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Note to Students

This Calculus Handbook was developed primarily through work with a number of AP Calculus
classes, so it contains what most students need to prepare for the AP Calculus Exam (AB or BC)
or a first-year college Calculus course. In addition, a number of more advanced topics have
been added to the handbook to whet the student’s appetite for higher level study.

It is important to note that some of the tips and tricks noted in this handbook, while generating
valid solutions, may not be acceptable to the College Board or to the student’s instructor. The
student should always check with their instructor to determine if a particular technique that
they find useful is acceptable.

Why Make this Handbook?

One of my main purposes for writing this handbook is to encourage the student to wonder, to
ask “what about ... ?” or “what if ... ?” | find that students are so busy today that they don’t
have the time, or don’t take the time, to find the beauty and majesty that exists within
Mathematics. And, it is there, just below the surface. So be curious and seek it out.

The answers to all of the questions below are inside this handbook, but are seldom taught.

e What is oscillating behavior and how does it affect a limit?

e s there a generalized rule for the derivative of a product of multiple functions?

e What’s the partial derivative shortcut to implicit differentiation?

e What are the hyperbolic functions and how do they relate to the trigonometric
functions?

e When can | simplify a difficult definite integral by breaking it into its even and odd
components?

e What is Vector Calculus?

Additionally, ask yourself:

e Why...? Always ask “why?”
e Can | come up with a simpler method of doing things than | am being taught?
e What problems can | come up with to stump my friends?

Those who approach math in this manner will be tomorrow’s leaders. Are you one of them?

Please feel free to contact me at mathguy.us@gmail.com if you have any comments.

Thank you and best wishes!

Cover art by Rebecca Williams,
Twitter handle: @jolteonkitty

Earl
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Chapter 1 Functions and Limits

Functions

Definitions

e Expression: A meaningful arrangement of mathematical values, variables and
operations.

e Relation: An expression that defines a connection between a set of inputs and a set of
outputs. The set of inputs is called the Domain of the relation. The set of outputs is
called the Range of the relation.

e Function: A relation in which each element in the domain corresponds to exactly one
element in the range.

e One-to-One Function: A function in which each element in the range is produced by
exactly one element in the domain.

e Continuity: A function, f, is continuous at x = a iff:

0 f(a)isdefined,
o lim f(x) exists, and
xX—a

o limf(x) = f(a) Jm fG) = lim, f().

Note: lim f(x) exists if and only if:
xX—a

0 |If x = a is an endpoint, then the limit need only exist from the left or the right.

Continuity Rules

If £(x) and g(x) are continuous functions at a point (xq, ¥o), and if ¢ is a constant, then the
following are also true at (xg, yo):

e f(x)+ g(x)iscontinuous. Addition
e f(x)— g(x)is continuous. Subtraction
e - f(x)iscontinuous. Scalar Multiplication
e f(x)-g(x)iscontinuous. Multiplication
o () is continuous if g(xg) # 0. Division
g(x)
e f(x)™is continuous if f(xy)™ exists. Exponents

e /f(x)is continuous if \/f(x,) exists. Roots

Note: All polynomial functions are continuous on the interval (—oo, +0).
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Chapter 1

Types of Discontinuities

Functions and Limits

A Discontinuity occurs at a location where the graph of a relation or function is not connected.

e Removable Discontinuity. A discontinuity that can be
“repaired” by adding a single point to the graph.

Typically, this will show up as a hole in a graph. In the
. +1
function f(x) = T

, @ removable discontinuity

exists at x = —1.

Mathematically, a removable discontinuity is a point at
which the limit of f(x) at c exists but does not equal
f(c). Thatis,

lim f(x) = lim f(x) # f(c)

/,
T/
- —

Note: a removable discontinuity exists at x = ¢ whether or not f(c) exists.

e Essential Discontinuity. A discontinuity that is not removable. Mathematically, an

essential discontinuity is a point at which the limit of f(x) at ¢ does not exist. This

includes:

0 Jump Discontinuity. A discontinuity at
which the limit from the left does not equal
the limit from the right. That s,

Jim 760 # Jim £G)

w
I
t

|x*-1]
4(x-1)’
discontinuity exists at x = 1.

In the function f(x) = ajump

0 Infinite Discontinuity. These occur at vertical
asymptotes.

In the function f(x) = ————, infinite

f(x) x2+5x+6

discontinuities exist at x = {—3, —2}.
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Chapter 1 Functions and Limits

Continuity Examples

Casel
. Jump Discontinuity
1 Not continuous
— P
T Limit does not exist
Case 2

Removable Discontinuity

Not continuous

(

Limit exists

Case 3

Removable Discontinuity
Not continuous

Limit exists

T

Case 4

No Discontinuity

Continuous

.

Limit exists
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Chapter 1 Functions and Limits
Limits

Definitions

Formal Definition: Let f be a function defined on an open interval containing a, except possibly at
x = a, and let L be a real number. Then, the statement:

lim f(x) =L
x—-a
means that for each & > 0, there exists a § > 0 such that:
0<|x—al<d implies |f(x)—-L|<e.
Written using mathsymbols: V e >0 3 §>0 3 0<|x—al|<d = |f(x)—L|<e.

Informal Definition: The limit is the value L that a function approaches as the value of the
input variable x approaches the desired value a.

Limits may exist approaching x = a from either the left ( lim_f(x)) or the right ( lim+f(x)).
X—a x—-a

If the limits from the left and right are the same (e.g., they are both equal to L), then the limit
exists at x = a and we say lim f(x) = L.
x—a

Limit Rules

Assuming that each of the requisite limits exist, the following rules apply:

o lim[f(x) + g(x)] = lim f(x) + lim g(x) Addition of Limits
xX—a xX—a xX—a

e lim[f(x) —g()] =lim f(x) — lim g(x) Subtraction of Limits
x—a x—-a x—a

e lim[c- f(x)] =c-lim f(x) Scalar Multiplication
X—a xX—a

e lim[f(x)-g(x)] =limf(x)-lim g(x) Multiplication of Limits
x—=a x-a x—a

Division of Limits

o) T

x—a Lg(x) ng(x)

o lim f(x)" = [lim f| Powers

. llm[,/f(x] n/llmf(x Roots

Also, assuming that each of the requisite limits exists, the typical properties of addition and
multiplication (e.g., commutative property, associative property, distributive property, inverse
property, etc.) apply to limits.
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Chapter 1 Functions and Limits

Techniques for Finding Limits

Substitution

The easiest method, when it works, for determining a limit is substitution. Using this method,
simply substitute the value of x into the limit expression to see if it can be calculated directly.

Example 1.1:
y (x+2)_3+2_
xlir% X — 2 _3—2_

Simplification

When substitution fails, other methods must be considered. With rational functions (and some
others), simplification may produce a satisfactory solution.

Example 1.2:
. [(x*-=25 . ((x+5)(x=05)
L‘E(ﬁ)‘?ﬂ( x—5) )=x+5=10
Rationalization

Rationalizing a portion of the limit expression is often useful in situations where a limit is
indeterminate. In the example below the limit expression has the indeterminate form
(—o0 + o0). Other indeterminate forms are discussed later in this chapter.

Example 1.3:

lim (x +/x2% — 8x)

X——00

First, notice that this limit is taken to —oo, which can often cause confusion. So, let’s
modify it so that we are taking the limit to +00. We do this using the substitution x = —y.

m (v +y2+8y)

lim (x+ x? —8x) =y§

X——00

Next, let’s rationalize the expression in the limit by multiplying by a name for one, using its
conjugate.

