. (Solution to 24.1.10) Since M is compact it is sequentially compact (by theorem 16.2.1).
Thus the sequence (xn) has a convergent subsequence (xnk). Let a be the limit of this subsequence.
Since for each k

d
(
ynk , a

)
≤ d
(
ynk , xnk

)
+ d
(
xnk , a

)
and since both sequences on the right converge to zero, it follows that ynk → a as k →∞.

Q.24.4. (Solution to 24.1.11) Assume that f is not uniformly continuous. Then there is a number
ε > 0 such that for every n in N there correspond points xn and yn in M1 such that d(xn, yn) < 1/n
but d

(
f(xn), f(yn)

)
≥ ε. By lemma 24.1.10 there exist subsequences

(
xnk
)

of (xn) and
(
ynk
)

of
(yn) both of which converge to some point a in M1. It follows from the continuity of f that for
some integer k sufficiently large, d

(
f(xnk), f(a)

)
< ε/2 and d

(
f(ynk), f(a)

)
< ε/2. This contradicts

the assertion that d
(
f(xn), f(yn)

)
≥ ε for every n in N.

Q.24.5. (Solution to 24.1.14) By hypothesis there exists a point a in M1 such that xn → a and
yn → a. It is easy to see that the “interlaced” sequence (zn) = (x1, y1, x2, y2, x3, y3, . . . ) also
converges to a. By proposition 18.1.4 the sequence (zn) is Cauchy (in M1 and therefore) in S,
and by proposition 24.1.12 (applied to the metric space S) the sequence

(
f(zn)

)
is Cauchy in M2.

The sequence
(
f(xn)

)
is a subsequence of

(
f(zn)

)
and is, by hypothesis, convergent. Therefore,

according to proposition 18.1.5, the sequence
(
f(zn)

)
converges and

lim f(xn) = lim f(zn) = lim f(yn) .

Q.24.6. (Solution to 24.2.2) Just take the union of the sets of points in P and Q and put them in
increasing order. Thus

P ∨Q =
(
0, 15 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

5
6 , 1
)
.

Q.24.7. (Solution to 24.2.5) (a) Either sketch the graph of σ or reduce the function algebraically
to obtain

σ = −χ{2} − 2χ
(2,3)
− χ{5} .

Then the partition associated with σ is P = (0, 2, 3, 5).
(b) σQ = (0, 0,−2, 0, 0).

Q.24.8. (Solution to 24.2.7) The values of σ on the subintervals of P are given by σP = (0,−2, 0).
Multiply each of these by the length of the corresponding subinterval:∫ 5

0
σ = (2− 0)(0) + (3− 2)(−2) + (5− 3)(0) = −2 .

Q.24.9. (Solution to 24.2.9) Perhaps the simplest way to go about this is to observe first that we
can get from the partition associated with σ to the refinement Q one point at a time. That is,
there exist partitions

P1 � P2 � · · · � Pr = Q

where P1 is the partition associated with σ and Pj+1 contains exactly one point more than Pj (for
1 ≤ j ≤ r − 1).
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Thus it suffices to prove the following: If σ is a step function on [a, b], if P = (s0, . . . , sn) is a
refinement of the partition associated with σ, and if P � Q = (t0, . . . , tn+1), then

n+1∑
k=1

(∆tk)yk =

n∑
k=1

(∆sk)xk

where σP = (x1, . . . , xn) and σQ = (y1, . . . , yn+1).
To prove this assertion, notice that since the partition Q contains exactly one point more than

P , it must be of the form

Q = (s0, . . . , sp−1, u, sp, . . . , sn)

for some p such that 1 ≤ p ≤ n. Thus

yk =

{
xk, for 1 ≤ k ≤ p
xk−1, for p+ 1 ≤ k ≤ n+ 1.

Therefore,

n+1∑
k=1

(∆tk)yk =

p−1∑
k=1

(∆tk)yk + (∆tp)yp + (∆tp+1)yp+1 +
n+1∑
k=p+2

(∆tk)yk

=

p−1∑
k=1

(∆sk)xk + (u− sp−1)xp + (sp − u)xp +
n+1∑
k=p+2

(∆sk−1)xk−1

=

p−1∑
k=1

(∆sk)xk + (sp − sp−1)xp +
n∑

k=p+1

(∆sk)xk

=

n∑
k=1

(∆sk)xk

Q.24.10. (Solution to 24.2.13) That σ is an E valued step function on [a, b] is obvious. Let
Q = (u0, . . . , um) and R = (v0, . . . , vn) be the partitions associated with τ and ρ, respectively; and
suppose that τQ = (y1, . . . , ym) and ρR = (z1, . . . , zn). For 1 ≤ k ≤ m+ n, let

tk =

{
uk, for 0 ≤ k ≤ m
vk−m, for m+ 1 ≤ k ≤ m+ n

and P = (t0, . . . , tm+n). Also define

xk =

{
yk, for 1 ≤ k ≤ m
zk−m, for m+ 1 ≤ k ≤ m+ n.
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Then P is a partition of [a, b] and σP = (x1, . . . , xm+n). Furthermore,∫ b

a
σ =

m∑
k=1

+n(∆tk)xk

=

m∑
k=1

(∆tk)xk +

m+n∑
k=m+1

(∆tk)xk

=

m∑
k=1

(∆uk)yk +

m+n∑
k=m+1

(∆vk−m)zk−m

=
m∑
k=1

(∆uk)yk +
n∑
k=1

(∆vk)zk

=

∫ c

a
τ +

∫ b

c
ρ.

(The third equality requires the observation that ∆tm+1 = v1 − um = v1 − c = v1 − v0.)

Q.24.11. (Solution to 24.3.2) Let f : [a, b]→ E be continuous. Given ε > 0 we find a step function
σ such that ‖f −σ‖u < ε. Since the domain of f is compact, proposition 24.1.11 guarantees that f
is uniformly continuous. Thus there exists δ > 0 such that ‖f(u)− f(v)‖ < ε/2 whenever u and v
are points in [a, b] such that |u−v| < δ. Choose a partition (t0, . . . , tn) of [a, b] so that tk− tk−1 < δ
for each k = 1, . . . , n.

Define σ : [a, b]→ E by σ(s) = f(tk−1) if tk−1 ≤ s ≤ tk (1 ≤ k ≤ n) and define σ(b) = f(b). It
is easy to see that ‖f(s)− σ(s)‖ < ε/2 for every s in [a, b]. Thus ‖f − σ‖u < ε; so f belongs to the
closure of the family of step functions.

Q.24.12. (Solution to 24.3.6) Let S be the closure of S([a, b], E) in the space B([a, b], E). If
g, h ∈ S, then there exist sequences (σn) and (τn) of step functions which converge uniformly to g
and h, respectively. Then (σn + τn) is a sequence of step functions and σn + τn → g + h (unif); so
g + h ∈ S. Thus ∫

(g + h) = lim

∫
(σn + τn)

= lim

(∫
σn +

∫
τn

)
= lim

∫
σn + lim

∫
τn

=

∫
g +

∫
h.

Similarly, if α ∈ R, then (ασn) is a sequence of step functions which converges to αg. Thus αg ∈ S
and ∫

(αg) = lim

∫
(ασn) = lim

(
α

∫
σn

)
= α lim

∫
σn = α

∫
g .

The map
∫

: S → E is bounded since it is both linear and uniformly continuous (see 24.1.15
and 24.1.9).

Q.24.13. (Solution to 24.3.18) The function f , being regulated, is the uniform limit in B([a, b], E)
of a sequence (σn) of step functions. Since

∫
σn →

∫
f in E and T is continuous, we see that

T

(∫
f

)
= limT

(∫
σn

)
. (Q.16)
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By problem 24.2.14 each T ◦ σn is an F valued step function and∫
(T ◦ σn) = T

(∫
σn

)
for each n. (Q.17)

For every t in [a, b]

‖(T ◦ f − T ◦ σn)(t)‖
= ‖T

(
(f − σn)(t)

)
‖

≤ ‖T‖‖(f − σn)(t)‖
≤ ‖T‖‖f − σn‖u

so
‖T ◦ f − T ◦ σn‖u ≤ ‖T‖‖f − σn‖u .

Since ‖f − σn‖u → 0, we conclude that

T ◦ σn → T ◦ f(unif)

in B([a, b], F ). Thus T ◦ f is regulated and∫
(T ◦ f) = lim

∫
(T ◦ σn). (Q.18)

The desired conclusion follows immediately from (Q.16), (Q.17), and (Q.18).

Q.25. Exercises in chapter 25

Q.25.1. (Solution to 25.1.5) Suppose that T ∈ B ∩ o. Then given ε > 0, we may choose δ > 0 so
that ‖Ty‖ ≤ ε‖y‖ whenever ‖y‖ < δ. Let x be an arbitrary unit vector. Choose 0 < t < δ. Then
‖tx‖ = t < δ; so ‖Tx‖ = ‖T (1t tx)‖ = 1

t ‖T (tx)‖ ≤ 1
t ε‖tx‖ = ε. Since this last inequality holds for

every unit vector x, ‖T‖ ≤ ε. And since ε was arbitrary, ‖T‖ = 0. That is, T = 0.

Q.25.2. (Solution to 25.1.6) If f , g ∈ O, then there exist positive numbers M , N , δ, and η
such that ‖f(x)‖ ≤ M‖x‖ whenever ‖x‖ < δ and ‖g(x)‖ ≤ N‖x‖ whenever ‖x‖ < η. Then
‖f(x) + g(x)‖ ≤ (M +N)‖x‖ whenever ‖x‖ < min{δ, η}. So f + g ∈ O.

If α ∈ R, then ‖αf(x)‖ ≤ |α|M‖x‖ whenever ‖x‖ < δ; so αf ∈ O.

Q.25.3. (Solution to 25.1.9) The domain of f ◦ g is taken to be the set of all x in V such that
g(x) belongs to the domain of f ; that is, dom(f ◦ g) = g←(dom f). Since f ∈ O there exist
M , δ > 0 such that ‖f(y)‖ ≤ M‖y‖ whenever ‖y‖ < δ. Given ε > 0, choose η > 0 so that
‖g(x)‖ ≤ ε

M ‖x‖ whenever ‖x‖ < η. If ‖x‖ < min{η, Mε δ}, then ‖g(x)‖ ≤ ε
M ‖x‖ < δ, so that

‖(f ◦ g)(x)‖‖ ≤M‖g(x)‖ ≤ ε‖x‖.

Q.25.4. (Solution to 25.1.11) Suppose w 6= 0. If ε > 0, then there exists δ > 0 such that
|φ(x)| ≤ ε

‖w‖‖x‖ whenever ‖x‖ < δ. Thus ‖(φw)(x)‖ = |φ(x)|‖w‖ ≤ ε‖x‖ when ‖x‖ < δ.

Q.25.5. (Solution to 25.1.12) There exist positive numbers M , N , δ, and η such that ‖φ(x)‖ ≤
M‖x‖ whenever ‖x‖ < δ and ‖f(x)‖ ≤ N‖x‖ whenever ‖x‖ < η. Suppose that ε > 0. If x ∈ V and
‖x‖ < min

{
ε(MN)−1, δ, η

}
, then

‖(φf)(x)‖ = |φ(x)|‖f(x)‖ ≤MN‖x‖2 ≤ ε‖x‖ .

Q.25.6. (Solution to 25.2.2) Reflexivity is obvious. Symmetry: If f ' g, then f − g ∈ o; so
g−f = (−1)(f −g) ∈ o by proposition 25.1.7. This proves g ' f . Transitivity: If f ' g and g ' h,
then both f − g and g − h belong to o; thus f ' h, since f − h = (f − g) + (g − h) ∈ o + o ⊆ o
(again by 25.1.7).

Q.25.7. (Solution to 25.2.3) By the preceding proposition S ' T . Thus S − T ∈ B ∩ o = {0} by
proposition 25.1.5.
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Q.25.8. (Solution to 25.2.5) This requires only a simple computation: φw − ψw = (φ − ψ)w ∈
o(V,R) ·W ⊆ o(V,W ) by proposition 25.1.11.

Q.25.9. (Solution to 25.3.10) The map (x, y) 7→ 7x − 9y is clearly continuous and linear. So all
that needs to be verified is condition (iii) of remark 25.3:

lim
(x,y)→(0,0)

∆f(1,−1)(x, y)− (7x− 9y)√
x2 + y2

= lim
(x,y)→(0,0)

3(x+ 1)2 − (x+ 1)(y − 1) + 4(y − 1)2 − 8− 7x+ 9y√
x2 + y2

= lim
(x,y)→(0,0)

3x2 − xy + 4y2√
x2 + y2

= 0. (See problem 14.3.15(a).)

(The equation z = 7x− 9y represents a plane through the origin.)

Q.25.10. (Solution to 25.3.11) Since

∆f(1,−1,0)(h, j, k) = f(h+ 1, j − 1, k)− f(1,−1, 0)

=
(
(h+ 1)2(j − 1)− 7, 3(h+ 1)k + 4(j − 1)

)
− (−8,−4)

=
(
h2(j − 1) + 2hj − 2h+ j, 3hk + 4j + 3k

)
and

M(h, j, k) =

[
r s t
u v w

]
(h, j, k)

= (rh+ sj + tk, uh+ vj + wk),

we find that the first coordinate of the Newton quotient

∆f(1,−1,0)(h, j, k)−M(h, j, k)

‖(h, j, k)‖

turns out to be
h2(j − 1) + 2hj − (2 + r)h+ (1− s)j − tk√

h2 + j2 + k2
.

If we choose r = −2, s = 1, and t = 0, then the preceding expression approaches zero as (h, j, k)→
(0, 0, 0). (See problem 14.3.15(a).) Similarly, the second coordinate of the Newton quotient is

3hk − uh+ (4− v)j + (3− w)k√
h2 + j2 + k2

,

which approaches zero as (h, j, k) → (0, 0, 0) if we choose u = 0, v = 4, and w = 3. We conclude
from the uniqueness of differentials (proposition 25.3.9) that[

df(1,−1,0,)
]

=

[
−2 1 0
0 4 3

]
.

Equivalently we may write

df(1,−1,0)(h, j, k) = (−2h+ j, 4j + 3k) .

Q.25.11. (Solution to 25.3.16) It is easy to check that φ(a)dfa + dφa · f(a) is bounded and linear.
From our hypotheses ∆fa ' dfa and ∆φa ' dφa we infer (using propositions 25.2.4 and 25.2.5)
that φ(a)∆fa ' φ(a)dfa and that ∆φa · f(a) ' dφa · f(a). Then from corollary 25.3.13 and propo-
sition 25.1.12 we conclude that ∆φa ∆fa belongs to O(V,R) · O(V,W ) and therefore to o(V,W ).



Q.25. EXERCISES IN CHAPTER 25 317

That is, ∆φa ∆fa ' 0. Thus by propositions 25.3.4 and 25.2.4

∆(φf)a = φ(a) ·∆fa + ∆φa · f(a) + ∆φa ·∆fa
' φ(a)dfa + dφa · f(a) + 0

= φ(a)dfa + dφa · f(a).

Q.25.12. (Solution to 25.3.17) Our hypotheses are ∆fa ' dfa and ∆gf(a) ' dgf(a). By proposi-
tion 25.3.12 ∆fa ∈ O. Then by proposition 25.2.7

∆gf(a) ◦∆fa ' dgf(a) ◦∆fa (Q.19)

and by proposition 25.2.6

dgf(a) ◦∆fa ' dgf(a) ◦ dfa . (Q.20)

According to proposition 25.3.5

∆(g ◦ f)a ' ∆gf(a) ◦∆fa . (Q.21)

From (Q.19), (Q.20),(Q.21), and proposition 25.2.2 it is clear that

∆(g ◦ f)a ' dgf(a) ◦ dfa .
Since dgf(a) ◦ dfa is a bounded linear transformation, the desired conclusion is an immediate con-
sequence of proposition 25.3.9.

Q.25.13. (Solution to 25.4.6)
(a) Dc(π/3) = (− sin(π/3), cos(π/3)) = (−

√
3/2, 1/2).

(b) l(t) = (1/2,
√

3/2) + t(−
√

3/2, 1/2) = 1
2(1−

√
3t,
√

3 + t).

(c) x+
√

3y = 2.

Q.25.14. (Solution to 25.4.7) If c is differentiable at a, then there exists a bounded linear trans-
formation dca : R→ V which is tangent to ∆ca at 0. Then

Dc(a) = lim
h→0

∆ca(h)

h

= lim
h→0

∆ca(h)− dca(h) + dca(h)

h

= lim
h→0

∆ca(h)− dca(h)

h
+ lim
h→0

h dca(1)

h
= dca(1).

Q.25.15. (Solution to 25.4.12) Let ε > 0. Since f is continuous at c and the interval J is open, we
may choose δ > 0 so that c+ h ∈ J and ‖∆fc(h)‖ < ε whenever |h| < δ. Thus if 0 < |h| < δ,

‖∆Fc(h)− h f(c)‖ =

∥∥∥∥∫ c+h

a
f −

∫ c

a
f − h f(c)

∥∥∥∥
=

∥∥∥∥∫ c+h

c
f(t) dt−

∫ c+h

c
f(c) dt

∥∥∥∥
=

∥∥∥∥∫ c+h

c
∆fc(t− c) dt

∥∥∥∥
≤
∣∣∣∣∫ c+h

c
‖∆fc(t− c)‖ dt

∣∣∣∣ (by 24.3.10)

< ε |h| .
It follows immediately that ∥∥∥∥∆Fc(h)

h
− f(c)

∥∥∥∥ < 1

|h|
ε|h| = ε
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whenever 0 < |h| < δ; that is,

DF (c) = lim
h→0

∆Fc(h)

h
= f(c) .

Q.25.16. (Solution to 25.5.2) If l(t) = a+ tv, then

D(f ◦ l)(0) = lim
t→0

1

t
∆(f ◦ l)0(t)

= lim
t→0

1

t
((f ◦ l)(0 + t)− (f ◦ l)(0))

= lim
t→0

1

t
(f(a+ tv)− f(a))

= lim
t→0

1

t
∆fa(tv)

= Dvf(a).

Q.25.17. (Solution to 25.5.3) Let l(t) = a+ tv. Then

(f ◦ l)(t) = f(a+ tv)

= f((1, 1) + t(35 ,
4
5))

= f(1 + 3
5 t, 1 + 4

5 t)

= 1
2 ln
(
(1 + 3

5 t)
2 + (1 + 4

5 t)
2
)

= 1
2 ln
(
2 + 14

5 t+ t2
)
.

It follows that D(f ◦ l)(t) = 1
2

(
14
5 + 2t

)(
2 + 14

5 t+ t2
)−1

, so that Dvf(a) = D(f ◦ l)(0) = 7
10 .

Q.25.18. (Solution to 25.5.5) As usual let l(t) = a+ tv. Then

(φ ◦ l)(t) =

∫ π/2

0
(cosx+Da(x) + tDv(x))2 dx

=

∫ π/2

0
(2 cosx+ t sinx)2 dx

=

∫ π/2

0
4 cos2 x dx+ 4t

∫ π/2

0
sinx cosx dx+ t2

∫ π/2

0
sin2 x dx .

Differentiating we obtain

D(φ ◦ l)(t) = 4

∫ π/2

0
sinx cosx dx+ 2t

∫ π/2

0
sin2 x dx ;

so

Dvφ(a) = D(φ ◦ l)(0) = 4

∫ π/2

0
sinx cosx dx = 2 .

Q.25.19. (Solution to 25.5.9) If l = a+ tv, then, since l(0) = a and Dl(0) = v, we have

Dvf(a) = D(f ◦ l)(0)

= dfl(0)(Dl(0)) (by 25.4.11)

= dfa(v).

Q.25.20. (Solution to 25.6.1) If x ∈ dom f1 ∩ dom f2, then(
(j1 ◦ f1) + (j2 ◦ f2)

)
(x) = j1

(
f1(x)

)
+ j2

(
f2(x)

)
=
(
f1(x), 0

)
+
(
0, f2(x)

)
=
(
f1(x), f2(x)

)
= f(x) .



Q.26. EXERCISES IN CHAPTER 26 319

Being the sum of composites of differentiable functions, f is differentiable, and

dfa = d
(
(j1 ◦ f1) + (j2 ◦ f2)

)
a

= d
(
j1 ◦ f1

)
a

+ d
(
j2 ◦ f2

)
a

(by 25.3.15)

= d
(
j1
)
f1(a)

◦ d
(
f1
)
a

+ d
(
j2
)
f2(a)

◦ d
(
f2
)
a

(by 25.3.17)

= j1 ◦ d
(
f1
)
a

+ j2 ◦ d
(
f2
)
a

(by 25.3.24)

=
(
d
(
f1
)
a
, d
(
f2
)
a

)
.

Q.25.21. (Solution to 25.6.3) By propositions 25.4.7 and 25.4.8 a curve has a derivative at t if and
only if it is differentiable at t. Thus the desired result is an immediate consequence of the following
easy computation:

Dc(t) = dct(1)

=
(
d
(
c1
)
t
(1) , d

(
c2
)
t
(1)
)

=
(
Dc1(t) , Dc2(t)

)
.

Q.26. Exercises in chapter 26

Q.26.1. (Solution to 26.1.5) Let f : [0, 2π] → R2 : t 7→ (cos t, sin t). Then f is continuous on
[0, 2π] and differentiable on (0, 2π). Notice that f(2π) − f(0) = (1, 0) − (1, 0) = (0, 0). But
Df(t) = (− sin t, cos t). Certainly there is no number c such that 2π(− sin c, cos c) = (0, 0).

Q.26.2. (Solution to 26.1.6) Given ε > 0, define h(t) = ‖f(t)−f(a)‖− (t−a)(M + ε) for a ≤ t ≤ b.
Since f is continuous on [a, b], so is h. Let A = h←(−∞, ε]. The set A is nonempty (it contains a)
and is bounded above (by b). By the least upper bound axiom J.3.1 it has a supremum, say l.
Clearly a ≤ l ≤ b. Since h is continuous and h(a) = 0, there exists η > 0 such that a ≤ t < a + η
implies h(t) ≤ ε. Thus [a, a + η) ⊆ A and l > a. Notice that since h is continuous the set A is
closed (proposition 14.1.13); and since l ∈ A (see example 2.2.7), l belongs to A.

We show that l = b. Assume to the contrary that l < b. Since f is differentiable at l, there
exists δ > 0 such that if t ∈ (l, l + δ) then ‖(t− l)−1(f(t)− f(l))‖ < M + ε. Choose any point t in
(l, l + δ). Then

h(t) = ‖f(t)− f(a)‖ − (t− a)(M + ε)

≤ ‖f(t)− f(l)‖+ ‖f(l)− f(a)‖ − (t− l)(M + ε)− (l − a)(M + ε)

< (t− l)(M + ε) + h(l)− (t− l)(M + ε)

= h(l)

≤ ε .

This says that t ∈ A, which contradicts the fact that l is an upper bound for A. Thus l = b and
h(b) ≤ ε. That is,

‖f(b)− f(a)‖ ≤ (M + ε)(b− a) + ε .

Since ε was arbitrary,

‖f(b)− f(a)‖ ≤M(b− a) .

Q.26.3. (Solution to 26.2.1)
(a) For every x in Vk

(πk ◦ jk)(x) = πk(0, . . . , 0, x, 0, . . . , 0) = x .
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(b) For every x in V

n∑
k=1

(j
k
◦ πk)(x) =

n∑
k=1

j
k
(xk)

= (x1, 0, . . . , 0) + · · ·+ (0, . . . , 0, xn)

= (x1, . . . , xn)

= x .

Q.26.4. (Solution to 26.2.5) For every h in Bk

(∆fa ◦ jk)(h) = ∆fa(jk(h))

= f(a+ j
k
(h))− f(a)

= g(h)− g(0)

= ∆g0(h) .

Q.26.5. (Solution to 26.2.10) Fix a point (a, b) in U . We make two observations about the notation
introduced in the hint. First,

d(hv)z = d1f(a+z,b+v) . (Q.22)

[Proof: Since f(a+ z+ s, b+ v) = hv(z+ s) = (hv ◦Tz)(s), we see that d1f(a+z,b+v) = d(hv ◦Tz)0 =
d(hv)Tz(0) ◦ d(Tz)0 = d(hv)z ◦ I = d(hv)z .]

Second,

∆f(a,b)(u, v) = ∆(hv)0(u) + ∆g0(v) . (Q.23)

[Proof:

∆f(a,b)(u, v) = f(a+ u, b+ v)− f(a, b)

= f(a+ u, b+ v)− f(a, b+ v) + f(a, b+ v)− f(a, b)

= hv(u)− hv(0) + g(v)− g(0)

= ∆(hv)0(u) + ∆g0(v) .]

Let ε > 0. By hypothesis the second partial differential of f exists at (a, b). That is, the
function g is differentiable at 0 and

∆g0 ' dg0 = d2f(a,b) = T .

Thus there exists δ1 > 0 such that

‖∆g0(v)− Tv‖ ≤ ε‖v‖ (Q.24)

whenever ‖v‖ < δ1.
Since d1f is assumed to (exist and) be continuous on U , there exists δ2 > 0 such that

‖d1f(a+s,b+t) − d1f(a,b)‖ < ε (Q.25)

whenever ‖(s, t)‖1 < δ2. Suppose then that (u, v) is a point in U such that ‖(u, v)‖1 < δ2. For each
z in the segment [0, u]

‖(z, v)‖1 = ‖z‖+ ‖v‖ ≤ ‖u‖+ ‖v‖ = ‖(u, v)‖1 < δ2

so by (Q.22) and (Q.25)

‖d(hv)z − S‖ = ‖d1f(a+z,b+v) − d1f(a,b)‖ < ε .

Thus according to the version of the mean value theorem given in corollary 26.1.8

‖∆(hv)0(u)− Su‖ ≤ ε‖u‖ (Q.26)

whenever ‖(u, v)‖1 < δ2.
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Now let δ = min{δ1, δ2}. Suppose ‖(u, v)‖1 < δ. Then since ‖v‖ ≤ ‖u‖ + ‖v‖ = ‖(u, v)‖1 <
δ ≤ δ1 inequality (Q.24) holds, and since ‖(u, v)‖1 < δ ≤ δ2 inequality (Q.26) holds. Making use
of these two inequalities and (Q.23) we obtain

‖∆f(a,b)(u, v)−R(u, v)‖ = ‖∆(hv)0(u) + ∆g0(v)− Su− Tv‖
≤ ‖∆(hv)0(u)− Su‖+ ‖∆g0(v)− Tv‖
≤ ε ‖u‖+ ε ‖v‖
= ε ‖(u, v)‖1 .

Thus ∆f(a,b) ' R showing that f is differentiable at (a, b) and that its differential is given by

df(a,b) = R = d1f(a,b) ◦ π1 + d2f(a,b) ◦ π2 . (Q.27)

That df is continuous is clear from (Q.27) and the hypothesis that d1f and d2f are continuously
differentiable.

Q.26.6. (Solution to 26.2.12) First we compute dfa. A straightforward calculation gives

∆fa(h)

‖h‖1
=
h1 + 2h2 − 3h3 + 6h4 + h2

2 + 2h1h2 + h1h2
2 + 3h3h4

‖h‖1
.

From this it is clear that the desired differential is given by

dfa(h) = h1 + 2h2 − 3h3 + 6h4

for then
∆fa(h)− dfa(h)

‖h‖1
=
h2

2 + 2h1h2 + h1h2
2 + 3h3h4

‖h‖1
→ 0 as h→ 0

Note. In the preceding computation the use of the product norm ‖ ‖1 for R4 rather than the
usual Euclidean norm is both arbitrary and harmless (see problem 22.3.21.

(a) Compose dfa with the injection

j
1

: R→ R×R× R× R : x 7→ (x, 0, 0, 0) .

Then

d1fa(x) = dfa(j1(x)) = dfa(x, 0, 0, 0) = x

for all x in R.
(b) This has exactly the same answer as part (a)—although the rationale is slightly different.

The appropriate injection map is

j
1

: R→ R3 : x 7→ (x,0)

(where 0 is the zero vector in R3). We may rewrite (26.12) in this case as

f(x, y) = xy1
2 + 3 y2y3

for all x ∈ R and y ∈ R3. Also write a = (b, c) where b = 1 ∈ R and c = (1, 2,−1) ∈ R3, and write
h = (r, s) where r ∈ R and s ∈ R3. Then

dfa(h) = df(b,c)(r, s) = r + 2 s1 − 3 s2 + 6 s3

so that

d1f(x) = dfa(j1(x)) = dfa(x,0) = x

for all x in R.
(c) Here the appropriate injection is

j
1

: R2 → R2 × R2 : x 7→ (x,0)

where 0 is the zero vector in R2. Rewrite (26.12) as

f(x, y) = x1x2
2 + 3 y1y2
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for all x, y ∈ R2. Let a = (b, c) where b = (1, 1) and c = (2,−1); and let h = (r, s) where r, s ∈ R2.
Then

dfa(h) = df(b,c)(r, s) = r1 + 2 r2 − 3 s1 + 6 s2

so that

d1fa(x) = dfa(j1(x)) = dfa(x,0) = x1 + 2x2

for all x in R2.
(d) As far as the partial differential d1 is concerned, this is essentially the same problem as (c).

However, in this case the injection j
1

is given by

j
1

: R2 → R2 × R× R : x 7→ (x, 0, 0) .

Equation (26.12) may be written

f(x, y, z) = x1x2
2 + 3 yz

for all x ∈ R2 and y, z ∈ R. Let a = (b, c, d) where b = (1, 1), c = 2, and d = −1; and let h = (q, r, s)
where q ∈ R2 and r, s ∈ R. Then

dfa(h) = df(b,c,d)(q, r, s) = q
1

+ 2 q
2
− 3 r + 6 s

so that

d1fa(x) = dfa(j1(x)) = df(b,c,d)(x, 0, 0) = x1 + 2x2 .

(e) Here j
1

: R3 → R3 × R : x 7→ (x, 0). Rewrite (26.12) as

f(x, y) = x1x2
2 + 3x3y

for all x ∈ R3 and y ∈ R. Let a = (b, c) with b = (1, 1, 2) and c = −1; and let h = (r, s) where
r ∈ R3 and s ∈ R. Then

dfa(h) = df(b,c)(r, s) = r1 + 2 r2 − 3 r3 + 6 s

so that

d1fa(x) = dfa(j1(x)) = df(b,c)(x, 0) = x1 + 2x2 − 3x3 .

Q.26.7. (Solution to 26.2.17) Just do what you have always done: hold two of the variables constant
and differentiate with respect to the other. (See the paragraph after equation (26.13).)

f1(x, y, z) = (3x2y2 sin z, 2x); so f1(a) = (12, 2).

f2(x, y, z) = (2x3y sin z, cos z); so f2(a) = (−4, 0).

f3(x, y, z) = (x3y2 cos z,−y sin z); so f3(a) = (0, 2).