(cont’d)
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Chapter 1 Functions and Limits

(L ; _ o y+\/y +8y y+yy*+8y
Jim (= + V¥ +8y) yliﬂnoo< N

—y?+y?+8y
= lim = lim

y=te\y+4/y? +8y y—’+°°<y+\/yT>

L’Hospital’s Rule
If f and g are differentiable functions and g'(x) # 0 near a and if:

limf(x)=0and limg(x)=0 OR limf(x) =+c and limg(x) =t
xX—a xX—-a xX—-a xX—-a

f® . F
Then, @ ~ e g®

Note: L'Hospital’s rule can be repeated as many times as necessary as long as the result of each
step is an indeterminate form. If a step produces a form that is not indeterminate, the limit
should be calculated at that point.

Example 1.4:
. sinx  ggSinx cosx 1
lim = lim ———— = lim =-=1
x-0 X x—-0 ix x-0 1 1
dx
Example 1.5:
x-0 e3* —1 x>0 i(egx 1 3e3* 3-1
dx

Example 1.6: (involving successive applications of L’'Hospital’s Rule)

I 3x3+2x+1_1 9x2 + 2 _ 18x _ 18
xoth Ax3 —5x2 — 2 xoh 12x2 — 10x  xom 24x —10 xom 24 4
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Chapter 1 Functions and Limits

Indeterminate Forms of Limits

The following table presents some types of indeterminate forms that may be encountered and
suggested methods for evaluating limits in those forms.

Form Steps to Determine the Limit
O o 7 . 7
— or — Use L'Hospital’s Rule
0 [o's)
For either of these forms:
0-o00
0 o
0 — oo 1. Convertto 5o o
2. Use L'Hospital’s Rule
00 For any of these forms:
o0 1. Take In of the term or write the term in exponential form *
2. Convertto 2 or =
1% 0 co

3. Use L'Hospital’s Rule

*For y = [f(x)]9%), convertto: Iny = g(x)-Inf(x) or y= eI/

Example 1.7: Form 0 - oo L'Hospital’s Rule

>= lim —e* =0

X——00

X
lim xe* = lim (—) = lim (
X——00 x——o0 \@ X X——00

_e_.x

Example 1.8: Form oo — o

. ] 1 sinx
lim (secx—tanx) = Ilim ( — )
x—(m/2)” x—>(m/2)” \COSX COSX
/ L’Hospital’s Rule
(1 —sinx) _ —CoSsX
= lim ————== lm — =
x—(m/2)” cosx x-(m/2)” —SsInx
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Chapter 1 Functions and Limits

Example 1.9: Form 0°

lim x* let: y= lim x*
x-0* x—-0%

L’Hospital’s Rule

Iny = Tim x Inx = lim_ () = fim, (2
ny = i x inx =ty () = hom (==
= Jlim, (%) =0
Then,since Iny =0, weget y=¢e%=1

Example 1.10: Form oo°

lim x1/* let: y = lim x'/*

X—00 X—00

/ L’Hospital’s Rule

~ Inx x~ 1 _ 1
Iny = lim — = lim =)= lim (—>=0

xX—o0 X X—00 xX—0o \X

Then,since Iny =0, weget y=e° =

Example 1.11: Form 1%
lim (1 + sin 4x)c°t* let: y = lim (1 + sin4x)c°t¥
x-0% x-0%

Iny = lim [(cot In(1 + sin 4x)] = li In(1 + sin 4x)
ny = li [(cotx) - In(1+ sin )] = lim, ==

L’Hospital’s Rule

4 cos4x 4-1
Iny = xlir(r)1+ (1 -Sl-eiiznxélx) _ (1;-20) 4

Then,since Iny = 4, weget y = e*
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Chapter 1

When Limits Fail to Exist

There are several circumstances when limits fail to exist:

e When taken separately, limits from the
left and right are different. This
generally occurs at a jump discontinuity.

In the graph of (x) = %, ajump

discontinuity exists at x = 0, so

. X
lim —
x-0 X

does not exist.

Functions and Limits

e Oscillating behavior at the limit point. Consider the function f(x) = cos%, asx—0. In

any neighborhood 6 around x = 0,
the value of the function varies from
—1 to +1. Therefore,

1
lim (cos—) does not exist.

¢ 1
(x) =cos <

2

x—0 X

This function is also discontinuous at

x = 0, though it is difficult to see
this on the graph.

e Unbounded behavior at the limit point. Typically, this will happen at a vertical

asymptote.

In the graph of f(x) = In|x|, an infinite discontinuity
exists at x = 0 because the logarithms of positive real

numbers that approach zero become large negative

numbers without bound. Therefore,

limIn|x| does not exist.
x—0
Note: in this case, we may write: limIn|x| = —o0
x—0

Version 5.6
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Chapter 2 Differentiation
Basic Rules of Differentiation

Definition of a Derivative

fx+h) - fx)
h

d ) - f(a)
Ef(x)—hmT

x-a X

d .
100 = I

Note: In these rules, c is a constant, and u and v are functions differentiable in x.

Basic Derivative Rules

d d d
=0 Zew=c W
d d d d d
a(u‘FU)—a(u)"'a(v) a(u—v)—a(u)—a(v)
dy
dy 1 ay _ _du
dx  dx dx  dx
dy du

The Product, Quotient and Chain Rules are shown in Leibnitz, Lagrange, and differential forms.

Product Rule (two terms)
d d d
Ix [fx)-g(x)]=f(x) 'a[g(X)] +9(x) 'a[f(x)]

9 =fg+g-f

d(uv)=udv+vdu

Product Rule (three terms)
d d d d
2 @ g@1=71f) 190 h() +f) - —[gG) ]-h(x) + f(x) - g () - [ h(x) ]

fFgn=(gn+{ g N+{-g-h)

d (uvw) = vw du + uw dv + uv dw
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Chapter 2

Quotient Rule

4 [fE]_ 9® ZUF@I-f@) - lg@]
ax Lo 1= 9GP
<£)'=g-f’—f-g’

g g°

d (u)_vdu—udv

v 2

Chain Rule
dy dy du
dx du dx

W) =f'(g(x) - g'(x),  where: h=fog

dy
dy = a du

Power Rule

i(x") =n-x"1 — W) =n- u“‘ld—u
dx dx dx

Exponential and Logarithmic Functions (a > 0,a # 1)

d o d w_ u du

dxe - € dxe - € dx

d d du

gaxzax-lna §a“=a”-lna-a
1 d 1 du

alnng alnuzaa

d1 B 1 d1 B 1 du

dx 28" T Y Tna dx 28eY T Una  dx
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Chapter 2

Derivatives of Special Functions

Differentiation

Trigonometric and Inverse Trigonometric Functions

Trigonometric Functions

d d du
—sinx =cosx —sinu =cosu + —
dx dx dx

d . d ] du
—cosx = —sinx —cosu =—sinu - —
dx dx dx
d 5 d 5 du
—tanx = sec“x —tanu = sec‘u + —
dx dx dx
d 5 d .
—cotx = — cscéx —cotu = — cscu -
dx dx

d d

—secx = secx tanx —secu = secu tanu -
dx dx

d d

—CSCx = — cscx cotx —cscu =—cscucotu -
dx dx

Inverse Trigonometric Functions (Basic Formulas)

-1

Sin ~ X =

cos™!
tan"lx =
cot™lx =
e

sec lx =

d
dx
d
dx
d
dx
d
dx
d
dx
d
= csclx =

Version 5.6

1 d 1 du
— —sin"tu = - —
V1 —x? dx Vi—u?z dx

-1 d .1 du
V1 —x? x0T 1—uz dx

1 d can-1y = 1 du
1+ x2 dx " u_1+u2 dx

-1 d 1y = -1 du
1+ x2 dx O Y TTr e dx
1 d . 1
_— —secTlu= ————
[x] Vx2 —1 dx |lul vu?z — 1
-1 d -1
S —csctu=s ——
|x] Vx2 —1 d lul vu2z — 1

Page 19 of 242
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Chapter 2 Differentiation

Development of Basic Inverse Trig Derivatives

Inverse Sine

If y =sin"!x, then x = siny. Take the derivative of both sides of this
equation, and consider the result in conjunction with the triangle at right.