Q.26.8. (Solution to 26.3.2) Let ε > 0. Since [a, b] × [c, d] is compact, the continuous function
f must be uniformly continuous (see proposition 24.1.11). Thus there exists δ > 0 such that
‖(x, y)− (u, v)‖1 < δ implies ‖f(x, y)− f(u, v)‖ < ε (b−a)−1. Suppose that y and v lie in [c, d] and
that |y − v| < δ. Then ‖(x, y) − (x, v)‖1 < δ for all x in [a, b]; so ‖f(x, y) − f(x, v)‖ < ε (b − a)−1
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from which it follows that

‖g(y)− g(v)‖ =

∥∥∥∥∫ b

a
fy −

∫ b

a
fv
∥∥∥∥

=

∥∥∥∥∫ b

a
(fy − fv)

∥∥∥∥
≤
∫ b

a
‖fy(x)− fv(x)‖ dx

=

∫ b

a
‖f(x, y)− f(x, v)‖ dx

<

∫ b

a
ε (b− a)−1 dx

= ε .

Thus g is uniformly continuous.

Q.26.9. (Solution to 26.3.4) Let h(y) =
∫ b
a f2(x, y) dx. By lemma 26.3.2 the function h is con-

tinuous and therefore integrable on every interval of the form [c, z] where c ≤ z ≤ d. Then by
proposition 26.3.3 we have

∫ z

c
h =

∫ z

c

∫ b

a
f2(x, y) dx dy

=

∫ b

a

∫ z

c
f2(x, y) dy dx

=

∫ b

a

∫ z

c

d

dy

(
xf(y)

)
dy dx

=

∫ b

a

(
xf(z)− xf(c)

)
dx

=

∫ b

a

(
f(x, z)− f(x, c)

)
dx

= g(z)− g(c) .

Differentiating we obtain

h(z) = g′(z)

for c < z < d. This shows that g is continuously differentiable on (c, d) and that

d

dy

∫ b

a
f(x, y) dx = g′(y)

= h(y)

=

∫ b

a
f2(x, y) dx

=

∫ b

a

∂f

∂y
(x, y) dx .
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Q.27. Exercises in chapter 27

Q.27.1. (Solution to 27.1.4) If x, y, and z ∈ Rn and α ∈ R, then

〈x, y + z〉 = 〈y + z, x〉 (by (c))

= 〈y, x〉+ 〈z, x〉 (by (a))

= 〈x, y〉+ 〈x, z〉 (by (c))

and

〈x, αy〉 = 〈αy, x〉 (by (c))

= α〈y, x〉 (by (b))

= α〈x, y〉 (by (c))

Q.27.2. (Solution to 27.1.8) The domain of the arccosine function is the closed interval [−1, 1].
According to the Schwarz inequality |〈x, y〉| ≤ ‖x‖‖y‖; equivalently,

−1 ≤ 〈x, y〉
‖x‖‖y‖

≤ 1

for nonzero vectors x and y. This shows that 〈x, y〉‖x‖−1‖y‖−1 is in the domain of arccosine.

Q.27.3. (Solution to 27.1.10) If x = (1, 0, 1) and y = (0,−1, 1), then 〈x, y〉 = 1 and ‖x‖ = ‖y‖ =√
2. So

](x, y) = arccos

(
〈x, y〉
‖x‖‖y‖

)
= arccos

1

2
=
π

3
.

Q.27.4. (Solution to 27.2.1) The computations

ψ
b
(x+ y) = 〈x+ y, b〉 = 〈x, b〉+ 〈y, b〉 = ψ

b
(x) + ψ

b
(y)

and

ψ
b
(αx) = 〈αx, b〉 = α〈x, b〉 = αψ

b
(x)

show that ψ
b

is linear. Since

|ψ
b
(x)| = |〈x, b〉| ≤ ‖b‖‖x‖

for every x in Rn, we conclude that ψ
b

is bounded and that ‖ψ
b
‖ ≤ ‖b‖. On the other hand, if

b 6= 0, then ‖b‖−1b is a unit vector, and since

|ψ
b
(‖b‖−1b)| = 〈‖b‖−1b, b〉 = ‖b‖−1〈b, b〉 = ‖b‖

we conclude (from lemma 23.1.6) that ‖ψ
b
‖ ≥ ‖b‖.

Q.27.5. (Solution to 27.2.6) By proposition 25.5.9 we have for every unit vector u in Rn

Duφ(a) = dφa(u)

= 〈u,∇φ(a)〉
= ‖∇φ(a)‖ cos θ

where θ = ](u,∇φ(a)). Since φ and a are fixed we maximize the directional derivative Duφ(a)
by maximizing cos θ. But cos θ = 1 when θ = 0; that is, when u and ∇φ(a) point in the same
direction. Similarly, to minimize Duφ(a) choose θ = π so that cos θ = −1.
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Q.27.6. (Solution to 27.2.13) It suffices, by proposition 26.1.9, to show that the derivative of the
total energy TE is zero.

D(TE) = D(KE) +D(PE)

= 1
2mD〈v, v〉+D(φ ◦ x)

= 1
2m(2〈v,Dv〉) + 〈Dx, (∇φ) ◦ x〉

= m〈v, a〉+ 〈v,−F ◦ x〉
= m〈v, a〉 −m〈v, a〉
= 0.

(The third equality uses 27.1.17 and 27.2.7; the second last uses Newton’s second law.)

Q.27.7. (Solution to 27.2.14) Using the hint we compute

∇φ(a) =
n∑
k=1

〈∇φ(a), ek〉ek (by 27.1.3)

=
n∑
k=1

dφa(e
k)ek

=
n∑
k=1

Dekφ(a)ek (by 25.5.9)

=
n∑
k=1

φk(a)ek.

Q.27.8. (Solution to 27.2.15) By proposition 25.5.9

Duφ(a) = dφa(u) = 〈u,∇φ(a)〉 .
Since

∇φ(w, x, y, z) =

4∑
k=1

φk(w, x, y, z)e
k

= (z,−y,−x,w)

we see that
∇φ(a) = (4,−3,−2, 1) .

Thus
Duφ(a) = 〈(12 ,−

1
2 ,

1
2 ,−

1
2), (4,−3,−2, 1)〉 = 2 .

Q.27.9. (Solution to 27.2.16) As suggested in the hint, let c : t 7→
(
x(t), y(t)

)
be the desired curve

and set
c(0) =

(
x(0), y(0)

)
= a = (2,−1) .

At each point c(t) on the curve set the tangent vector Dc(t) equal to −
(
∇φ
)(
c(t)
)
. Then for every

t we have (
Dx(t), Dy(t)

)
= −

(
∇φ
)(
x(t), y(t)

)
=
(
−4x(t),−12y(t)

)
.

The two resulting equations

Dx(t) = −4x(t) and Dy(t) = −12y(t)

have as their only nonzero solutions

x(t) = x(0)e−4t = 2e−4t
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and

y(t) = y(0)e−12t = −e−12t .
Eliminating the parameter we obtain

y(t) = −e−12t = −
(
e−4t

)3
= −

(1

2
x(t)

)3
= −1

8

(
x(t)

)3
.

Thus the path of steepest descent (in the xy-plane) follows the curve y = −1
8x

3 from x = 2 to
x = 0 (where φ obviously assumes its minimum).

Q.27.10. (Solution to 27.3.2) By proposition 21.3.11 it suffices to show that

[dfa]e
l = [f jk(a)]el

for 1 ≤ l ≤ n. Since the ith coordinate (1 ≤ i ≤ m) of the vector which results from the action of

the matrix [f jk(a)] on the vector el is

n∑
k=1

f ik(a)(el)k = f il (a)

we see that

[f jk(a)]el =

m∑
i=1

f il (a)êi

= fl(a) (by proposition 26.2.15)

= dfa(e
l)

= [dfa]e
l.

Q.27.11. (Solution to 27.3.3)
(a) By proposition 27.3.2

[df(w,x,y,z)] =

 xz wz 0 wx
0 2x 4y 6z

y arctan z 0 w arctan z wy(1 + z2)−1

 .
Therefore

[dfa] =

 1 1 0 1
0 2 4 6
π/4 0 π/4 1/2

 .
(b)

dfa(v) = [dfa]v

=

 1 1 0 1
0 2 4 6
π/4 0 π/4 1/2




0
2
−3
1


=
(
3,−2, 14(2− 3π)

)
.

Q.27.12. (Solution to 27.4.3) Let

g : R4 → R2 : (u, v, w, x) 7→
(
y(u, v, w, x), z(u, v, w, x)

)
and

f : R2 → R4 : (s, t) 7→
(
u(s, t), v(s, t), w(s, t), x(s, t)

)
.
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Here it is appropriate to think of the variables and functions as being arranged in the following
fashion.

s
t

f−−−−→

u
v
w
x

g−−−−→ y
z

The expression ∂u
∂t is then taken to represent the function f12 . The expression ∂z

∂u appearing in the

statement of the exercise represents g21 ◦ f . [One’s first impulse might be to let ∂z
∂u be just g21. But

this cannot be correct. The product of ∂z
∂u and ∂u

∂t is defined only at points where both are defined.

The product of g21 (whose domain lies in R4) and f12 (whose domain is in R2) is never defined.]

On the left side of the equation the expression ∂z
∂t is the partial derivative with respect to t of the

composite function f ◦ g. Thus it is expressed functionally as (g ◦ f)22.
Using proposition 27.4.1 we obtain

∂z

∂t
= (g ◦ f)22

=
4∑
i=1

(g2i ◦ f)f i2

=
∂z

∂u

∂u

∂t
+
∂z

∂v

∂v

∂t
+
∂z

∂w

∂w

∂t
+
∂z

∂x

∂x

∂t

This equation is understood to hold at all points a in R2 such that f is differentiable at a and g is
differentiable at f(a).

Q.27.13. (Solution to 27.4.5) Since

[
df(x,y,z)

]
=


y2 2xy 0
3 0 −2z
yz xz xy
2x 2y 0
4z 0 4x


we see that

[
dfa
]

=


0 0 0
3 0 2
0 −1 0
2 0 0
−4 0 4

 .

And since [
dg(s,t,u,v,w)

]
=

[
2s 0 2u 2v 0
2sv −2w2 0 s2 −4tw

]
we see that [

dgf(a)
]

=
[
dg(0,2,0,1,1)

]
=

[
0 0 0 2 0
0 −2 0 0 −8

]
.
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Thus by equation (27.1) [
d(g ◦ f)a

]
=
[
dgf(a)

][
dfa
]

=

[
0 0 0 2 0
0 −2 0 0 −8

]
0 0 0
3 0 2
0 −1 0
2 0 0
−4 0 4


=

[
4 0 0
26 0 −36

]
.

Q.27.14. (Solution to 27.4.8) Use formula (27.6). It is understood that ∂x
∂t and ∂y

∂t must be evaluated

at the point (1, 1); and since x(1, 1) = 2 and y(1, 1) = π/4, the partials ∂w
∂x , ∂w

∂y , and
(
∂w
∂t

)
x,y

are to

be evaluated at the point (2, π/4, 1). Calculate the terms appearing on the right hand side of (27.6):

∂x

∂t
= 2t; so

∂x

∂t
(1, 1) = 2,

∂y

∂t
=

s

1 + t2
; so

∂y

∂t
(1, 1) = 1/2,

∂w

∂x
= −2y

x2
; so

∂w

∂x
(2, π/4, 1) = −π/8,

∂w

∂y
=

2

x
; so

∂w

∂y
(2, π/4, 1) = 1, and(

∂w

∂t

)
x,y

= 3t2; so

(
∂w

∂t

)
x,y

(2, π/4, 1) = 3 .

Therefore (
∂w

∂t

)
s

(1, 1) = −π
8
· 2 + 1 · 1

2
+ 3 =

7

2
− π

4
.

Q.27.15. (Solution to 27.4.9) We proceed through steps (a)–(g) of the hint.

(a) Define g(x, y) = y/x and compute its differential[
dg(x,y)

]
=
[
g1(x, y) g2(x, y)

]
= [−yx−2 x−1

]
.

(b) Then compute the differential of φ ◦ g[
d(φ ◦ g)(x,y)

]
=
[
dφg(x,y)

][
dg(x,y)

]
= φ′

(
g(x, y)

)[
dg(x,y)

]
= φ′(yx−1)

[
−yx−2 x−1

]
=
[
−yx−2φ′(yx−1) x−1φ′(yx−1)

]
.

(c) Let G(x, y) =
(
x, φ(y/x)

)
and use (b) to calculate

[
dG(x,y)

]
[
dG(x,y)

]
=

[
G1

1(x, y) G1
2(x, y)

G2
1(x, y) G2

2(x, y)

]
=

[
1 0

−yx−2φ′(yx−1) x−1φ′(yx−1)

]
(d) Let m(x, y) = xy and compute its differential[

dm(x,y)

]
=
[
m1(x, y) m2(x, y)

]
=
[
y x

]
.
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(e) Since h(x, y) = xφ(yx−1) = m(G(x, y)) we see that h = m ◦G and therefore[
dh(x,y)

]
=
[
d(m ◦G)(x,y)

]
=
[
dmG(x,y)

][
dG(x,y)

]
=
[
G2(x, y) G1(x, y)

][
dG(x,y)

]
=
[
φ(yx−1) x

] [ 1 0
−yx−2φ′(yx−1) x−1φ′(yx−1)

]
=
[
φ(yx−1 − yx−1φ′(yx−1) φ′(yx−1)

]
.

(f) Since j(x, y) = xy + xφ(yx−1) = m(x, y) + h(x, y), we see that[
dj(x,y)

]
=
[
dm(x,y)

]
+
[
dh(x,y)

]
=
[
y + φ(yx−1 − yx−1φ′(yx−1) x+ φ′(yx−1)

]
.

(g) Then finally,

xj1(x, y) + yj2(x, y) = x
(
y + φ(yx−1 − yx−1φ′(yx−1)

)
+ y
(
x+ φ′(yx−1)

)
= xy + xφ(yx−1) + yx

= xy + j(x, y)

Q.27.16. (Solution to 27.4.10) Let h be as in the hint. Then

[
dh(x,y)

]
=

(
2x −2y
2y 2x

)
so [

dg(x,y)
]

=
[
d(f ◦ h)(x,y)

]
=
[
dfh(x,y)

][
dh(x,y)

]
=
[
f1(h(x, y)) f2(h(x, y))

] [2x −2y
2y 2x

]
=
[
2xf1(h(x, y)) + 2yf2(h(x, y)) − 2yf1(h(x, y)) + 2xf2(h(x, y))

]
.

Therefore

yg1(x, y)− xg2(x, y) = 2xyf1(h(x, y)) + 2y2f2(h(x, y)) + 2xyf1(h(x, y))− 2x2f2(h(x, y))

= 4xyf1(h(x, y))− 2(x2 − y2)f2(h(x, y))

= 2h2(x, y)f1(h(x, y))− 2h1(x, y)f2(h(x, y)) .

This computation, incidentally, gives one indication of the attractiveness of notation which omits
evaluation of partial derivatives. If one is able to keep in mind the points at which the partials are
being evaluated, less writing is required.

Q.28. Exercises in chapter 28

Q.28.1. (Solution to 28.1.2) If n is odd then the nth partial sum sn is 1; if n is even then sn = 0.
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Q.28.2. (Solution to 28.1.3) Use problem 28.1.8. The nth partial sum of the sequence
(
1
2 ,

1
4 ,

1
8 , . . .

)
is

sn =
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n

=

n∑
k=1

(
1

2

)k
=

n∑
k=0

(
1

2

)k
− 1

=
1− (12)n+1

1− 1
2

− 1

= 2−
(

1

2

)n
− 1

= 1− 2−n.

Q.28.3. (Solution to 28.1.5) For the sequence given in exercise 28.1.2, the corresponding series∑∞
k=1 ak is the sequence (1, 0, 1, 0, 1, . . . ) (of partial sums). For the sequence in exercise 28.1.3, the

series
∑∞

k=1 ak is the sequence
(
1
2 ,

3
4 ,

7
8 , . . .

)
(of partial sums).

Q.28.4. (Solution to 28.1.7) For the sequence (ak) given in 28.1.2 the corresponding sequence
of partial sums (1, 0, 1, 0, 1, . . . ) does not converge. Thus the sequence (1,−1, 1,−1, . . . ) is not
summable. Equivalently, the series

∑∞
k=1(−1)k+1 diverges.

For the sequence (ak) of 28.1.3, the nth partial sum is 1− 2−n (see 28.1.3). Since limn→∞ sn =
limn→∞

(
1− 2−n

)
= 1 (see proposition 4.3.8), we conclude that the sequence (1/2, 1/4, 1/8, . . . ) is

summable; in other words, the series
∑∞

k=1 2−k converges. The sum of this series is 1; that is

∞∑
k=1

2−k = 1 .

Q.28.5. (Solution to 28.1.10) Suppose that
∑∞

k=1 ak = b. If sn =
∑n

k=1 ak, then it is easy to see
that for each n we may write an as sn − sn−1 (where we let s0 = 0). Take limits as n → ∞ to
obtain

an = sn − sn−1 → b− b = 0 .

Q.28.6. (Solution to 28.1.11) Assume that the series
∑∞

k=1 k
−1 converges. Let sn =

∑n
k=1 k

−1.
Since the sequence (sn) of partial sums is assumed to converge, it is Cauchy (by proposition 18.1.4).
Thus there exists an index p such that |sn − sp| < 1

2 whenever n ≥ p. We obtain a contradiction
by noting that

|s2p − sp| =
2p∑

k=p+1

1

k

≥
2p∑

k=p+1

1

2p

=
p

2p

=
1

2
.

Q.28.7. (Solution to 28.1.17) Let
∑
ak be a convergent series in the normed linear space V . For

each n in N let sn =
∑n

k=1 ak. Then (sn) is a convergent sequence. By proposition 18.1.4 it is
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Cauchy. Thus given ε > 0 we may choose n0 in N so that n > m ≥ n0 implies∥∥∥∥∥
n∑

k=m+1

ak

∥∥∥∥∥ = ‖sn − sm‖ < ε . (Q.28)

For the second assertion of the proposition, suppose that V is complete. Suppose further that
(ak) is a sequence in V for which there exists n0 ∈ N such that (Q.28) holds whenever n > m ≥ n0.
(As above, sn =

∑n
k=1 ak.) This says that the sequence (sn) of partial sums is Cauchy, and since

V is complete, the sequence (sn) converges. That is, the series
∑
ak converges.

Q.28.8. (Solution to 28.1.19) Let fn(x) = xn
(
1 + xn

)−1
for every n ∈ N and x ∈ [−δ, δ]. Also let

Mn = δn(1−δ)−1. Since 0 < δ < 1, the series
∑
Mn =

∑
δn(1−δ)−1 converges (by problem 28.1.8).

For |x| ≤ δ, we have −xn ≤ |x|n ≤ δn ≤ δ; so xn ≥ −δ and 1 + xn ≥ 1− δ. Thus

|fn(x)| = |x|n

1 + xn
≤ δn

1− δ
= Mn .

Thus

‖fn‖u = sup{|fn(x)| : |x| ≤ δ} ≤Mn

By the Weierstrass M-test (proposition 28.1.18), the series
∑∞

k=1 fk converges uniformly.

Q.28.9. (Solution to 28.2.3) As was remarked after proposition 28.1.17, the convergence of a series
is not affected by altering any finite number of terms. Thus without loss of generality we suppose
that ak+1 ≤ δak for all k. Notice that a2 ≤ δa1, a3 ≤ δa2 ≤ δ2a1, a4 ≤ δ3a1, etc. In general,
ak ≤ δk−1a1 for all k. The geometric series

∑
δk−1 converges by problem 28.1.8. Thus by the

comparison test (proposition 28.2.2), the series
∑
ak converges. The second conclusion follows

similarly from the observations that ak ≥Mk−1a1 and that
∑
Mk−1 diverges.

Q.28.10. (Solution to 28.3.2) Suppose that V is complete and that (ak) is an absolutely summable
sequence in V . We wish to show that (ak) is summable. Let ε > 0. Since

∑
‖ak‖ converges in R

and R is complete, we may invoke the Cauchy criterion (proposition 28.1.17) to find an integer n0
such that n > m ≥ n0 implies

∑n
k=m+1‖ak‖ < ε. But for all such m and n∥∥∥∥∥

n∑
k=m+1

ak

∥∥∥∥∥ ≤
n∑

k=m+1

‖ak‖ < ε .

This, together with the fact that V is complete, allows us to apply for a second time the Cauchy
criterion and to conclude that

∑
ak converges. That is, the sequence (ak) is summable.

For the converse suppose that every absolutely summable sequence in V is summable. Let
(ak) be a Cauchy sequence in V . In order to prove that V is complete we must show that (ak)
converges. For each k in N we may choose a natural number pk such that ‖an−am‖ ≤ 2−k whenever
n > m ≥ pk. Choose inductively a sequence (nk) in N as follows. Let n1 be any integer such that
n1 ≥ p1. Having chosen integers n1 < n2 < · · · < nk in N so that nj ≥ pj for 1 ≤ j ≤ k, choose
nk+1 to be the larger of pk+1 and nk + 1. Clearly, nk+1 > nk and nk+1 ≥ pk+1. Thus

(
ank
)

is a

subsequence of (an) and (since nk+1 > nk ≥ pk for each k)
∥∥ank+1

− ank
∥∥ < 2−k for each k in N.

Let yk = ank+1
− ank for each k. Then (yn) is absolutely summable since

∑
‖yk‖ <

∑
2−k = 1.

Consequently (yk) is summable in V . That is, there exists b in V such that
∑j

k=1 yk → b as j →∞.

However, since
∑j

k=1 yk = anj+1 − an1 , we see that

anj+1 → an1 + b as j →∞ .

This shows that
(
ank
)

converges. Since (an) is a Cauchy sequence having a convergent subsequence
it too converges (proposition 18.1.5). But this is what we wanted to show.
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Q.28.11. (Solution to 28.4.4)
(a) It follows immediately from

|(fg)(x)| = |f(x)||g(x)| ≤ ‖f‖u‖g‖u for every x ∈ S

that

‖fg‖u = sup{|(fg)(x)| : x ∈ S} ≤ ‖f‖u ‖g‖u .
(b) Define f and g on [0, 2] by

f(x) =

{
1 if 0 ≤ x ≤ 1,

0 if 1 < x ≤ 2

and g(x) = 1− f(x). Then ‖f‖u = ‖g‖u = 1, but ‖fg‖u = 0.

Q.28.12. (Solution to 28.4.11) Since ‖x‖ < 1, the series
∑∞

k=0‖x‖k converges by problem 28.1.8.
Condition (e) in the definition of normed algebras is that ‖xy‖ ≤ ‖x‖ ‖y‖. An easy inductive
argument shows that ‖xn‖ ≤ ‖x‖n for all n in N. We know that ‖x‖n → 0 (by proposition 4.3.8);
so ‖xn‖ → 0 also. Thus (by proposition 22.2.3(d)) xn → 0 as n → ∞. Furthermore, comparing∑∞

0 ‖xk‖ with the series
∑∞

0 ‖x‖k shows that the former converges (see proposition 28.2.2). But

this says just that the series
∑∞

0 xk converges absolutely. It then follows from proposition 28.3.2

that
∑∞

0 xk converges. Letting sn =
∑n

k=0 x
k we see that

(1− x)

∞∑
k=0

xk = (1− x) lim sn

= lim
(
(1− x)sn

)
= lim

(
1− xn+1

)
= 1.

Similarly,
(∑∞

0 xk
)
(1− x) = 1. This shows that 1− x is invertible and that its inverse (1− x)−1

is the geometric series
∑∞

0 xk.

Q.28.13. (Solution to 28.4.14) Let a ∈ InvA. We show that r is continuous at a. Given ε > 0
choose δ to be the smaller of the numbers 1

2‖a
−1‖−1 and 1

2‖a
−1‖−2ε. Suppose that ‖y−a‖ < δ and

prove that ‖r(y)− r(a)‖ < ε. Let x = 1− a−1y. Since

‖x‖ = ‖a−1a− a−1y‖ ≤ ‖a−1‖‖y − a‖ < ‖a−1‖δ ≤ ‖a−1‖12‖a
−1‖−1 = 1

2

we conclude from 28.4.11 and 28.4.12 that 1− x is invertible and that

‖(1− x)−1 − 1‖ ≤ ‖x‖
1− ‖x‖

(Q.29)

Thus

‖r(y)− r(a)‖ = ‖y−1(a− y)a−1‖ (by 28.4.10(e))

≤ ‖y−1a− 1‖ ‖a−1‖
= ‖(a−1y)−1 − 1‖ ‖a−1‖ (by 28.4.10(d))

= ‖(1− x)−1 − 1‖ ‖a−1‖

≤ ‖x‖
1− ‖x‖

‖a−1‖ (by inequality (Q.29))

≤ 2‖x‖ ‖a−1‖ (because ‖x‖ ≤ 1
2)

< 2‖a−1‖2

≤ ε.
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Q.28.14. (Solution to 28.4.17) Throughout the proof we use the notation introduced in the hint.
To avoid triviality we suppose that (ak) is not identically zero. Since un is defined to be

∑n
k=0 ck =∑n

k=0

∑k
j=0 ajbk−j it is clear that un can be obtained by finding the sum of each column of the

matrix
[
djk
]

and then adding these sums. On the other hand the expression

n∑
k=0

an−ktk =
n∑
k=0

k∑
j=0

an−kbj

is obtained by finding the sum of each row of the matrix [djk] and then adding the sums. It is
conceivable that someone might find the preceding argument too “pictorial”, depending as it does
on looking at a “sketch” of the matrix [djk]. It is, of course, possible to carry out the proof in a
purely algebraic fashion. And having done so, it is also quite conceivable that one might conclude
that the algebraic approach adds more to the amount of paper used than to the clarity of the
argument. In any event, here, for those who feel more comfortable with it, is a formal verification
of the same result.

un =

n∑
k=0

ck

=
n∑
k=0

k∑
j=0

ajbk−j

=
n∑
k=0

k∑
j=0

djk

=

n∑
k=0

n∑
j=0

djk

=

n∑
j=0

n∑
k=0

djk

=

n∑
j=0

n∑
k=j

djk

=

n∑
j=0

n∑
k=j

ajbk−j

=

n∑
j=0

aj

n−j∑
r=0

br

=

n∑
j=0

ajtn−j

=

n∑
k=0

an−ktk.

Now that equation (28.10) has been established we see that

un =

n∑
k=0

an−kb+

n∑
k=0

an−k(tk − b)

= snb+
n∑
k=0

an−k(tk − b).
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Since snb → ab, it remains only to show that the last term on the right approaches 0 as n → ∞.
Since ∥∥∥∥∥

n∑
k=0

an−k(tk − b)

∥∥∥∥∥ ≤
n∑
k=0

‖an−k(tk − b)‖

≤
n∑
k=0

‖an−k‖ ‖(tk − b)‖

=

n∑
k=0

αn−kβk

it is sufficient to prove that given any ε > 0 the quantity
∑n

k=0 αn−kβk is less than ε whenever n is
sufficiently large.

Let α =
∑∞

k=0‖ak‖. Then α > 0. Since βk → 0 there exists n1 in N such that k ≥ n1 implies
βk < ε/(2α). Choose β >

∑n1
k=0 βk. Since αk → 0, there exists n2 in N such that k ≥ n2 implies

αk < ε/(2β).
Now suppose that n ≥ n1 +n2. If 0 ≤ k ≤ n1, then n−k ≥ n−n1 ≥ n2, so that αn−k < ε/(2β).

This shows that

p =

n1∑
k=0

αn−kβk

≤ ε(2β)−1
n1∑
k=0

βk

< ε/2.

Furthermore,

q =
n∑

k=n1+1

αn−kβk

≤ ε(2α)−1
n∑

k=n1+1

αn−k

≤ ε(2α)−1
∞∑
j=0

‖aj‖

= ε/2.

Thus
n∑
k=0

αn−kβk = p+ q < ε .

Q.28.15. (Solution to 28.4.25) Let 0 < s < r, let M > 0 be such that ‖ak‖rk ≤ M for every k
in N, and let ρ = s/r. Let fk(x) = akx

k for each k in N and x in Bs(0). For each such k and x

‖fk(x)‖ = ‖akxk‖ ≤ ‖ak‖‖x‖k ≤ ‖ak‖sk

= ‖ak‖rkρk ≤Mρk.

Thus ‖fk‖u ≤ Mρk for each k. Since 0 < ρ < 1, the series
∑
Mρk converges. Then, according

to the Weierstrass M-test (proposition 28.1.18), the series
∑
akx

k =
∑
fk(x) converges uniformly

on Bs(0). The parenthetical comment in the statement of the proposition is essentially obvious:
For a ∈ Br(0) choose s such that ‖a‖ < s < r. Since

∑
akx

k converges uniformly on Bs(0), it
converges at a (see problem 22.4.7).
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Q.28.16. (Solution to 28.4.26) Let a be an arbitrary point of U . Let φ = limn→∞ d(fn). We show
that ∆Fa ' T where T = φ(a). We are supposing that d(fn) → φ (unif) on U . Thus given ε > 0
we may choose N in N so that

sup
{∥∥d(fn)x − φ(x)

∥∥ : x ∈ U
}
< 1

8ε

whenever x ∈ U and n ≥ N . Let gn = fn − fN for all n ≥ N . Then for all such n and all x ∈ U
we have ∥∥d(gn)x∥∥ ≤ ∥∥d(fn)x − φ(x)

∥∥+
∥∥φ(x)− d

(
fN
)
x

∥∥ < 1
4ε .

Also it is clear that ∥∥d(gn)x − d(gn)a∥∥ ≤ ∥∥d(gn)x∥∥+
∥∥d(gn)a∥∥ < 1

2ε

for x ∈ U and n ≥ N . According to corollary 26.1.8∥∥∆
(
gn
)
a
(h)− d

(
gn
)
a
(h)
∥∥ ≤ 1

2ε‖h‖
whenever n ≥ N and h is a vector such that a+ h ∈ U . Thus∥∥∆

(
fn
)
a
(h)− d

(
fn
)
a
(h)−∆

(
fN
)
a
(h) + d

(
fN
)
a
(h)
∥∥ ≤ 1

2ε‖h‖
when n ≥ N and a+ h ∈ U . Taking the limit as n→∞ we obtain∥∥(∆Fa(h)− Th)−

(
∆
(
fN
)
a
(h)− d

(
fN
)
a
(h)
)∥∥ ≤ 1

2
ε‖h‖ (Q.30)

for h such that a + h ∈ U . Since fN is differentiable, ∆
(
fN
)
a
' d

(
fN
)
a
; thus there exists δ > 0

such that Bδ(a) ⊆ U and ∥∥∆
(
fN
)
a
(h)− d

(
fN
)
a
(h)
∥∥ < 1

2ε‖h‖ (Q.31)

for all h such that ‖h‖ < δ. From (Q.30) and (Q.31) it is clear that

‖∆Fa(h)− Th‖ < ε‖h‖
whenever ‖h‖ < δ. Thus ∆Fa ' T , which shows that F is differentiable at a and

dFa = T = lim
n→∞

d
(
fn
)
a
.