1
. X
siny = x

cly_1 y.. 5
cosy T J1-x
dy 1 1

dx cosy 12

Inverse Tangent

If v =tan"'x, then x = tany. Take the derivative of both sides of this
equation, and consider the result in conjunction with the triangle at right.

tany = x
dy
2 — =1
sec”y — 1
dy 1 , ( 1 )2 1
—— =cCcos“y = =
dx sec?y V1 + x2 1+ x?

Inverse Secant

If v =sec™!x, then x = secy. Take the derivative of both sides of this

equation, and consider the result in conjunction with the triangle at right. b S
secy = x
t 4y 1 .
secytany —— =
ytany =~
dy 1 _coszy_(1>2 CVx2—1 |x| 3 1
dx secytany siny \x/ x| x2x2—1 |x|Vx2 -1

Note the use of the absolute value sign in this derivative. This occurs because the sec™!

function is defined only in quadrants 1 and 2, and the sine function is always positive in these
two quadrants. The student may verify that the slope of the sec™! function is always positive.
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Chapter 2 Differentiation

Graphs of Inverse Trig Functions

Graphs of the Inverse Trigonometric (IT) Functions over their principal ranges are provided
below. Asymptotes are shown as dotted lines.

Notice the following about these graphs:

e Thegraphsof sin"'x,tan ' x,sec” ! x have positive slopes over their

entire domains. So, their derivatives are always positive.

e The graphs of cos 'x,cot ! x,csc™!x have negative slopes over their

{y=cos'x
entire domains. So, their derivatives are always negative.
e Each IT function has a principal range of length  radians, i.e., two
L 1 guadrants. In one of these quadrants, the corresponding trigonometric
{y=sin"x function value is negative, and in the other it is positive. For example,

cos~ 1 x hasrange [0, 7], Quadrants I and II. In Quadrant], cosx is

[SIE]
I

positive and in Quadrant II, cos x is negative.

e At each x-value, cofunction pairs

(e.g., sin"tx and cos™ ' x) have
slopes with opposite values, i.e.,
the same absolute value but one

slope is positive while the other
slope is negative.

y=tan'x 1 e Cofunction pairs (e.g., sin”'x

T s s s e s and cos™ ' x) are reflections of
each other over the horizontal

line that contains their
intersection.

e There is not universal agreement
on the principal range of cot™! x.
Some sources, including the Tl
nSpire and a number of Calculus
textbooks, set the range to (0, ),
as shown on this page. Others,
including Wolfram MathWorld
and the US National Institute of
Standards and Technology, set

the range to (—E,E].
22
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Chapter 2 Differentiation

Generalized Inverse Trig Derivatives

Derivatives

Note that “a” is defined to be positive in these formulas in order to meet the domain
restrictions of inverse Trigonometric functions.

isin‘1 (f) 1 isin‘l (E) __ 1 | du Angle in

dx a a2 — x2 d a a2 —y2 dx QlorQIV
icos‘1 f) ——_1 icos‘1 E) ——_1 . d_u Angle in

dx a’ gz — x2 d a/ gz —uyz dx QlorQIl
d x a d u a du Angle in

— -1(Z2) = - 1) = .

dx " (a) a? + x? dx " (a) a?+u? dx QlorQlv
d 1 (x) . —a d 1 (u) . —a du Angle in

dx °° a’  a?+ x2 dx °° a/ a?+u? dx QlorQIIl
isec‘l f) _ a d soc-1 (E) _ . a du Angle in

dx a’ x| Vx2 — a2 d a’  Ju|VuZ—a? dx QlorQIl
Lot (B) = —=2 Lesct(¥) - ——2__ .2  Anglein

dx a’ x| Vx? — a? dx a/  |u|Vuz-—a? dx QlorQlv

d a 2 \a x2 a2 — x2
1-(@) L= e
d _1(x\ 1 n 1 1 _ 1 _ a
dx on (E) B 1+(§)2 (E) B _I_ﬁ a_2+x_2 a’?+x%*  a?+ x2
a 4T a ' a a

isec‘1 (E) =
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Chapter 2 Differentiation

Generalized Product Rule

Product Rule (three terms)

d du
P (uvw) = T [u(vw)] =u a(vw) + vw Tx
_ ( dw N dv) N du
—u dx W dx vw dx
( )= w N dv N du
2 Ww) =uv o tuw ot vw

Product Rule (four terms)

d d
— (uvwt) = — |(uwv)(wt)| = uwv — (wt) + wt — (uv
— (wowt) = — [@)(Wt)] = uv — (wt) +wt — (w)
( dt+tdW)+ . ( dv+ du)
=uv - (w — —_— wt - (u—+7v—
dx dx dx dx
( t) d + t dw + t dv + t du
— (uvwt) = uvw — + uvt — + uwt — + vwt —
dx dx dx dx dx
Generalized Product Rule (n terms) In words:
d n n d 1. Take the derivative of each
— u; | = u; | - — (u; function in the product.
(1Tw)=3 | (T ) - o
i=1 j=1 i%j 2. Multiply it by all of the other
functions in the product.
3. Add all of the resulting terms.

Example 2.1: Product Rule (six terms) — from Generalized Product Rule

dt

s dr dw dv du
(uvwrst) = uvwrs — + uvwrt — + uvwst — + uvrst — + uwrst — + vwrst
dx dx dx dx

dx
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Chapter 2

Example

Generalized Product Rule (n terms)

()3

i=1 j=1

o

i#j

d
'a(“j)

Differentiation

Generalized Product Rule

In words:

1.

Take the derivative of each
function in the product.
Multiply it by all of the other
functions in the product.

Add all of the resulting terms.

Example 2.2: Find the derivative of: f(x) = (4x? + x) - €* - sin 3x - cos x?

Let: U = (4x% + x)

vV=e
W = sin 3x
t = cos x*

Then, build the derivative based on the four components of the function:

u = (4x* + x) 8x+1 e* - sin 3x - cos x?
v=e* e* (4x* + x) - sin 3x - cos x?
w = sin 3x 3 cos3x (4x* + x) - €* - cos x?
t = cos x? —2x sin x? (4x* + x) - €* - sin3x

The resulting derivative is:

f'(x) = (8x+ 1)(e*-sin3x-cosx?) + (4x> + x) - e* - sin 3x - cos x>+
3-(4x* + x)-e* - cos3x-cosx? — (8x3 + 2x?%) - e* - sin3x - sin x?
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Chapter 2 Differentiation

Inverse Function Rule

The Inverse Function Rule states the following:

1

If £(x) and g(x) are inverse functions and f'(g(x)) # 0, then g'(x) = m

To understand what this means, it may be best to look at what it says graphically and create an
Inverse Function Diagram.

Example 2.3: Let f(x) = x% + 3. Find the slope of g(x) = f~1(x) atthe point (7,2).

To solve this, let’s look at the graph of f(x) = x? + 3
and its inverse g(x) = +vx — 3.

The figure at right shows these two plots, along with the
axis of reflection and the lines tangent to the two curves
at the desired points.

Axis of
Reflection

Notice the following:
e g(7)=2, so f(2)=7

e f'(x)=2x, so f'(2)=4
1

1 | HEEE
——— =~ (the answer) / \
fl@ 4 4

An Inverse Function Diagram (IFD) organizes this information as follows:

e g'(7)=

IFD for Example 2.3 General IFD
f2)=7 S g(7)=2 f(x0) = ¥o A 9g(Yo) = xg
, yields , 1 , yields ) 1
f[2)=4 —> 9(7)=Z f[(xg)=m — g()’o)=;
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Chapter 2

Partial Differentiation

Differentiation

Partial differentiation is differentiation with respect to a single variable, with all other variables

being treated as constants.