Q.29. Exercises in chapter 29

Q.29.1. (Solution to 29.1.2) Let U = V = R and f(x) = x3 for all x in R. Although f is
continuously differentiable and does have an inverse, it is not C1-invertible. The inverse function

x 7→ x
1
3 is not differentiable at 0.

Q.29.2. (Solution to 29.1.4) Set y = x2 − 6x + 5 and solve for x in terms of y. After completing
the square and taking square roots we have

|x− 3| =
√
y + 4 .

Thus there are two solutions x = 3+
√
y + 4 and x = 3−

√
y + 4. The first of these produces values

of x no smaller than 3 and the second produces values no larger than 3. Thus for x = 1 we choose
the latter. A local C1-inverse of f is given on the interval f→(0, 2) = (−3, 5) by

f
−1
loc (y) = 3−

√
y + 4 .

Q.29.3. (Solution to 29.1.7) In order to apply the chain rule to the composite function f
−1
loc ◦ f

we need to know that both f and f
−1
loc are differentiable. But differentiability of f

−1
loc was not a

hypothesis. Indeed, the major difficulty in proving the inverse function theorem is showing that a
local C1-inverse of a C1-function is in fact differentiable (at points where its differential does not
vanish). Once that is known, the argument presented in 29.1.7 correctly derives the formula for

Df
−1
loc (b).

Q.29.4. (Solution to 29.2.2) Let f(x, y) = x2y + sin(π2xy
2)− 2 for all x and y in R.
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(a) There exist a neighborhood V of 1 and a function h : V → R which satisfy

(i) h(1) = 2; and

(ii) f(x, h(x)) = 0 for all x in V .

(b) Let G(x, y) = (x, f(x, y)) for all x, y ∈ R. Then G is continuously differentiable and[
dG(1,2)

]
=

[
1 0

4 + 2π 1 + 2π

]
.

Thus dG(1,2) is invertible, so by the inverse function theorem G has a local C1-inverse, say
H, defined on some neighborhood W of (1, 0) = G(1, 2). Let V = {x : (x, 0) ∈ W} and
h(x) = H2(x, 0) for all x in V . The function h is in C1 because H is. Condition (i) is
satisfied by h since

(1, 2) = H(G(1, 2))

= H(1, f(1, 2))

= H(1, 0)

= (H1(1, 0) , H2(1, 0))

= (H1(1, 0) , h(1))

and (ii) holds because

(x, 0) = G(H(x, 0))

= G(H1(x, 0) , H2(x, 0))

= (H1(x, 0) , f(H1(x, 0), H2(x, 0)))

= (x , f(x, h(x)))

for all x in V .
(c) Let G, H, and h be as in (b). By the inverse function theorem[

dH(1,0)

]
=
[
dHG(1,2)

]
=
[
dG(1,2)

]−1
=

[
1 0

4 + 2π 1 + 2π

]−1
=

[
1 0

−4+2π
1+2π

1
1+2π

]
.

Then dy
dx at (1, 2) is just h′(1) and

h′(1) = H2
1 (1, 0) = −4 + 2π

1 + 2π
.

Q.29.5. (Solution to 29.2.4) Let f(x, y, z) = x2z + yz2 − 3z3 − 8 for all x, y, z ∈ R.

(a) There exist a neighborhood V of (3, 2) and a function h : V → R which satisfy

(i) h(3, 2) = 1; and

(ii) f(x, y, h(x, y)) = 0 for all x, y ∈ V.

(b) Let G(x, y, z) := (x, y, f(x, y, z)) for all x, y, z ∈ R. Then

[
dG(3,2,1)

]
=

1 0 0
0 1 0
6 1 4


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so dG(3,2,1) is invertible. By the inverse function theorem G has a local C1-inverse H

defined on some neighborhood W of (3, 2; 0) = G(3, 2, 1). Write H = (H1, H2) where
ranH1 ⊆ R2 and ranH2 ⊆ R. Let V = {(x, y) : (x, y, 0) ∈ W} and h(x, y) = H2(x, y; 0).
The function h belongs to C1 because H does. Now condition (i) holds because

(3, 2; 1) = H(G(3, 2; 1))

= H(3, 2; f(3, 2, 1))

= H(3, 2; 0)

= (H1(3, 2; 0) ; H2(3, 2; 0))

= (H1(3, 2; 0) ; h(3, 2))

and condition (ii) follows by equating the third components of the first and last terms of
the following computation

(x, y; 0) = G(H(x, y; 0))

= G(H1(x, y; 0);H2(x, y; 0))

= (H1(x, y; 0) ; f(H1(x, y; 0);H2(x, y; 0)))

= (x, y ; f(x, y;h(x, y))) .

(c) We wish to find
(
∂z
∂x

)
y

and
(
∂z
∂y

)
x

at (3, 2, 1); that is, h1(3, 2) and h2(3, 2), respectively.

The inverse function theorem tells us that[
dH(3,2,0)

]
=
[
dHG(3,2,1)

]
=
[
dG(3,2,1)

]−1
=

1 0 0
0 1 0
6 1 4

−1

=

 1 0 0
0 1 0
−3

2 −1
4

1
4

 .
Thus at (3, 2, 1) (

∂z

∂x

)
y

= h1(3, 2) =
∂H2

∂x
(3, 2) = −3

2

and (
∂z

∂y

)
x

= h2(3, 2) =
∂H2

∂y
(3, 2) = −1

4
.

Q.29.6. (Solution to 29.2.13) Let f = (f1, f2) where

f1(u, v;x, y) = 2u3vx2 + v2x3y2 − 3u2y4

and

f2(u, v;x, y) = 2uv2y2 − uvx2 + u3xy − 2 .

(a) There exist a neighborhood V of (a, b) in R2 and a function h : V → R2 which satisfy

(i) h(a, b) = (c, d); and

(ii) f(u, v;h(u, v)) = (0, 0) for all u, v ∈ V.
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(b) Let G(u, v;x, y) := (u, v; f(u, v;x, y)) for all u, v, x, y ∈ R. Then G is continuously
differentiable and

[
dG(1,1)

]
=


1 0 0 0
0 1 0 0
0 4 7 −10
4 3 −1 3

 .
Since det

[
dG(1,1)

]
= 11 6= 0, we know from the inverse function theorem that G is locally

C1-invertible at (1, 1). That is, there exist a neighborhood W of G(1, 1; 1, 1) = (1, 1; 0, 0)
in R4 and a local C1-inverse H : W → R4 of G. Write H in terms of its component
functions, H = (H1, H2) where ranH1 and ranH2 are contained in R2, and set h(u, v) =
H2(u, v; 0, 0) for all (u, v) in V := {(u, v) : (u, v; 0, 0) ∈W}. Then V is a neighborhood of
(1, 1) in R2 and the function h is continuously differentiable because H is. We conclude
that h(1, 1) = (1, 1) from the following computation.

(1, 1; 1, 1) = H(G(1, 1; 1, 1))

= H(1, 1; f(1, 1; 1, 1))

= (H1(1, 1; f(1, 1; 1, 1)) ; H2(1, 1; f(1, 1; 1, 1)))

= (1, 1 ; H2(1, 1; 0, 0))

= (1, 1 ; h(1, 1)) .

And from

(u, v; 0, 0) = G(H(u, v; 0, 0))

= G(H1(u, v; 0, 0);H2(u, v; 0, 0))

= (H1(u, v; 0, 0) ; f(H1(u, v; 0, 0);H2(u, v; 0, 0)))

= (u, v ; f(u, v;h(u, v)))

we conclude that (ii) holds; that is,

f(u, v;h(u, v)) = (0, 0)

for all u, v ∈ V .

Q.30. Exercises in appendix D

Q.30.1. (Solution to D.1.1)

P Q P ∧Q
T T T
T F F
F T F
F F F

Q.30.2. (Solution to D.3.2) First observe that the operation ∧ is commutative and associative.
(The former is obvious and the latter may be easily checked by means of a truth table.) Therefore
if A, B, and C are propositions

A ∧ (B ∧ C) iff (A ∧B) ∧ C
iff (B ∧A) ∧ C (Q.32)

iff B ∧ (A ∧ C).
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It then follows that

(∃x ∈ S)(∃y ∈ T )P (x, y) iff (∃x ∈ S)(∃y)((y ∈ T ) ∧ P (x, y))

iff (∃x)
(
(x ∈ S) ∧ (∃y)((y ∈ T ) ∧ P (x, y))

)
iff (∃x)(∃y)

(
(x ∈ S) ∧ ((y ∈ T ) ∧ P (x, y))

)
iff (∃x)(∃y)

(
(y ∈ T ) ∧ ((x ∈ S) ∧ P (x, y))

)
(by (Q.32))

iff (∃y)(∃x)
(
(y ∈ T ) ∧ ((x ∈ S) ∧ P (x, y))

)
iff (∃y)

(
(y ∈ T ) ∧ (∃x)((x ∈ S) ∧ P (x, y))

)
iff (∃y)((y ∈ T ) ∧ (∃x ∈ S)P (x, y))

iff (∃y ∈ T )(∃x ∈ S)P (x, y).

Notice that at the third and sixth steps we used the remark made in the last paragraph of sec-
tion D.1.

Q.30.3. (Solution to D.4.4)

(1) (2) (3) (4) (5)
P Q P ⇒ Q ∼ P Q ∨ (∼ P )

T T T F T
T F F F F
F T T T T
F F T T T

The third and fifth columns have the same truth values.

Q.31. Exercises in appendix F

Q.31.1. (Solution to F.2.4) If S, T , and U are sets, then

x ∈ S ∪ (T ∩ U) iff x ∈ S or x ∈ T ∩ U
iff x ∈ S or (x ∈ T and x ∈ U)

iff (x ∈ S or x ∈ T ) and (x ∈ S or x ∈ U)

iff x ∈ S ∪ T and x ∈ S ∪ U
iff x ∈ (S ∪ T ) ∩ (S ∪ U).

Problem D.1.4 was used to get the third line.

Q.31.2. (Solution to F.2.9) If T is a set and S is a family of sets, then

x ∈ T ∪
(⋂

S
)

iff x ∈ T or x ∈
⋂

S

iff x ∈ T or (∀S ∈ S)x ∈ S
iff (∀S ∈ S)(x ∈ T or x ∈ S)

iff (∀S ∈ S)x ∈ T ∪ S

iff x ∈
⋂
{T ∪ S : S ∈ S}.

To obtain the third line we used the principle mentioned in the last paragraph of section D.1 of
appendix D.

Q.31.3. (Solution to F.3.3) Here is one proof: A necessary and sufficient condition for an element
x to belong to the complement of S ∪ T is that it not belong to S or to T . This is the equivalent
to its belonging to both Sc and T c, that is, to the intersection of the complements of S and T .



340 Q. SOLUTIONS TO EXERCISES

A second more “formalistic” proof looks like this :

x ∈ (S ∪ T )c iff x /∈ S ∪ T
iff ∼ (x ∈ S ∪ T )

iff ∼ (x ∈ S or x ∈ T )

iff ∼ (x ∈ S) and ∼ (x ∈ T )

iff x /∈ S and x /∈ T
iff x ∈ Sc and x ∈ T c

iff x ∈ Sc ∩ T c.

This second proof is not entirely without merit: at each step only one definition or fact is used.
(For example, the result presented in example D.4.1 justifies the fourth “iff”.) But on balance most
readers, unless they are very unfamiliar with the material, would probably prefer the first version.
After all, it’s easier to read English than to translate code.

Q.31.4. (Solution to F.3.5) Here is another formalistic proof. It is a good idea to try and rewrite
it in ordinary English.

x ∈ (
⋃

S)c iff x /∈
⋃

S

iff ∼ (x ∈
⋃

S)

iff ∼ (∃S ∈ S)(x ∈ S)

iff (∀S ∈ S) ∼ (x ∈ S)

iff (∀S ∈ S)(x /∈ S)

iff (∀S ∈ S)(x ∈ Sc)

iff x ∈
⋂
{Sc : S ∈ S}.

Q.31.5. (Solution to F.3.9) To see that S \ T and T are disjoint, notice that

(S \ T ) ∩ T = S ∩ T c ∩ T
= S ∩ ∅
= ∅.

Furthermore,

(S \ T ) ∪ T = (S ∩ T c) ∪ T
= (S ∪ T ) ∩ (T c ∪ T )

= S ∪ T.

As usual S and T are regarded as belonging to some universal set, say U . Then T c ∪ T is all of U
and its intersection with S ∪ T (which is contained in U) is just S ∪ T .

Q.31.6. (Solution to F.3.10) We know from proposition F.1.2 (e) that S ∪ T = S if and only if
T ⊆ S. But proposition F.3.9 tells us that S ∪ T = (S \ T ) ∪ T . Thus (S \ T ) ∪ T = S if and only
if T ⊆ S.
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Q.32. Exercises in appendix G

Q.32.1. (Solution to G.1.10) If x+ x = x, then

x = x+ 0

= x+ (x+ (−x))

= (x+ x) + (−x)

= x+ (−x)

= 0.

Q.32.2. (Solution to G.1.12) Use associativity and commutativity of addition.

(w + x) + (y + z) = ((w + x) + y) + z

= (w + (x+ y)) + z

= ((x+ y) + w) + z

= z + ((x+ y) + w)

= z + (x+ (y + w)).

The first, second, and last equalities use associativity of addition; steps 3 and 4 use its commuta-
tivity.

Q.33. Exercises in appendix H

Q.33.1. (Solution to H.1.5) By definition x > 0 holds if and only if 0 < x, and this holds (again
by definition) if and only if x− 0 ∈ P. Since −0 = 0 (which is obvious from 0 + 0 = 0 and the fact
that the additive identity is unique), we conclude that x > 0 if and only if

x = x+ 0 = x+ (−0) = x− 0 ∈ P .

Q.33.2. (Solution to H.1.6) By the preceding exercise x > 0 implies that x ∈ P; and y < z implies
z − y ∈ P. Since P is closed under multiplication, x(z − y) belongs to P. Thus

xz − xy = xz + (−(xy))

= xz + x(−y) by problem G.4.4

= x(z + (−y))

= x(z − y) ∈ P .

This shows that xy < xz.

Q.33.3. (Solution to H.1.12) Since 0 < w < x and y > 0, we may infer from exercise H.1.6 that
yw < yx. Similarly, we obtain xy < xz from the conditions 0 < y < z and x > 0 (which holds by
the transitivity of <, proposition H.1.3). Then

wy = yw < yx = xy < xz .

Thus the desired inequality wy < xz follows (again by transitivity of <).

Q.34. Exercises in appendix I

Q.34.1. (Solution to I.1.3) Since 1 belongs to A for every A ∈ A, it is clear that 1 ∈ ∩A. If x ∈ ∩A,
then x ∈ A for every A ∈ A. Since each set A in A is inductive, x+ 1 ∈ A for every A ∈ A. That
is, x+ 1 ∈ ∩A.
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Q.34.2. (Solution to I.1.10) Let S be the set of all natural numbers for which the assertion is true.
Certainly 1 belongs to S. If n ∈ S, then

∑n
k=1 k = 1

2n(n+ 1). Therefore

n+1∑
k=1

k =

( n∑
k=1

k

)
+ (n+ 1)

=
1

2
n(n+ 1) + (n+ 1)

=
1

2
(n+ 1)(n+ 2),

which shows that n+ 1 ∈ S. Thus S is an inductive subset of N. We conclude from corollary I.1.8
that S = N. In other words, the assertion holds for all n ∈ N.

Q.34.3. (Solution to I.1.18) Let K be a subset of N which has no smallest member. We show
K = ∅. Let

J = {n ∈ N : n < k for all k ∈ K} .
Certainly 1 belongs to J . [If not, there would exist c ∈ K such that 1 ≥ c. From proposition I.1.6 we
see that c = 1. Thus 1 belongs to K and is the smallest member of K, contrary to our assumption.]