Example 2.4: Consider the function f(x,y) = xy + 2x + 3y.

Full derivative:

d
a(xy+2x+3y) =

dy dy
x——+y+2+3—

Partial derivative:

0
a(xy+2x+3y) =

y+2

Partial derivative:
9 (xy +2x+3y) =
3y Xy X y) =

x+3

Notice in the partial derivative panels above, that the “off-variable” is treated as a constant.

» Inthe left-hand panel, the derivative is taken in its normal manner, including using the

product rule on the xy-term.

» Inthe middle panel, which takes the partial derivative with respect to x, y is considered
to be the coefficient of x in the xy-term. In the same panel, the 3y term is considered
to be a constant, so its partial derivative with respect to x is 0.

» Inthe right-hand panel, which takes the partial derivative with respect to y, x is
considered to be the coefficient of y in the xy-term. In the same panel, the 2x term is
considered to be a constant, so its partial derivative with respect to y is 0.

Partial derivatives provide measures of rates of change in the direction of the variable. So, for a

0z 0z
3-dimensional curve, > provides the rate of change in the x-direction and > provides the
x Yy

rate of change in the y-direction. Partial derivatives are especially useful in physics and

engineering.

Example 2.5: Let w = x?e3YInz + e** sin(y + z) — cos(xyz). Then,

Jax

ow

d

aw x%ed

dz z
Version 5.6

w
= 2xe3YInz + 4e**sin(y + z) + yz sin(xyz)

= 3x%e3Inz + e** cos(y + z) + xz sin(xyz)

+ e** cos(y + z) + xy sin(xyz)
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Chapter 2

Differentiation

Implicit Differentiation

Implicit differentiation is typically used when it is too difficult to differentiate a function
directly. The entire expression is differentiated with respect to one of the variables in the
expression, and algebra is used to simplify the expression for the desired derivative.

2

da x
Example 2.6: Find 2 for the ellipse — + Y = 36.
dx 4 9

We could begin by manipulating the equation to obtain a value for y:

XZ
y =13 /36—:.

d
However, this is a fairly ugly expression for y, and the process of developing d—i is also

ugly. Itis many times easier to differentiate implicitly as follows:

1. Start with the given equation:

2. Multiply both sides by 36 to
get rid of the denominators:

3. Differentiate with respect to x:

4. Subtract 18x:
5. Divide by 8y:

6. Sometimes you will want to
substitute in the value of y
to get the expression solely in
terms of x:

2 2
=~ +2 =36
4 9

9x2 + 4y? = 1296

18x+8y-y' =0

8y-y' =-—18x

,_—18x _  9x
y o= 8y o 4y
y, _ _9_x — 9x

4y 4<i3 /36—£>
4
3

y =+ : (x # +12)

2
4 [36 -=
4

The result is still ugly and, in fact, it must be ugly. However, the algebra required to get

the result may be cleaner and easier using implicit differentiation. In some cases, it is

either extremely difficult or impossible to develop an expression for y in terms of x

because the variables are so intertwined; see the example on the next page.
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Chapter 2

Implicit Differentiation (cont’d)

d
Example 2.7: Find d—i: for the equation: x -siny + y-cosx = 0.

Differentiation

Manipulating this equation to find y as a function of x is out of the question. So, we use

implicit differentiation as follows:

1. Start with the given equation: x-siny+y-cosx=0

2. Differentiate with respect to x using the product rule and the chain rule:

d , . . d d d
x-a(smy)+smy-a(x)+y-a(cosx)+cosx-a(y) =0

3. Simplify:

x-(cosy)-%+siny+y-(—sinx)+cosx-%=0

4. Combine like terms and simplify:
dy dy . .
x-(cosy) - tcosx-——+siny+y- (—sinx) =0

dy

[x - (cosy) + cos x] ot [siny —y-(sinx)] =0

dy

[x - (cosy) + cos x] Sl [y - (sinx) — siny]
dy _ y - (sinx) — siny
dx x-(cosy) + cosx

(aslongas: x - (cosy) + cosx # 0)

That’s as good as we can do. Notice that the derivative is a function of both x and y.

Even though we cannot develop an expression for y as a function of x, we can still

calculate a derivative of the function in terms of x and y. Viva implicit differentiation!

Version 5.6 Page 28 of 242

April 8, 2023



Chapter 2 Differentiation

Implicit Differentiation (cont’d)

Implicit Differentiation Using Partial Derivatives

d
Let z = f(x,y). Then, the following formula is often a shortcut to calculating d_z

0z
dy = 5x
dx 0z
ay

Let’s re-do the examples from the previous pages using the partial derivative method.

d 2 2
Example 2.8: Find 2 for the ellipse i + Y= 36,
dx 4 9

2

R S
Let.Z—4+9 36. Then,
0z 2x
0z 2x 0z 2y dy ox _ 4 _ 9
Ix 4 dy 9 dx 9z = 2y = 4y
dy 9

d
Example 2.9: Find é for the equation: x -siny + y-cosx = 0.

Let: z = xsiny + ycos x. Then,

oz | ) 0z N

ax—smy ysinx ay—xcosy Ccos x
0z

dy ox _ sSiny—ysinx  ysinx-—siny

dx 0z Xxcosy+cCoSsX  XCOSy+cCOSx
ay

Contrast the work required here with the lengthy efforts required to calculate these results on
the two prior pages.

So, implicit differentiation using partial derivatives can be fast and, because fewer steps are
involved, improve accuracy. Just be careful how you handle each variable. This method is
different and takes some getting used to.
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Chapter 2 Differentiation

Logarithmic Differentiation

Logarithmic differentiation is typically used when functions exist in both the base and the
exponent of an exponential expression. Without this approach, the differentiation of the
function would be much more difficult. The process involves several steps, as follows:

1. If possible, put the function in the form: y = f(x)
2. Take natural logarithms of both sides of the expression.
3. Take the derivatives of both sides of the expression.

d
4. Solve for <.
dx

Example 2.10: Calculate the derivative of the general case y = u”, where u and v are
functions of x, and are differentiable at x.

1. Original equation y=u"
2. Take natural logarithms of both sides Iny=Inu’
3. Simplify right side Iny=v-lnu
4. Take derivatives of both sides 1dy . i(ln W + (In u)—
y dx
5. Apply Product Rule and ChainRuleto 1 dy 1 du
. : — —=[v-— — (lnu)—]
right side y dx u dx
6. Multiply both sides by y dy [17 du ]
Lyl ==4( —_
dx Y u dx +(nw)
7. Substitute value of y dy _ w7 du + (Inw _]
dx u dx
. Simpli d u dv
8. Simplify auv = puv-1. a + uv(ln u)a

Version 5.6 Page 30 of 242 April 8, 2023



Chapter 3 Applications of Differentiation

Maxima and Minima

Relative Extrema

Relative maxima and minima (also called relative extrema) may exist wherever the derivative of
a function is either equal to zero or undefined. However, these conditions are not sufficient to
establish that an extreme exists; we must also have a change in the direction of the curve, i.e.,
from increasing to decreasing or from decreasing to increasing.

Note: relative extrema cannot exist at the endpoints of a closed interval.

First Derivative Test

e afunction, f, is continuous on the open interval (a, b), and
e cisa critical number € (a, b) (i.e., f'(c) is either zero or does not exist),
e fisdifferentiable on the open interval (a, b), except possibly at c,

e If f'(x) changes from positive to negative at c, then f(c) is a relative maximum.
e If f'(x) changes from negative to positive at c, then f(c) is a relative minimum.