Now suppose that n ∈ J and prove that n + 1 ∈ J . If n + 1 /∈ J , then there exists k ∈ K
such that n + 1 ≥ k. By the inductive hypothesis n < k. Thus n < k ≤ n + 1. We conclude from
problem I.1.16(b) that k = n + 1. But, since n is smaller than every member of K, this implies
that n + 1 is the smallest member of K. But K has no smallest member. Therefore we conclude
that n+ 1 ∈ J .

We have shown that J is an inductive subset of N. Then J = N (by theorem I.1.7). If K
contains any element at all, say j, then j ∈ J ; so in particular j < j. Since this is not possible, we
conclude that K = ∅.

Q.35. Exercises in appendix J

Q.35.1. (Solution to J.2.7)
(a) A number x belongs to the set A if x2 − 4x+ 3 < 3; that is, if x(x− 4) < 0. This occurs if

and only if x > 0 and x < 4. Thus A = (0, 4); so supA = 4 and inf A = 0.
(b) Use beginning calculus to see that f ′(x) = 2x−4. Conclude that the function f is decreasing

on the interval (−∞, 2) and is increasing on (2, 3). Thus f assumes a minimum at x = 2. Since
f(2) = −1, we see that B = [−1,∞). Thus supB does not exist and inf B = −1.

Q.35.2. (Solution to J.3.7) As in the hint let ` = supA and m = supB, and suppose that `, m > 0.
If x ∈ AB, then there exist a ∈ A and b ∈ B such that x = ab. From a ≤ ` and b ≤ m it is clear
that x ≤ `m; so `m is an upper bound for AB.

Since AB is bounded above it must have a least upper bound, say c. Clearly c ≤ `m; we show
that `m ≤ c. Assume, to the contrary, that c < `m. Let ε = `m− c. Since ε > 0 and ` is the least
upper bound for A we may choose an element a of A such that a > `− ε(2m)−1. Similarly, we may
choose b ∈ B so that b > m− ε(2`)−1. Then

ab >
(
`− ε(2m)−1

)(
m− ε(2`)−1

)
= `m− ε+ ε2(4`m)−1

> `m− ε
= c.

This is a contradiction, since ab belongs to AB and c is an upper bound of AB. We have shown

sup(AB) = c = `m = (supA)(supB)

as required.
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Remark. It is not particularly difficult to follow the details of the preceding proof. But that is
not the same thing as understanding the proof! It is easy to see, for example, that if we choose
a > ` − ε(2m)−1 and b > m − ε(2`)−1, then ab > c. But that still leaves room to be puzzled.
You might reasonably say when shown this proof, “Well, that certainly is a proof. And it looks
very clever. But what I don’t understand is how did you know to choose a and b in just that
particular (or should I say ‘peculiar’?) way? Do you operate by fits of inspiration, or a crystal ball,
or divination of entrails, or what?” The question deserves an answer. Once we have assumed c to
be an upper bound smaller than `m (and set ε = `m−c), our hope is to choose a ∈ A close to ` and
b ∈ B close to m in such a way that their product ab exceeds c. It is difficult to say immediately
how close a should be to ` (and b to m). Let’s just say that a > ` − δ1 and b > m − δ2, where
δ1 and δ2 are small positive numbers. We will figure out how small they should be in a moment.
Then

ab > (`− δ1)(m− δ2) = `m−mδ1 − `δ2 + δ1δ2 .

Since δ1δ2 is positive, we can simplify the preceding inequality and write

ab > `m−mδ1 − `δ2 . (Q.33)

What we want to get at the end of our computation is

ab > c = `m− ε. (Q.34)

Now comparing what we have (Q.33) with what we want (Q.34), we see that all we need to do is
choose δ1 and δ2 in such a way that

mδ1 + `δ2 < ε (Q.35)

(for then `m − (mδ1 + `δ2) > `m − ε = c, and we are done). To guarantee that the sum of two
numbers is less than ε it suffices to choose both of them to be less than ε/2. Clearly, we have
mδ1 < ε/2 if we choose δ1 < ε(2m)−1; and we have `δ2 < ε/2 if we choose δ2 < ε(2`)−1. And that’s
all we need.

Q.35.3. (Solution to J.4.2) Let A = {t > 0: t2 < a}. The set A is not empty since it contains
a(1 + a)−1. [a2(1 + a)−2 < a(1 + a)−1 < a.] It is easy to see that A is bounded above by
M := max{1, a}. [If t ∈ A and t ≤ 1, then t ≤ M ; on the other hand, if t ∈ A and t > 1, then
t < t2 < a ≤M .] By the least upper bound axiom (J.3.1) A has a supremum, say x. It follows from
the axiom of trichotomy (H.1.2) that exactly one of three things must be true: x2 < a, x2 > a, or
x2 = a. We show that x2 = a by eliminating the first two alternatives.

First assume that x2 < a. Choose ε in (0, 1) so that ε < 3−1x−2(a− x2). Then

(1 + ε)2 = 1 + 2ε+ ε2 (Q.36)

< 1 + 3ε (Q.37)

so that

x2(1 + ε)2 < x2(1 + 3ε) < a .

Thus x(1 + ε) belongs to A. But this is impossible since x(1 + ε) > x and x is the supremum of A.
Now assume x2 > a. Choose ε in (0, 1) so that ε < (3a)−1(x2 − a). Then by (Q.36)

a < x2(1 + 3ε)−1 < x2(1 + ε)−2 . (Q.38)

Now since x = supA and x(1 + ε)−1 < x, there must exist t ∈ A such that x(1 + ε)−1 < t < x. But
then

x2(1 + ε)−2 < t2 < a ,

which contradicts (Q.38). Thus we have demonstrated the existence of a number x ≥ 0 such that
x2 = a. That there is only one such number has already been proved: see problem H.1.16.
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Q.36. Exercises in appendix K

Q.36.1. (Solution to K.1.2) Suppose that (x, y) = (u, v). Then{
{x, y}, {x}

}
=
{
{u, v}, {u}

}
.

We consider two cases.
Case 1: {x, y} = {u, v} and {x} = {u}. The second equality implies that x = u. Then from

the first equality we infer that y = v.
Case 2: {x, y} = {u} and {x} = {u, v}. We derive x = u = y from the first equality and

u = x = v from the second. Thus x = y = u = v. In either case x = u and y = v. The converse is
obvious.

Q.36.2. (Solution to K.3.7)
(a) f(12) = 3;

(b) Notice that (1− x)−1 does not exist if x = 1, (1 + (1− x)−1)−1 does not exist if x = 2, and
(1− 2(1 + (1− x)−1)−1)−1 does not exist if x = 0; so dom f = R \ {0, 1, 2}.

Q.36.3. (Solution to K.3.8) We can take the square root of g(x) = −x2−4x−1 only when g(x) ≥ 0,
and since we take its reciprocal, it should not be zero. But g(x) > 0 if and only if x2 + 4x+ 1 < 0
if and only if (x + 2)2 < 3 if and only if |x + 2| <

√
3 if and only if −2 −

√
3 < x < −2 +

√
3. So

dom f = (−2−
√

3,−2 +
√

3).

Q.37. Exercises in appendix L

Q.37.1. (Solution to L.1.2) We may write A as the union of three intervals

A = (−4, 4) = (−4,−2) ∪ [−2, 1) ∪ [1, 4) .

Then

f→(A) = f→
(

(−4, 4)
)

= f→
(

(−4,−2)
)
∪ f→

(
[−2, 1)

)
∪ f→

(
[1, 4)

)
. (Q.39)

(This step is justified in the next section by M.1.25.) Since f is constant on the interval (−4,−2)
we see that f→

(
(−4,−2)

)
= {−1}. On the interval [−2, 1) the function increases from f(−2) = 3

to f(0) = 7 and then decreases to f(1) = 6 so that f→
(

[−2, 1)
)

= [3, 7]. (This interval is closed
because both −2 and 0 belong to [−2, 1).) Finally, since f is decreasing on [1, 4) we see that
f→
(

[1, 4)
)

=
(
f(4), f(1)

]
= (14 , 1]. Thus from equation (Q.39) we conclude that

f→(A) = {−1} ∪ (14 , 1] ∪ [3, 7].

Q.37.2. (Solution to L.1.3) Use techniques from beginning calculus. The function is a fourth degree
polynomial, so f(x)→∞ as x→ −∞ and as x→∞. Thus the range of f is not bounded above.
The minimum value of the range will occur at a critical point, that is, at a point where f ′(x) = 0.
But this occurs at x = −3, x = 0, and x = 2. The values of f at these points are, respectively
−188, 0, and −63. We conclude that ran f = [−188,∞).

Q.37.3. (Solution to L.1.5) Notice that the arctangent function is strictly increasing (its derivative
at each x is (1+x2)−1). Its range is (−π/2, π/2). Thus f←(B) = f←

(
(π/4, 2)

)
= f←

(
(π/4, π/2)

)
=

(1,∞).

Q.37.4. (Solution to L.1.6) For −
√

9− x2 to lie between 1 and 3, we would need −3 <
√

9− x2 <
−1. But since the square root function on R takes on only positive values, this is not possible. So
f←(B) = ∅.

Q.37.5. (Solution to L.2.2) For x ≤ 1
3 , f(x) ≤ 1 which implies g(f(x)) = −1. For x ∈ (13 , 1),

f(x) ∈ (1, 3), so g(f(x)) = 9x2. For 1 ≤ x ≤ 2, f(x) = 2, so g(f(x)) = −1. Finally, for x > 2,
f(x) = 2 and therefore g(f(x)) = 4.
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Q.37.6. (Solution to L.2.3) Associativity: for every x

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) = ((h ◦ g) ◦ f)(x) ;

so h ◦ (g ◦ f) = (h ◦ g) ◦ f .
To see that composition is not commutative take, for example, f(x) = x + 1 and g(x) = x2.

Since (g ◦ f)(1) = 4 and (f ◦ g)(1) = 2, the functions g ◦ f and f ◦ g cannot be equal.

Q.38. Exercises in appendix M

Q.38.1. (Solution to M.1.2) If f(x) = f(y), then (x + 2)(3y − 5) = (y + 2)(3x − 5). Thus
6y − 5x = 6x− 5y, which implies x = y.

Q.38.2. (Solution to M.1.3) Suppose that m and n are positive integers with no common prime
factors. Let f

(
m
n

)
= 2m3n. Then f is injective by the unique factorization theorem (see, for

example, [2], page 21).

Q.38.3. (Solution to M.1.10) Let f(x) = 1
x − 1 for x 6= 0 and f(0) = 3.

Q.38.4. (Solution to M.1.12) Define f : Z→ N by

f(n) =

{
2n+ 1, for n ≥ 0

−2n, for n < 0.

Q.38.5. (Solution to M.1.13) Define f : R→ (0, 1) by f(x) = 1
2 + 1

π arctanx.

Q.38.6. (Solution to M.1.14) Let S1 be {(x, y) : x2 + y2 = 1}. Define f : [0, 1) → S1 by f(t) =
(cos(2πt), sin(2πt)).

Q.38.7. (Solution to M.1.15) Let

g(x) =


3− 2x, for 0 ≤ x < 1

f(x), for 1 ≤ x ≤ 2
1
2(3− x), for 2 < x ≤ 3.

Q.38.8. (Solution to M.1.16)
[
−π

2 ,
π
2

]
.

Q.38.9. (Solution to M.1.22)
(a) We show that if y ∈ f→(f←(B)), then y ∈ B. Suppose that y ∈ f→(f←(B)). Then (by the

definition of f→) there exists x ∈ f←(B) such that y = f(x). From x ∈ f←(B) we infer (using the
definition of f←) that f(x) ∈ B. That is, y ∈ B.

(b) Let f(x) = x2 and B = {−1}. Then f→(f←(B)) = f→(f←{−1}) = f→(∅) = ∅ 6= B.
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(c) Suppose that f is surjective. Show that B ⊆ f→(f←(B)) by showing that y ∈ B implies
y ∈ f→(f←(B)). If y ∈ B, then (since f is surjective) there exists x ∈ S such that y = f(x).
Since f(x) ∈ B, we see that x ∈ f←(B) (by the definition of f←). From this it follows (using the
definition of f→) that y = f(x) ∈ f→(f←(B)).

Q.38.10. (Solution to M.1.25) This requires nothing other than the definitions of ∪ and f→:

y ∈ f→(A ∪B) iff there exists x ∈ A ∪B such that y = f(x)

iff there exists x ∈ A such that y = f(x) or

there exists x ∈ B such that y = f(x)

iff y ∈ f→(A) or y ∈ f→(B)

iff y ∈ f→(A) ∪ f→(B).

Q.38.11. (Solution to M.1.27) Here the definitions of ∩ and f← are used:

x ∈ f←(C ∩D) iff f(x) ∈ C ∩D
iff f(x) ∈ C and f(x) ∈ D
iff x ∈ f←(C) and x ∈ f←(D)

iff x ∈ f←(C) ∩ f←(D).

Q.38.12. (Solution to M.1.31)
(a) Show that if y ∈ f→(

⋂
A), then y ∈

⋂
{f→(A) : A ∈ A}. Suppose that y ∈ f→(

⋂
A). Then

there exists x ∈
⋂
A such that y = f(x). Since x belongs to the intersection of the family A it must

belong to every member of A. That is, x ∈ A for every A ∈ A. Thus y = f(x) belongs to f→(A)
for every A ∈ A; and so y ∈

⋂
{f→(A) : A ∈ A}.

(b) Suppose f is injective. If y ∈
⋂
{f→(A) : A ∈ A}, then y ∈ f→(A) for every A ∈ A. Choose

a set A0 ∈ A. Since y ∈ f→(A0), there exists x0 ∈ A0 such that y = f(x0). The point x0 belongs
to every member of A. To see this, let A be an arbitrary set belonging to A. Since y ∈ f→(A),
there exists x ∈ A such that y = f(x); and since f(x) = y = f(x0) and f is injective, we conclude
that x0 = x ∈ A. Thus we have shown that x0 ∈

⋂
A and therefore that y = f(x0) ∈ f→(

⋂
A).

(c) If y ∈ f→(
⋃
A), then there exists x ∈

⋃
A such that y = f(x). Since x ∈

⋃
A there exists

A ∈ A such that x ∈ A. Then y = f(x) ∈ f→(A) and so y ∈
⋃
{f→(A) : A ∈ A}. Conversely,

if y belongs to
⋃
{f→(A) : A ∈ A}, then it must be a member of f→(A) for some A ∈ A. Then

y = f(x) for some x ∈ A ⊆
⋃
A and therefore y = f(x) ∈ f→(

⋃
A).

Q.38.13. (Solution to M.2.1) Let f : S → T and suppose that g and h are inverses of f . Then

g = g ◦ IT = g ◦ (f ◦ h) = (g ◦ f) ◦ h = IS ◦ h = h .

Q.38.14. (Solution to M.2.3) Arcsine is the inverse of the restriction of the sine function to the
interval [−π

2 ,
π
2 ]. The arccosine is the inverse of the restriction of cosine to [0, π]. And arctangent

is the inverse of the restriction of tangent to (−π
2 ,

π
2 ).

Q.38.15. (Solution to M.2.4) Suppose that f has a right inverse fr. For each y ∈ T it is clear that
y = IT (y) = f

(
fr(y)

)
∈ ran f ; so ran f = T and f is surjective.

Conversely, suppose that f is surjective. Then for every y ∈ T the set f←({y}) is nonempty.
For each y ∈ T let xy be a member of f←({y}) and define

fr : T → S : y 7→ xy .