The conclusions of this theorem are summarized in the table below:

First signof 2 left |  Sign of 2 Type of
Derivative dx . dx Extreme
of x=c rightof x = ¢
Casel dy _ 0 — - None
dx
Case 2 or - + Minimum
Case 3 Z—z does + + None
not exist.
Case 4 X + — Maximum

Illustration of
First Derivative Test
for Cases 1 to 4:
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Chapter 3

Second Derivative Test

Applications of Differentiation

If
e afunction, f, is continuous on the open interval (a, b), and
e c€(ab),and
e f'(c)=0and f"(c) exists,

Then

e If f'"(c) <0, then f(c) is a relative maximum.
o If f'"(c) > 0, then f(c) is a relative minimum.

The conclusions of the theorem are summarized in the table below:

First Second Type of
Derivative Derivative Extreme
d?y .
Casel dy _ —z < 0 Maximum
dx - a
d?y .
Case 2 or =z >0 Minimum
X
d
2 does a2y
dx — =0 or .
does not exist

Absolute Extrema

In the event that the second
derivative is zero or does not exist
(Case 3), we cannot conclude
whether or not an extreme exists.
In this case, it may be a good idea
to use the First Derivative Test at
the point in question.

Absolute extrema (also called “global extrema” or simply “extrema”) are the highest or lowest

values of the function on the interval in question. If a function is continuous, its absolute

extrema exist at the locations of either its relative extrema or the endpoints of the interval.

Note that if an interval is open, the endpoint does not exist and so it cannot be an absolute

extreme. This means that in some cases, a function will not have an absolute maximum or

minimum on the interval in question. Discontinuities in a function can also cause a function to

not have a relative maximum or minimum.

A function may have 0, 1 or multiple absolute maxima

and/or absolute minima on an interval. In the illustration to

the right, the function has:

e Two absolute minima, at (—1,—1) and (2, —1).
e No absolute maximum (due to the discontinuity).

e One relative maximum, at (0, 3).

Relative ++
Maximum

e One relative minimum — The point located at (2, —1)
is both a relative minimum and an absolute
minimum.
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Chapter 3 Applications of Differentiation

Inflection Points

Definition

An inflection point is a location on a curve where concavity changes from upward to downward
or from downward to upward.

At an inflection point, f"'(x) = 0 or f"'(x) does not exist.

However, it is not necessarily true that if f”(x) = 0, then there is an inflection point at x = c.

Testing for an Inflection Point

To find the inflection points of a curve in a specified interval,

e Determine all x-values (x = ¢) for which f”"(c) = 0 or f’(c) does not exist.

e Consider only c-values where the function has a tangent line.

e Test the sign of f"/(x) to the left and to the right of x = c.

e |If the sign of f"(x) changes from positive to negative or from negative to positive at
x = ¢, then (c, f(c)) is an inflection point of the function.

2 2
Second Sign of 3732/ Sign of % Inflection
Casel d?y _ 0 — - No
dx?
Case 2 or — + Yes
Case 3 a’y does + + No
dx?2 .
Case 4 not exist + — Yes

Note: inflection points cannot exist at the endpoints of a closed interval.

Concavity -

A function, f, is concave upward on an interval if f’(x) is increasing
on the interval, i.e., if f''(x) > 0.

Concave
Downward

A function, f, is concave downward on an interval if f’(c) is
decreasing on the interval, i.e., if f''(x) < 0.

7

Inflection
Point Concave
Upward

Concavity changes at inflection points, from upward to downward or
from downward to upward. In the illustration at right, an inflection
point exists at the point (2, 3).

Version 5.6 Page 33 of 242 April 8, 2023



Chapter 3 Applications of Differentiation

Special Case: Extrema and Inflection Points of Polynomials

For a polynomial, f(x), critical values of exist at all x-values for which f'(x) = 0. However,
critical values do not necessarily produce extrema. Possible inflection points exist at all x-
values for which f''(x) = 0. However, not all of these x-values produce inflection points.

To find the extrema and inflection points of a polynomial we can look at the factored forms of
f'(x) and f"(x), respectively. Every polynomial can be factored into linear terms with real
roots and quadratic terms with complex roots as follows:

P(x) =k(x —r)% - (x —1)% .. (x —1,)% - Q1 () - Q2(x) ... @ (X)

where, k is a scalar (constant), each r; is a real root of f(x), each exponent a; is an integer, and
each Q; is a quadratic term with complex roots.

Extrema
The exponents (a;) of the linear factors of f'(x) determine the existence of extrema.

e Anodd exponent on a linear term of f'(x) indicates that f’(x) crosses the x-axis at the
root of the term, so f(x) has an extreme at that root. Further analysis is required to
determine whether the extreme is a maximum or a minimum.

e Aneven exponent on a linear term of f'(x) indicates that f'(x) bounces off the x-axis
at the root of the term, so f(x) does not have an extreme at that root.

3
Example 3.1: Consider f'(x) = (x + 3)3(x + 2)?(x + \/§)3(x —V3) (x —D3*(x - 7).
The original polynomial, f(x), has critical values for each term: CV = {-3,-2, —/3,/3, 4, 7}.

However, extrema exist only for the terms with odd exponents: Extrema = {—3, —V/3,V3, 7}.

Inflection Points (Pl)
The exponents (a;) of the linear factors of f"'(x) determine the existence of inflection points.

e An odd exponent on a linear term of f"(x) indicates that f(x) has an inflection point at
the root of that term.

e Aneven exponent on a linear term of f''(x) indicates that f(x) does not have an
inflection point at the root of that term.

Example 3.2: Consider f""(x) = (x +3)3(x + Z)Z(x + \/§)3(x — \/5)3(36 —4)2(x — 7).

Inflection points exist only for the terms with odd exponents: PI = {—3,—/3,/3, 7}.
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Chapter 3

Applications of Differentiation

Key Points on f(x), f'(x) and f"' (x) - Alauria Diagram

An Alauria Diagram shows a single curve as f(x), f'(x) or f"'(x) on a single page. The
purpose of the diagram is to answer the question: If the given curve is f(x), f'(x) or f"'(x),
where are the key points on the graph.

f(x)

50
1 Relative

“‘55 Maximum

Relative
Maximum

Relative
Minimum

Relative
Minimum

Relative
}Mil:il_num |

Not an
Extreme!
(curve
bounces)

Relative 7
Maximum

Inflection

Point!
(curve
bounces)

Version 5.6

f(x)’s x-intercepts (green and one yellow)
exist where the curve touches the x-axis.

Relative maxima and minima (yellow) exist at the
tops and bottoms of humps.

Inflection points (orange) exist where concavity
changes from up to down or from down to up.

If the curve represents f'(x) (1% derivative):

f(x)’s x-intercepts cannot be seen.
Relative maxima and minima of f(x) (yellow)
exist where the curve crosses the x-axis. If the

curve bounces off the x-axis, there is no extreme

at that location.

Inflection points of f(x) (orange) exist at the
tops and bottoms of humps.

If the curve represents f''(x) (2" derivative):

f(x)’s x-intercepts cannot be seen.
Relative maxima and minima of f(x) cannot
be seen.

Inflection points of f(x) (orange) exist where
the curve crosses the x-axis. If the curve

bounces off the x-axis, there is no inflection
point at that location.
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Chapter 3 Applications of Differentiation
Key Points on f(x), f'(x) and f"'(x)

The graphs below show f(x), f'(x) or f" (x) for the same 5 degree polynomial function. The
dotted blue vertical line identifies one location of an extreme (there are four, but only one is
illustrated) The dashed dark red vertical line identifies one location of a point of inflection
(there are three, but only one is illustrated).

I

I

I

I

: e Relative extrema exist at the tops and

| bottom of humps.

I

e Inflection points exist at locations where
concavity changes from up to down or from

down to up.

f’ ) In a graph of f'(x):
e Relative extrema of f(x) exist where the
curve crosses the x-axis. If the curve

bounces off the x-axis, there is no extreme
at that location.

¢ Inflection points of f(x) exist at the tops

and bottoms of humps.