Then f
(
fr(y)

)
= f(xy) = y, showing that fr is a right inverse of f . (The reader who has studied a

bit of set theory will likely have noticed the unadvertised use of the axiom of choice in this proof.
It is used in this fashion throughout the text.)
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Q.39. Exercises in appendix N

Q.39.1. (Solution to N.1.4) The existence of the function has already been demonstrated: if f =
(f1, f2), then (πk ◦ f)(t) = πk

(
f1(t), f2(t)

)
= fk(t) for k = 1, 2 and t ∈ T .

To prove uniqueness suppose that there is a function g ∈ F(T, S1 × S2) such that πk ◦ g = fk

for k = 1, 2. Then g(t) =
(
π1(g(t)), π2(g(t))

)
=
(
f1(t), f2(t)

)
=
(
f1, f2

)
(t) for k = 1, 2 and t ∈ T .

So g =
(
f1, f2

)
.

Q.40. Exercises in appendix O

Q.40.1. (Solution to O.1.4) We wish to demonstrate that for all natural numbers m and n if there
is a bijection from {1, . . . ,m} onto {1, . . . , n}, then m = n. To accomplish this use induction on n.

First, suppose that for an arbitrary natural number m we have {1, . . . ,m} ∼ {1}. That is, we
suppose that there exists a bijection f from {1, . . . ,m} onto {1}. Then since f(1) = 1 = f(m) and
f is injective, we conclude that m = 1. This establishes the proposition in the case n = 1.

Next, we assume the truth of the result for some particular n ∈ N: for every m ∈ N if
{1, . . . ,m} ∼ {1, . . . , n}, then m = n. This is our inductive hypothesis. What we wish to show is
that for an arbitrary natural number m if {1, . . . ,m} ∼ {1, . . . , n + 1}, then m = n + 1. Suppose
then that m ∈ N and {1, . . . ,m} ∼ {1, . . . , n+ 1}. Then there is a bijection f from {1, . . . ,m} onto
{1, . . . , n+ 1}. Let k = f−1(n+ 1). The restriction of f to the set {1, . . . , k − 1, k + 1 , . . . ,m} is
a bijection from that set onto {1, . . . , n}. Thus

{1, . . . , k − 1, k + 1, . . . ,m} ∼ {1, . . . , n}. (Q.40)

Furthermore, it is easy to see that

{1, . . . ,m− 1} ∼ {1, . . . , k − 1, k + 1, . . . ,m}. (Q.41)

(The required bijection is defined by g(j) = j if 1 ≤ j ≤ k − 1 and g(j) = j + 1 if k ≤ j ≤ m− 1.)
From (Q.40), (Q.41), and proposition O.1.2 we conclude that

{1, . . . ,m− 1} ∼ {1, . . . , n} .

By our inductive hypothesis, m− 1 = n. This yields the desired conclusion m = n+ 1.

Q.40.2. (Solution to O.1.7) The result is trivial if S or T is empty; so we suppose they are not.
Let m = cardS and n = cardT . Then S ∼ {1, . . . ,m} and T ∼ {1, . . . , n}. It is clear that

{1, . . . , n} ∼ {m+ 1, . . . ,m+ n} .

(Use the map j 7→ j + m for 1 ≤ j ≤ n.) Thus T ∼ {m + 1, . . . ,m + n}. Let f : S → {1, . . . ,m}
and g : T → {m+ 1, . . . ,m+ n} be bijections. Define h : S ∪ T → {1, . . . ,m+ n} by

h(x) =

{
f(x), for x ∈ S
g(x), for x ∈ T .

Then clearly h is a bijection. So S ∪ T is finite and card(S ∪ T ) = m+ n = cardS + cardT .

Q.40.3. (Solution to O.1.8) Proceed by mathematical induction. If C ⊆ {1}, then either C = ∅,
in which case cardC = 0, or else C = {1}, in which case cardC = 1. Thus the lemma is true if
n = 1.

Suppose then that the lemma holds for some particular n ∈ N. We prove its correctness for
n + 1. So we assume that C ⊆ {1, . . . , n + 1} and prove that C is finite and that cardC ≤ n + 1.
It is clear that C \ {n + 1} ⊆ {1, . . . , n}. By the inductive hypothesis C \ {n + 1} is finite and
card(C \ {n + 1}) ≤ n. There are two possibilities: n + 1 /∈ C and n + 1 ∈ C. In case n + 1 does
not belong to C, then C = C \ {n + 1}; so C is finite and cardC ≤ n < n + 1. In the other case,
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where n+ 1 does belong to C, it is clear that C is finite (because C \ {n+ 1} is) and we have (by
proposition O.1.7)

cardC = card
(
(C \ {n+ 1}) ∪ {n+ 1}

)
= card(C \ {n+ 1}) + card({n+ 1})
≤ n+ 1.

Q.40.4. (Solution to O.1.11) Suppose that S is infinite. We prove that there exists a proper subset
T of S and a bijection f from S onto T . We choose a sequence of distinct elements ak in S, one
for each k ∈ N. Let a1 be an arbitrary member of S. Then S \ {a1} 6= ∅. (Otherwise S ∼ {a1} and
S is finite.) Choose a2 ∈ S \ {a1}. Then S \ {a1, a2} 6= ∅. (Otherwise S ∼ {a1, a2} and S is finite.)
In general, if distinct elements a1, . . . , an have been chosen, then S \ {a1, . . . , an} cannot be empty;
so we may choose an+1 ∈ S \ {a1, . . . , an}. Let T = S \ {a1}, and define f : S → T by

f(x) =

{
ak+1, if x = ak for some k

x, otherwise.

Then f is a bijection from S onto the proper subset T of S.
For the converse construct a proof by contradiction. Suppose that S ∼ T for some proper

subset T ⊆ S, and assume further that S is finite, so that S ∼ {1, . . . , n} for some n ∈ N. Then by
proposition O.1.9 the set S \ T is finite and, since it is nonempty, is therefore cardinally equivalent
to {1, . . . , p} for some p ∈ N. Thus

n = cardS

= cardT

= card(S \ (S \ T ))

= cardS − card(S \ T ) (by problem O.1.10)

= n− p.
Therefore p = 0, which contradicts the earlier assertion that p ∈ N.

Q.40.5. (Solution to O.1.13) The map x 7→ 1
2x is a bijection from the interval (0, 1) onto the

interval (0, 12), which is a proper subset of (0, 1).

Q.40.6. (Solution to O.1.15) Since f is surjective it has a right inverse fr (see proposition M.2.4).
This right inverse is injective, since it has a left inverse (see proposition M.2.5). Let A = ran fr.
The function fr establishes a bijection between T and A. Thus T ∼ A ⊆ S. If S is finite, so is A
(by proposition O.1.9) and therefore so is T .

Q.40.7. (Solution to O.1.16) Let B = ran f . Then S ∼ B ⊆ T . If T is finite, so is B (by
proposition O.1.9) and therefore so is S.

Q.41. Exercises in appendix P

Q.41.1. (Solution to P.1.4) If S is finite there is nothing to prove; so we suppose that S is an infinite
subset of T . Then T is countably infinite. Let f : N→ T be an enumeration of the members of T .
The restriction of f to the set f←(S) ⊆ N is a bijection between f←(S) and S; so we may conclude
that S is countable provided we can prove that f←(S) is. Therefore it suffices to show that every
subset of N is countable.

Let A be an infinite subset of N. Define inductively elements a1 < a2 < . . . in A. (Let a1 be the
smallest member of A. Having chosen a1 < a2 < · · · < an in A, notice that the set A \ {a1, . . . , an}
is not empty and choose an+1 to be the smallest element of that set.) Let a : N→ A be the function
n 7→ an. It is clear that ak ≥ k for all k and, since ak < ak+1 for all k, that a is injective. To
see that a is surjective, assume that it is not and derive a contradiction. If a is not surjective,
then the range of a is a proper subset of A. Let p be the smallest element of A \ ran a. Since
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p ∈ A \ ran a ⊆ A \ {a1, . . . , ap}, we see from the definition of ap+1 that ap+1 ≤ p. On the other
hand we know that ap+1 ≥ p+ 1 > p. This contradiction shows that a is a surjection. Thus A ∼ N
proving that A is countable.

Q.41.2. (Solution to P.1.7) To see that the map

f : N× N→ N : (m,n) 7→ 2m−1(2n− 1)

is a bijection, we construct its inverse (see propositions M.2.4 and M.2.5). If p ∈ N let m be the
largest member of N such that 2m−1 divides p. (If p is odd, then m = 1.) Then p/2m−1 is odd and
can be written in the form 2n − 1 for some n ∈ N. The map g : p 7→ (m,n) is clearly the inverse
of f .

Q.41.3. (Solution to P.1.11) If A is infinite let

A = {A1, A2, A3, . . . } ;

while if A is finite, say cardA = m, let

A = {A1, . . . , Am}
and let An = Am for all n > m. For each j ∈ N the set Aj is either infinite, in which case we write

Aj = {aj1, aj2, aj3, . . . } ,
or else it is finite, say cardAj = p, in which case we write

Aj = {aj1, . . . , ajp}
and let ajq = ajp for all q > p. Then the map

a : N× N→
⋃

A : (j, k) 7→ ajk

is surjective. Thus
⋃
A =

∞⋃
j,k=1

Aj,k = ran a is countable by lemma P.1.7 and proposition P.1.6.
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Index

⇔ (logical equivalence), 229
⇒ (implies), 228
∧ (and, conjunction), 227
∨ (or, disjunction), 227
∼ P (negation of P ), 230
1-norm, 129
(a, b) (open interval), 225
(t0, t1, . . . , tn) (partition of an interval), 147
(x, y) (ordered pair), 259
(x1, x2, . . . , xn) (n-tuples), 260
:= (equality by definition), 223
= (equals), 223
A′ (derived set of A, set of accumulation points), 7,

57
A+ (positive elements of a set A), 225
A◦ (interior of A), 2, 57

Dkf (kth partial derivative of f), 176
J∗ (deleted neighborhood), 39
Jε(a) (ε-neighborhood about a), 1
P ∨Q (smallest common refinement of partitions),

147
Sc (complement of a set S), 240
Sn (n-fold Cartesian product), 260
S1 × · · · × Sn (n-fold Cartesian product), 260
TS (composite of linear maps), 115
Ta (translation by a), 133
V ⊕W (direct sum of vector spaces), 111
V ∗ (dual of a Banach space), 144
[T ] (matrix representation of a linear map), 125
[a, b] (closed interval), 225
[aij ], [aij ] (matrix notation), 120
[x, y] (closed segment in a vector space), 112
∆Fa, 46, 160
Rn (n-space), 260
Rm+n (Rm × Rn), 175
|x| (absolute value of x), 256
αA (scalar multiple of a subset of a vector space), 108
αa (scalar multiple of a matrix), 121[
f jk(a)

]
(Jacobian matrix), 187

∩ (intersection), 239
χ
A

(characteristic function of a set), 147
◦ (composition), 264

A (closure of A), 7
∪ (union), 237
∅ (empty set, null set), 222
∃ (there exists), 219
∀ (for all, for every), 219

∫ b
a
σ (integral of a step function), 148∫ b

a
f (integral of a regulated function), 150∫ d

c

(∫ b
a
f(x, y) dx

)
dy (iterated integrals), 177

〈x, y〉 (dot product, inner product), 181
(ank ) (subsequence of a sequence), 23
](x, y) (angle between two vectors), 182
∇φ(a) (gradient of φ at a), 184
‖T‖ (norm of a linear transformation), 138
‖f‖u (uniform norm on B(S, V )), 134
‖f‖u (uniform norm on B(S,R)), 130
‖x‖ (norm of a vector), 129
‖x‖1 (the 1-norm on Rn), 129
‖x‖u (uniform norm on Rn), 129
◦
⊆ (open subset of), 5, 61

A (closure of A), 57
∂A (boundary of A), 58
∂f
∂xk

(kth partial derivative of f), 176

πk (coordinate projection), 271
ρ (Greek airline metric), 54
∼ (cardinal equivalence), 273
' (tangency), 45, 159
⊆ (subset of), 222
$ (proper subset of), 222∑∞
k=1 ak (infinite series), 196∑∞
k=1 aφ(k) (rearrangement of a series), 201

× (Cartesian product), 259
0 (zero vector), 107
a−1 (inverse of a matrix), 123
ab (product of matrices), 121
ax (action of a matrix on a vector), 122

dkfa (kth partial differential), 174
f ∧ g (infimum of two functions), 78
f ∨ g (supremum of two functions), 78
f ′ (derivative of f), 48
f(a, · ), f( · , b), 78
f(x)→ l as x→ a (limit of a function at a point), 39,

79
f y, xf , 178
f : A→ B : x 7→ f(x) (function notation), 260
f |A (restriction of f to A), 265

f jk (kth partial derivative of jth component), 177

fk (kth component of a function), 78
f−1 (inverse of a function f), 269
f←(B) (inverse image of a set B under a function f),

263
f→(A) (image of a set A under a function f), 263
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fk (kth partial derivative of f), 176
fn → g (ptws) (pointwise convergence), 70
fn → g (unif) (uniform convergence), 70
fn → g (ptws) (pointwise convergence), 135
fn → g (unif) (uniform convergence), 134
f−1
loc (local C1-inverse of f), 210

j
k

(kth canonical injection), 173
x ⊥ y (perpendicular, orthogonal), 182
x−1 (inverse of an element of an algebra, 203
xn → a as n→∞ (limit of a sequence), 17, 65
A+B (sum of subsets of a vector space), 108
a+ b (sum of matrices), 120

absolute
convergence, 200
maximum, 36, 49
minimum, 36
summability, 200
value, 256

accumulation point, 7, 57
action of a matrix, 122
additive inverse, 107, 243
adjoint, 144
algebra, 119

Banach, 202
normed, 202
unital, 119

algebraic number, 279
∀ (for all, for every), 219
alternating series, 198
alternating series test, 199

generalized, 198
angle, 182
antiderivative, 172
antisymmetric, 222
approximation theorem

Weierstrass, 143, 155
arc, 94
Archimedean property, 256
arcwise connected, 94
arithmetic, 243
associative, 243
average value, 170
axiom

least upper bound, 255
of choice, 346
of trichotomy, 247
order completeness, 255

axioms
categorical, 248
consistent, 248

ball
closed, 62
deleted, 79
open, 52

Br(a) (open ball of radius r about a), 52
B∗r (a) (deleted open ball), 79
Banach

algebra, 202
space, 143

basis
standard, 111

bijection, 267
bijective, 267
binary operation, 243
binomial theorem, 251
Bolzano-Weierstrass theorem, 90
bound

greatest lower, 253
least upper, 253
lower, 253
upper, 253

boundary, 58
bounded

above, 253
below, 253
function, 69
interval, 225
linear functionals, 144
linear map, 137
sequence, 21
subset of R, 225, 253
subset of a metric space, 83
totally, 87
vector valued function, 134
B(S), B(S,R) (bounded real valued functions on a

set), 69
B(S, V )(bounded vector valued functions on a set),

134
B(V,W ) (bounded linear maps between normed

linear spaces), 137

C1-inverse
local, 210
C1-invertible, 210

locally, 210
C1-isomorphism, 210

local, 210
C1(A,W ) (continuously differentiable functions), 169
canonical injection maps, 173
Cantor intersection theorem, 91
cardinal number, 273
cardS (cardinal number of S), 273
Cartesian product, 260
categorical, 248
Cauchy

criterion, 197
integral, 150
product, 204
sequence, 97

chain rule, 48, 49, 162, 189
change of variables, 173
characteristic function, 147
choice, axiom of, 346
closed, 7, 62

ball, 62
interval, 225
mapping, 173
segment, 112

closure, 7, 57
codomain, 260
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cofactor, 124
column

index, 120
vector, 122

commutative, 243
Banach algebra, 202
normed algebra, 202

commute, 265
commuting

diagram, 265
family, 141

compact, 34
metric space, 83
sequentially, 87
subset, 83

comparison test, 200
complement

relative, 241
complete, 97
complex numbers, 248
components

of a function, 78, 271
of a metric space, 95

composite
function, 264
number, 250
of linear maps, 115

conditionally convergent, 201
conjunction, 227
connected

arcwise, 94
metric space, 93
path, 94
subset, 93
subset of R, 27

conservation of energy, 185
conservative, 185
consistent, 248
contains, 222
continuous, 10, 14, 73

at a point, 9, 14, 73
piecewise, 150
uniformly, 145
C(M), C(M,R) (continuous real valued function on