T oswta 1932
[E{x]= Ex—;x-;‘x--l-?x-l-ﬂ

-0

: |

In a graph of f"'(x):

f' ) :
e Relative extrema of f(x) cannot be seen.

¢ Inflection points of f(x) exist where the
curve crosses the x-axis. If the curve

T T ! 5 bounces off the x-axis, there is no
"l \/[ inflection point at that location.
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Chapter 3 Applications of Differentiation
What Does the Graph of f'(x) Tell Us about f(x)?

x/10

Short answer: a lot! Consider the graph of the derivative of f(x) when f'(x) = e * COS X

. 3_5
on the interval [—En,in'].

Increasing vs. Decreasing

We can tell if f(x) is increasing or decreasing based on whether f'(x) is positive or negative.
Critical values exist where f'(x) is zero or does not exist. Relative maxima and minima exist at
critical values if the graph of f’(x) crosses the x-axis. See the graph and chart below. Note
that critical values, relative maxima and relative minima do not exist at endpoints of an interval.

f'(x) = e/ cos[x]ﬁ(
dritical values Increasing vs. Decreasing
al
% l \ f(x) Increasing Decreasing
| | ,_min \max | | ‘ | . . i
o N 5 /min g an f(x) Positive Negative
f({) is f(x) is _ ] ]
f(x)is (incegasing f(x)is |increasing All items in a column occur simultaneously.
decreasing 1 decreasing
ol
Concavity

We can tell if f(x) is concave up or concave down based on whether f'(x) is increasing or
decreasing. Inflection Points exist at the extrema of f'(x), i.e. at the top and bottom of any
humps on the graph of f'(x). See the graph and chart below. Note that inflection points do
not exist at endpoints of an interval.

f'(x) = ev/1° cos(x];

Concavity

inﬂgc:tion points

v — % f(x) Concaveup | Concave down
/\\ , /\ | f'(x) Increasing Decreasing

| I I
t t
-2m W 2 am

f(x)is f(x)is =1 f(x)is f(x) is f(x) is
concave | concave | concave | concave | concave All items in a column occur simultaneously.

down up down up down
-4,

f"(x) Positive Negative
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Chapter 3 Applications of Differentiation

Simultaneous Behavior of f(x), f'(x), and f''(x)

A question often faced by Calculus students is: Given information about one of f(x), f'(x), or
f"'(x) on a specific interval, what can be said about the behavior of the others on the same
interval? For this purpose, we can use the Natalie Chart shown below:

Natalie Chart
fx) Increasing Decreasing Concave Up Concave Down
f'(x) + - Increasing Decreasing
f'(x) + —

Using the Natalie Chart

The Natalie Chart extends the information from the previous page into an expandible format.
Information relating to the simultaneous behavior of f(x), f'(x), and f"'(x) is provided in a
single column in the chart. For example:
e If we are told that f'(x) is increasing on a given interval, the first magenta column in the
chart tells us that f(x) is concave up and f"'(x) is positive on the same interval.

e If weare told that f'(x) < 0 on a given interval, the second blue column in the chart
tells us that f (x) is decreasing. We cannot determine any information about the
behavior of f'(x) in this case, so those cells in the table are blank.

Expanding the Natalie Chart

Note that the information in the Natalie Chart is expandible to any set of three consecutive
derivatives of a function by adding rows and columns.

Expanded Natalie Chart
f(x) Increasing Decreasing Concave Up Concave Down
f’ (x) + - Increasing Decreasing Concave Up Concave Down
f”(x) + - Increasing Decreasing
III(
() + -

In this expanded chart, notice that knowing whether /"' (x) is increasing or decreasing on an
interval (green text) provides information about the simultaneous behavior of f'(x) and f'"' (x)
on the same interval. Adding additional rows and columns can provide information about the
simultaneous behavior of any three consecutive derivatives of any given function.
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Chapter 3 Applications of Differentiation

Curve Sketching

Curve Sketching is much easier with the tools of Calculus. In particular, the calculation of
derivatives allows the student to identify critical values (relative maxima and minima) and
inflection points for a curve. A curve can then be broken into intervals for which the various
characteristics (e.g., increasing or decreasing, concave up or down) can be determined.

The acronym DIACIDE may help the student recall the things that should be considered in
sketching curves.

DIACIDE:

Derivatives: generally, the student should develop the first and second derivatives of
the curve, and evaluate those derivatives at each key value (e.g., critical points,
inflection points) of x.

Intercepts: to the extent possible, the student should develop both x- and y-intercepts
for the curve. x-intercepts occur where f(x) = 0. y- intercepts occur at x = 0.

Asymptotes: vertical asymptotes should be identified so that the curve can be split into
continuous sub-segments. Vertical asymptotes occur at values of x where the curve
approaches —oo or +00; f'(x) does not exist at these values of x. Horizontal
asymptotes are covered below under the category “End Behavior.”

Critical Values: relative maxima and minima are locations where the curve changes
from increasing to decreasing or from decreasing to increasing. They occur at “critica
x-values, where f'(x) = 0 or where f’(x) does not exist.

III

Concavity: concavity is determined by the value of the second derivative:
f"(x) < 0 implies downward concavity

f"(x) > 0 implies upward concavity

Inflection Points: an inflection point is a location on the curve where concavity changes
from upward to downward or from downward to upward. At an inflection point,
f"(x) =0 orwhere f""(x) does not exist.

Domain: the domain of a function is the set of all x-values for which a y-value exists. If
the domain of a function is other than “all real numbers,” care should be taken to graph
only those values of the function included in the domain.

End Behavior: end behavior is the behavior of a curve on the left and the right, i.e., as x
tends toward —oo and 4+oc0. The curve may increase or decrease unbounded at its ends,
or it may tend toward a horizontal asymptote.
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Chapter 3 Applications of Differentiation

Example 3.3: Sketch the graph of f (x) =x3—5x% + 3x + 6.

DIACIDE: Derivatives, Intercepts, Asymptotes, Critical Values, Concavity, Inflection Points,

Domain, End Behavior \/

Derivatives: f(x) =x3-5x2+3x+6
f'(x) =3x%2—10x + 3
f"(x) =6x—10

Note the two C’s.

Intercepts:  Use synthetic division to find: x = 2,s0: f(x) = (x —2) - (x%? — 3x — 3)

Then, use the quadratic formula to find: x = gi;/ﬁ = {—-0.791,3.791}
x-intercepts, then, are: {—0.791, 2, 3.791}
y-intercepts: f(0) =6

Asymptotes: None for a polynomial |

Max

Critical Values: f'(x) = 3x? —10x +3 =0 at x = {3,3}
Critical Points are: {(.333, 6.481),(3, —3)}

f""(.333) < 0,s0 (.333, 6.481) is arelative
maximum

Inflection

f"(3) > 0,s0 (3, —3) is arelative minimum

Concavity:  f"(x) < 0 for x < 1.667 (concave downward)

f"(x) >0 for x > 1.667 (concave upward)
Inflection Points: f''(x) =6x —10=10 at x =§ ~1.667 1
Inflection Pointis: (1.667, 1.741) 3T b

Domain: All real values of x for a polynomial

End Behavior: Positive lead coefficient on a cubic equation implies that:
lim f(x) = —o, and
X——0o0

Jim f(x) = oo
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Chapter 3 Applications of Differentiation

10 -sinx
Example 3.4: Sketch the graph of f(x) = T ox
DIACIDE:
. 10-sinx , 10 - (cosx — sinx) ' —20-cosx
Derivatives: f(x) = — f'x) = e f"(x) = —x

Intercepts:  x-intercept where sinx = 0, so, x = k -, with k being any integer
y-interceptat f(0) =0

Asymptotes: No vertical asymptotes. Horizontal asymptote aty = 0.

Critical Values: f'(x) = 0 where cosx = sinx. Critical Points exist at x = {% +k-m k€ Z}
(.707, 3.224) is a relative maximum; (3.927,—0.139) is a relative minimum

There are an infinite number of relative maxima and minima, alternating at x-
values that are  apart.

Concavity: The function is concave up where cos x < 0, i.e., Quadrants Il and III
and is concave down where cos x > 0, i.e., Quadrants I and IV.

Inflection Points: f"(x) = 0 where cosx =0
Inflection Points exist at: x = E +k-m k€ Z}

Domain: All real values of x

End Behavior: lim f(x) does not exist, as the function oscillates up and down with each
X—>—00
period
lim f(x) =0
X—00

Max

Inflection

Intercept Intercept Max
[ | —_— -
| |

| | | } | } T t i o
2 Intercept “Intercept Min mflection |

-
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2
xX“—4
Example 3.5: Sketch the graph of f(x) = Y7o
DIACIDE:
Derivati 0 x%—4 ‘o) —10x ") 30 (x%43)
erivatives: X) = X) =" X) =" =
f x?%-9 f (x2-9)2 / (x2-9)3
Intercepts:  x-intercept where x2 —4 = 0,50, x = +2 Plot these intercepts
4 on the graph.

y-intercept at f(0) = 5

Asymptotes: Vertical asymptotes where: x2 —9 =0, so x = +3.

Horizontal asymptote at: Plot the asymptotes
on the graph.
= lim x4 = lim x4 =1 o
y x—00 X2 — x——00 x2—9

Critical Values: f'(x) =0 where x =0; sof'(0) =0

Plot the critical
Since f''(0) = —g <0, (0, g) is a relative maximum }

values on the graph.

Concavity: The concavity of the various intervals are shown in the table on the next page
H H . " — 2 —
Inflection Points: f''(x) = 0 where x*+3 =0 If there are inflection points,
Therefore, there are no real inflection points plot them on the graph.

Domain: All real values of x, except at the vertical asymptotes

So, the domain is: All Real x # {—3, 3}

. . x2—4
End Behavior: lim = =1
x——c0 X“—9 These imply the existence of a
. x2-4 horizontal asymptote at y = 1.
lim = =1
x—00 Xx4—9
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Example 3.5 (cont’d)

Applications of Differentiation

In some cases, it is useful to set up a table of intervals which are defined by the key values

identified in green above: x = {—3,0, 3}. The key values are made up of:

e Vertical asymptotes

e Relative maxima and minima

e Inflection Points

x-values f(x) f'(x) f'(x) Graph Characteristics
(—o0,—-3) + + curve increasing, concave up
-3 undefined undefined undefined vertical asymptote
(-3,0) + — curve increasing, concave down
0 .444 0 - relative maximum
(0,3) - - curve decreasing, concave down
3 undefined undefined undefined vertical asymptote
(3,0) - + curve decreasing, concave up

|
I
I
I
I
I
|
| Intercept|Intercept
I
I
I
I
I
I

2+
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Chapter 3 Applications of Differentiation

Determining the Shape of a Curve Based On Its Derivatives

The possible shapes of a curve, based on its first and second derivatives are:

NIV

Increasing function Decreasing function Increasing function Decreasing function

f'x)>0 f'(x) <0 f'(x)>0 flx) <0
Concave up Concave up Concave down Concave down
f'"(x)>0 f"(x)>0 f"(x) <0 f'"(x) <0

So, given a differentiable function with first and second derivatives identified, we need only
match the shapes above to the intervals of the function and then join them together. If we are
given points on the curve, we must also fit the shape through the given points.

Example 3.6: Suppose we want to determine the approximate shape of the curve of the
differentiable function defined by the following table.

X 1<x<3 x =3 3<x<5 x =5 5<x<7
f'(x) Positive 0 Negative Negative Negative
f"(x) Negative Negative Negative 0 Positive
Curve Flat - Point of

Maximum

To get the shape of the function over the given interval, join the shapes for each subinterval

together as shown at right.

Note: If we are given points on the curve, we must also

stretch or compress the various parts of the resulting

shape to fit through the given points.
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Chapter 3

Applications of Differentiation

Rolle’s Theorem and the Mean Value Theorem

Rolle’s Theorem

20+

1. f(x)iscontinuouson [a, b].
2. f(x) is differentiable in (a, b).
3. f(a) =f1(b).

Then

There is at least one value c in (a, b)
such that f'(c) = 0.

Conclusion in Words: There is at least one
point in (a, b) with a horizontal tangent
line.

Mean Value Theorem (MVT)

1. f(x)iscontinuouson [a, b].
2. f(x)is differentiable in (a, b).

Then
There is at least one value c in (a, b)
b)—f(a
such that f'(c) = %.

Conclusion in Words: There is at least one
point in (a, b) where the slope of the
tangent line has the same slope as the
secant line over [a, b].

Note: If the conditions for Rolle’s Theorem are satisfied, then either Rolle’s Theorem or the MVT

can be applied.

e Rolle’s Theorem concludes that there is a value ¢ such that: f'(c) =0

e The MVT concludes that there is a value c such that: f'(c) =

e These two conclusions are identical.
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Chapter 3 Applications of Differentiation

Related Rates

Related Rates Problems

To solve problems that involve rates of change of two or more related variables, each with
respect to a third variable, we must take derivatives with respect to the third variable (often,
time) and remember to use the chain rule at each step. There are numerous methods that can
be used to solve these problems; one that students have found particularly helpful is described
and illustrated below.

The General-Specific Method

This method breaks up the solution into the General and Specific Cases described in the
problem, as follows:
The General Case

e Deal with all variables in the abstract, without any numbers substituted for the
variables.

e Set up any formulas required to solve the problem (e.g., volume of a cone).

e Take any derivatives (based on the above formulas) required to solve the problem.

The Specific Case
e Record any values of variables for the specific situation described in the problem.

e Calculate any additional values required based on those provided in the problem (e.g.,
the length of the third side of a right triangle).

e After any derivatives are developed in the General Case, substitute values for the
variables in the derivative equation.

e Derive the solution to the problem by solving the resulting equation.

Notes:

e For some problems, you may need to draw a picture of the situation described in the
problem. In these problems, you should draw a picture for the General Case and a
second picture for the Specific Case. See Example 3.9, below.

e Inthe examples that follow, the General Case is shown on the left and the Specific Case
is shown on the right.
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Applications of Differentiation

Example 3.7: The volume of a cylinder is changing by 48 cm? per second when the radius of the

cylinder is 2 cm. If the height is twice the radius, find the rate of change of the radius when r =

2 cm. Note: V = nr?h.

General Case

dr
We are asked to find — :
dt
h =2r
V =nr?h =nr?Q2r) = 2nr3

Take the derivatives of
both sides with respect to t:

dt dt

After this part is done, move to the
Specific Case.

av pldr
= 6bnrs —

Specific Case

Information given:
av
— =148 r=2

dt

Substitute values into the equation
derived in the General Case:

av ar

— = 6nr?—

> at dt
d
48 = 6m - 2% 2L

dt
Do some algebra to calculate:

dr 48 2 /
— = — = —cm/sec
dt 241 T

Example 3.8: The SA of a sphere is changing by 36 cm? per second when the radius of the

cylinder is 3 cm. Find the rate of change of the radius when r = 3 cm. Note: SA = 4nr?.

General Case

dr
We are asked to find — :
dt
SA = 4mr?

Take the derivatives of
both sides with respect to t:

Specific Case

Information given:

dSA
—=36 r=3
dat

Substitute values into the equation
derived in the General Case:

After this part is done, move to the
Specific Case.

Version 5.6

dSA dr
> = 8nr —
dt dt

dr

36 =8m-3 T

Do some algebra to calculate:

dr 36 3
— = —— = —cm/sec
dt 241 21 /
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Applications of Differentiation

Example 3.9: A ladder 25 feet long is leaning against the wall of a house. The base of the

ladder is pulled away from the wall at a rate of 2 feet per second. How fast is the top of the

ladder moving down the wall when its base is 7 feet from the wall?