M , 84
C(M,N)

family of continuous functions from M into N , 79
C0 (functions continuous at 0), 44
C0 (functions continuous at 0), 158
continuously differentiable, 118, 169
contraction, 101

constant, 101
contraction mapping, 101
contractive mapping theorem, 101
contradiction, proof by, 233
contrapositive, 231, 233
convergence

absolute, 200
conditional, 201
of a sequence, 17, 65

of a series, 196
pointwise, 70, 135
uniform, 70, 134

converse, 229
convex

combination, 112
hull, 112
set, 112

coordinate projections, 77
countable, 277
countably infinite, 277
cover, 34, 83, 241

open, 34, 83
covering, 241
covers, 241
Cr(a) (closed ball of radius r about a), 62
criterion

Cauchy, 197
curve, 94, 163, 170

at a point, 163
derivative of, 164
parametrized, 163

dkfa (kth partial differential), 174
d(A,B) (distance between two sets, 66
Dc (derivative of a curve c), 164
De Morgan’s laws

for sets, 240
in logic, 230

decreasing
sequence, 21

deleted
neighborhood, 39
open ball, 79

∆Fa, 46, 160
denial, 230
dense, 63
denumerable, 277
dependent

linearly, 112
derivative

directional, 165
in Banach algebras, 208
of a curve, 164
of a function from R into R, 49
partial, 176

derived set, 7, 57
det a (determinant of a matrix), 124
dfa (differential of f at a), 47, 160
diagonal

main, 123
principal, 123

diamA (diameter of a set), 98
differentiable

at a point, 47, 160
continuously, 118, 169
on a set, 169

differential, 47, 160
Gâteaux, 165
partial, 174

Dini’s theorem, 85
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direct proof, 233
direct sum

external, 111
directional derivative, 165
disconnected

metric space, 93
subset, 93
subset of R, 27

discrete metric, 54
disjoint, 240

family, 240
pairwise, 240

disjunction, 227
distance

between real numbers, 1
between sets, 66
function, 51

distributive law, 243
generalized, 239
in logic, 228
left, 244
right, 244

divergence
of a sequence, 18
of a series, 196

domain, 260
dom f (domain of a function f), 260
d1 (taxicab metric, product metric), 53, 66, 67
dot product, 121, 181

of functions, 183
double limit, 80
du (uniform metric), 54, 66, 69
dual space, 144
Dvf (directional derivative), 165
d(x, y) (distance between two points), 51

E valued step function, 147
e1, . . . , en (standard basis vectors), 111
element, 221
empty set, 222
∅ (empty set, null set), 222
enumeration, 277
ε-neighborhood, 1
equality, 223

by definition, 223
equivalent

cardinally, 273
logically, 227, 229
metrics, 64
norms, 131
strongly, 55
topologically, 76

error, 103
Euclidean

norm, 129
Euclidean metric, 53
evaluation map, 140
eventually, 65
eventually in, 17
existential quantifier, 219
∃ (there exists), 219

expansion
of a determinant, 124

exponential function, 208
extension, 265

from closed sets, 199
external direct sum, 111
extreme

value, 36, 84
extreme value theorem, 84

F(S, V ) (vector valued functions on a set S, 109
Fa (functions defined in a neighborhood of a), 43
Fa(V,W ) (functions defined in a neighborhood of a),

157
factor, 250

trivial, 250
family

commuting, 141
separating, 141

field, 243
vector, 170

finite, 273
intersection property, 85

fixed point, 30, 101
function, 260
E valued step, 147
bounded, 69
characteristic, 147
exponential, 208
linear, 115
of a real variable, 261

functionals
bounded linear, 144

functions
regulated, 150
F(S), F(S,R) (real valued functions on a set), 261
F(S, T ) (functions from S into T ), 261
fundamental theorem of calculus, 165, 172

Gâteaux
differential, 165
variation, 165

generalized distributive law, 239
geometric

series, 196
global

maximum, 36, 49, 84
minimum, 36, 84
property, 11

gradient
at a point, 184
on an open set, 184

graph, 260
greatest, 253

lower bound, 253
Greek airline metric, 54

Heine-Borel theorem, 90
homeomorphic, 30, 76
homeomorphism, 30, 76

class, 31
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homogeneous, 192

idempotent, 95
identity

elements, 243
In, I (identity matrix, 123
1 (multiplicative identity in an algebra), 202
identity matrix, 123
IS (identity function on a set S), 264
iff (logical equivalence), 229
image

of a function, 263
of a point, 260

implication, 228
ιA,S (inclusion map of A into S), 264
increasing

sequence, 21
independent

linearly, 112
indirect proof, 233
induced metric, 57
induction

mathematical, 249
inductive set, 249
inequality

Minkowski, 52
Schwarz, 52, 182
triangle, 129

infimum, 253
of two functions, 78

inf A (infimum of A), 253
infinite, 273

countably, 277
series, 196

injection, 267
injection maps

canonical, 173
injective, 267
inner product, 121, 181

of functions, 183
input space, 260
integers, 225, 249
integral

Cauchy, 150
iterated, 177
of a step function, 148

integral test, 200
integration by parts, 173
interior, 2, 57

point, 2, 57
intermediate value theorem, 29
intersection, 239
interval, 28

bounded, 225
closed, 225
open, 225

inverse
additive, 107, 243
function theorem, 209
left, 269
local C1-, 210

multiplicative, 203, 243
of a matrix, 123
of an element of an algebra, 203
right, 269

inverse function theorem, 213
invertible, 269
C1-, 210
element of an algebra, 203
function, 119
linear mapping, 119
locally C1-, 210

InvA (invertible elements of an algebra), 203
isometric isomorphism, 184
isometric spaces, 76
isometry, 76
isomorphic, 119
isomorphism, 119
C1-, 210
isometric, 184
local C1-, 210
topological, 30

iterated integrals, 177
iterated limits, 80

J∗ (deleted neighborhood), 39
Jε(a) (ε-neighborhood about a), 1

j
k

(kth canonical injection), 173
Jacobian

matrix, 187

kernel, 117
kerT (kernel of a linear map), 117
kinetic energy, 185

L(V,W ) (linear maps between vector spaces), 115
Laplace expansion, 124
largest, 253
law of cosines, 182
least, 253

upper bound, 253
axiom, 255

left inverse, 269
Leibniz’s formula, 179
Leibniz’s rule, 48, 161
length, 129
limit

double, 80
iterated, 80
of a function, 39, 79
of a sequence, 18, 65
pointwise, 70, 135
uniform, 70, 134

lim(x,y)→(a,b) f(x, y) (double limits), 80
limn→∞ xn (limit of a sequence), 18, 65
limx→a

(
limy→b f(x, y)

)
(iterated limits), 80

limx→a f(x) (limit of a function at a point), 39, 79
line

parametrized, 163
tangent, 164

linear, 44, 115
combination, 111
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dependence, independence, 112
function, 115
mapping, 115

invertible, 119
operator, 115
subspace, 109
transformation, 115
transformation, norm of a, 138

L (linear functions from R into R), 44
linearity

of the inner product, 181
local
C1-inverse, 210
C1-isomorphism, 210
maximum, 36, 49
minimum, 36, 49
property, 11

locally C1-invertible, 210
logical equivalence, 227, 229
lower bound, 253

M-test, 198
main diagonal, 123
map, 260
mapping, 260

linear, 115
invertible, 119

mathematical induction, 249
Mn (square matrices), 120
Mm×n (m by n matrices), 120
matrix, 120

identity, 123
inverse of a, 123
Jacobian, 187
representation, 125
zero, 123

maximum, 36, 49, 84, 253
absolute, 36, 49
global, 36, 49, 84
local, 36, 49
of two functions, 78
relative, 36, 49
value, 36, 84

maxA (maximum of A), 253
mean

value, 170
mean value theorem, 50, 171, 172

for curves, 171
for scalar fields, 186
for vector fields, 171, 172

member, 221
Mertens’ theorem, 205
method of steepest descent, 186
metric, 51

discrete, 54
Euclidean, 53
Greek airline, 54
induced, 57
induced by a norm, 130
product, “the”, 67
space, 51

taxicab, 53
uniform, 69, 134

on Rn, 54
usual, 53

metrics
equivalent, 64

strongly, 55
on products, 66

minimum, 36, 84, 253
absolute, 36
global, 36, 84
local, 36, 49
of two functions, 78
relative, 36, 49
value, 36, 84

minA (minimum of A), 253
Minkowski inequality, 52
minor, 124
modus ponens, 233
monotone

sequence, 21
multiplicative inverse, 203, 243
mutually separated, 28, 93

natural numbers, 225, 249
N (the natural numbers), 225
negation, 230
neighborhood

deleted, 39
of a point, 1, 8, 65
of a set, 169
relative, 13

nested sequence of sets, 24
Newton quotient, 161
Newton’s second law, 185
nilpotent, 202
norm, 129

1- (on Rn), 129
Euclidean, 129
of a linear transformation, 138
preserving, 133
product, 132
uniform

on Rn, 129
on B(S,R), 130

uniform on B(S, V ), 134
usual

on B(S, V ), 134
on Rn, 129

normed
algebra, 202
linear space, 129

norms
equivalent, 131

n-space, 260
n-tuple, 260
null set, 222
null space, 117
∅ (empty set, null set), 222
number

composite, 250
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prime, 250
numbers

integers, 225
natural, 225, 249
rational, 225
real, 225
strictly positive, 247

O functions, 43
O(V,W ) functions, 157
o functions, 43
o(V,W ) functions, 157
one-to-one, 267
one-to-one correspondence, 267
onto, 267
open, 5

ball, 52
cover, 34, 83
in a subset, 13
interval, 225
mapping, 173
sentence, 219
subset of a metric space, 61

operator
linear, 115
unilateral shift, 119

order completeness axiom, 255
ordered
n-tuple, 260
pair, 259

orthogonal, 182
output space, 260

pairwise disjoint, 240
parallelogram law, 182
parameter, 163

interval, 163
parametrization, 163
parametrized

curve, 163
line, 163

partial
derivative, 176
differential, 174
sum, 195

partition, 147
associated with a step function, 148

path, 94
path connected, 94
peak term, 23
perpendicular, 182
πk (coordinate projection), 271
piecewise continuous, 150
point

accumulation, 57
interior, 57

pointwise
addition, 109
convergence, 70, 135
limit, 70, 135

positive

elements of a set, 225
strictly, 225, 247

P (the strictly positive real numbers), 225
positive definite, 181
potential

energy, 185
function, 185

power series, 206
P (power set), 222
prime number, 250
principal diagonal, 123
principle

of mathematical induction, 249
of well-ordering, 251

product
Cartesian, 259, 260
Cauchy, 204
dot, 121, 181
inner, 121, 181
metric, “the”, 67
metrics, 66
norm, 132
of matrices, 121
of metric spaces, 67
of vector spaces, 111

projections
coordinate, 77, 271

proof
by contradiction, 233
direct, 233
indirect, 233

proofs, 233
proper subset, 222
properly contains, 222
property

Archimedean, 256
Pythagorean theorem, 182

Q (the rational numbers, 225
quantifier

existential, 219
restricted, 222
universal, 219

quotient
Newton, 161

ran f (range of a function f), 263
ratio test, 200
rational numbers, 225
real valued function, 261
R (the real numbers), 225
Rn (n-space), 260
Rm+n (Rm × Rn), 175
rearrangement of a series, 201
recursive definition, 20
refinement, 147

smallest common, 147
reflexive, 222
regulated functions, 150
relation, 260
relative
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ε-neighborhood, 13
complement, 241
maximum, 36, 49
minimum, 36, 49
neighborhood, 13
topology, 13, 64

relatively open, 13
representation

matrix, 125
restricted quantifiers, 222, 229
restriction, 265
Riesz-Fréchet theorem, 184
right inverse, 269
Rolle’s theorem, 50
root test, 200
row

index, 120
vector, 122

rule of inference, 233

s (sequences of real numbers), 109
sandwich theorem, 20
scalar, 107

field, 170
Schwarz inequality, 52, 182
self-adjoint, 185
separable, 88
separated

by open sets, 77
mutually, 28, 93

separating
family of functions, 141

sequence, 17, 65
Cauchy, 97
summable, 196

sequentially compact, 87
series

alternating, 198
convergent, 196
divergent, 196
geometric, 196
infinite, 196
power, 206
rearrangement of a, 201
sum of a, 196

set, 221
membership in a, 221
subtraction, 241

shift
unilateral, 119

smallest, 253
common refinement, 147

space
Banach, 143
dual, 144
input, 260
metric, 51
normed linear, 129
output, 260
product, 67
target, 260

span, 112
sphere, 62
square matrix, 123
square summable, 202
Sr(a) (sphere or radius r about a), 62
standard basis, 111
steepest descent, method of, 186
step function, 147

integral of, 148
Stone-Weierstrass theorem, 142
strictly decreasing

sequence, 21
strictly increasing

sequence, 21
strongly equivalent metrics, 55
subalgebra, 119, 203

unital, 119
subcover, 34, 83
submultiplicative, 202
subsequence, 23, 87
subset, 222

proper, 222
⊆ (subset of), 222
$ (proper subset of), 222
subspace

of a metric space, 57
vector, 109

successive approximation, 103
sufficiently large, 200
sum

external direct, 111
of a geometric series, 25
of an infinite series, 196
partial, 195

summable
absolutely, 200
sequence, 196
square, 202

supremum, 253
of two functions, 78

supA (supremum of A), 253
surjective, 267
symmetric, 181

Ta (translation by a), 133
tangent

at 0, 45
at points other than 0, 46
at zero, 159
line, 164
vector, 164

target space, 260
tautology, 229
taxicab metric, 53
term

of a sequence, 17, 65
peak, 23

Tietze extension theorem, 199
topological

equivalence, 76
isomorphism, 30
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property, 11
topology, 6, 64

relative, 13, 64
total

energy, 185
totally bounded, 87
transformation, 260

linear, 115
transitive, 222
translation, 46, 133
transpose, 121
triangle inequality, 129
trichotomy, 247
trivial

factor, 250

uncountable, 277
uniform

continuity, 145
convergence, 70, 134
limit, 70, 134
metric, 69, 134

on Rn, 54
norm

on B(S,R), 130
on B(S, V ), 134
on Rn, 129

unilateral shift, 119
union, 238
unit vector, 129
unital

algebra, 119
Banach algebra, 202
normed algebra, 202
subalgebra, 119

universal quantifier, 219
upper bound, 253
Urysohn’s lemma, 77
usual

metric on Rn, 53
norm

on B(S, V ), 134
on Rn, 129

value
average, 170
mean, 170

variation
Gâteaux, 165

vector, 107
column, 122
field, 170
row, 122
space, 107

endomorphism, 115
subspace, 109
unit, 129

velocity, 164

Weierstrass approximation theorem, 143, 155
Weierstrass M-test, 198

well-ordering, 251

Z (the integers), 225
zero

matrix, 123
vector, 107

0m×n (zero matrix), 123