General Case

dy
We are asked to find —

Based on the drawing: y 25

x?+y? =625

Take the derivatives of _|

both sides with respect to t: x
2 ax + 2 v _ 0
T T

After this part is done, move to the
Specific Case.

Specific Case

Information given:
x =7 24 25

Calculate: y = 24

@ _ ]

dt

7
Substitute values into the equation

derived in the General Case:

dx dy

> ZX'E+2}/'E 0

dy
2:72+2:24-—=0
dt

Do some algebra to calculate:

d 28 7 ft
X e = L= _0.583—
dt 48 12 sec

Example 3.10: The radius r of a circle is increasing at a rate of 3 cm/minute. Find the rate of

change of the area when the circumference C = 12w cm.

General Case
. dA
We are asked to find —:
dt
A = mr?

Take the derivatives of
both sides with respect to t:

Specific Case

Information given:

dr
C =2nr =121 —=3
dt

Substitute values into the equation
derived in the General Case:

Specific Case.

dA ar

d_A = 271r ﬂ » — = 2r —
. . dA dr cm?
After this part is done, move to the —=(C-—=12n-3 =36mm——
dt dt min
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Chapter 3 Applications of Differentiation
Kinematics (Particle Motion)

Position

Position is the location of a particle at a point in time. It is typically represented by the
functions s(t) or x(t).

Displacement

Displacement is a measure of the difference between a particle’s starting point and its ending
point. It may be either positive or negative. A formula for displacement is:

As = s — 54, where s is the position at any point in time, and s, is the starting position.

Distance

Distance is a measure of the total movement of a particle; it is always a positive value. Total
distance is the sum of the absolute values of the displacements of a particle in its various
directions.

Example 3.11: A particle moves from x =0 to x =6 to x = 2.
e Displacement = end — start = 2 — 0 = 2 units
e Distance = sum of absolute values of individual displacements

= |6 — 0]+ |2 — 6] =10 units

Velocity

Velocity measures the rate of change in position. Instantaneous velocity is generally shown
using the variable v and average velocity is generally shown as ¥. Velocity may also be shown
as a vector v, which has both magnitude and direction. The following formulas apply to
velocity:

ds
Instantaneous velocity: v = o (i.e, the derivative of the position function)

Velocity at time t: v = vy + at (where, v, is initial velocity and a is a constant acceleration)

) _ total displacement As s(ty)—s(tq)
Average velocity: v = - == 7
total time At to—tq

Velocity may be either positive or negative.
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Speed

Speed, like velocity, measures the rate of change in position. However, unlike velocity, speed is
always positive (it does not have direction). Instantaneous speed is the absolute value of
velocity |v| at a point in time. Average speed is based on distance instead of displacement. The
following formulas apply to speed:

Instantaneous speed: |v| =

ds
a| (i.e, the absolute value of the velocity function)

total distance

Average speed:
g€ sp total time

A note about speed:

e Speed is increasing when velocity and acceleration have the same sign (either 4+ or —).
e Speed is decreasing when velocity and acceleration have different signs (one +, one —).

Acceleration

Acceleration measures the rate of change in velocity. Instantaneous acceleration is generally
shown using the variable a and average acceleration is generally shown as a. Acceleration may
also be shown as a vector a, which has both magnitude and direction. The following formulas
apply to acceleration:
. dv d?s
Instantaneous acceleration: a =—=—
dt dt?
total change in velocity Av  v(ty)—v(t1)
total time TAt tp—ty

Average acceleration: a =

Moving Among Functions

The following diagram describes how to move back and forth among the position, velocity and
acceleration functions. (Note: integration is handled in a subsequent chapter.)

Dif ferentiate Dif ferentiate
—_— _—
Position Velocity Acceleration
— —
Integrate Integrate
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Summary of Kinematics Terms

Applications of Differentiation

Consider the following function definitions in relation to a particle in motion:

s(t) or x(t) is the position function along the x-axis.

v(t) = s'(t) is the velocity function along the x-axis.

speed(t) = |v(t)| is the speed function along the x-axis.

a(t) = v'(t) = s"'(t) is the acceleration function along the x-axis.

Then the following terms relate to the functions defined above:

Term/Description Meaning

Initially t=0

At the origin s(t) =0

At rest (i.e., zero velocity) v(t) =0

Positive velocity (moving to the right) v(t) >0
> | Negative velocity (moving to the left) v(t) <0
S
g Average velocity (or the approximation of _ Aposition s(b) —s(a)

. . v = - =

velocity over an interval [a, b]) A time bh—a

Instantaneous velocity at time t = ¢ v(c) =s'(c)

Particle changes directions v(t) = 0, changes signs at time t
= Speed is increasing (particle is accelerating) v(t),a(t) have the same sign (+ or -)
2
< Speed is decreasing (particle is decelerating) v(t), a(t) have different signs

Positive acceleration a(t) >0
_5 Negative acceleration a(t) <0
©
()] . . . .

T Average acceleration (or the approximation - A velocity _ v(b) —v(a)
= of acceleration over an interval [a, b]) A time b—a

Instantaneous acceleration at time t = ¢ a(c) =v'(c) =s"(c)
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Differentials

Finding the Tangent Line

Most problems that use differential to find the tangent line deal with three issues:
» Developing the equation of a tangent line at a point on a curve
» Estimating the value of a function using the tangent line.

» Estimating the change in the values of a function between two points, using the
tangent line.

In each case, the tangent line is involved, so let’s take a look at it. The key equation is:

y=f+f'()(x-0)

How does this equation come about? Let’s look at a curve and find the equation of the tangent
line to that curve, in the general case. See the diagram below:

> Let our point on the curve be (c,f(c)). | L7

L7 y-fe)=f(c) (x1 )

» The slope of the tangent line at (c,f(c)) is f'(c). #1

» Use the point-slope form of a line to calculate the
equation of the line:

y=yi=mlx—x%) = y—fl)=f"()(x—¢)

i

» Add f(c) to both sides of the equation to obtain the T
form shown above

Let’s take a closer look at the pieces of the equation:

First, define your anchor, ¢, and calculate f(c)

and f'(c). Substitute these into the equation (x — c) is also shown as Ax. It is the
and you are well on your way to a solution to difference between the x-value you are
the problem. evaluating and your anchor to the curve,

which is the tangent point (c,f(c)).

——
y=f+f(c) (x—c)

This is the “change part”. So, when you are
asked about the change in f(x) between two
points or the potential error in measuring

something, this is the part to focus on.
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Curvature

Curvature is the rate of change of the direction of a curve at a
point, P (i.e., how fast the curve is turning at point P).
Direction is based on @, the angle between the x-axis and the o
tangent to the curve at P. The rate of change is taken with
respect to s, the length of an arbitrary arc on the curve near
point P. We use the Greek letter kappa, k, for the measure of
curvature.

0+00 <0

This is illustrated for the function y = In(x — 4) + 3 atright.

o A@

K=—= lim —
ds As-0As

This results in the following equations for k:

dzy dzx

- —F
dx or K = Y

@] ()]

Polar Form: Let r(8) be a function in polar form. Then, the polar form of curvature is
given by:

K =

3/2

_rE 420 —rr” dr d?r

where, r'=—, 1r'' =
2+ )77

de’ doz

The Osculating Circle of a curve at Point P is the circle which is:
e Tangent to the curve at point P.

e Lies on the concave side of the curve at point P.

y =In(x-4)+3
e Has the same curvature as the curve at point P.
P Osculating
The Radius of Curvature of a curve at Point P is the El:ﬂf{i":) ia
radius of the osculating circle at point P. R = L . aE=9.

x|

The Center of Curvature of a curve at Point P is the v

center of the osculating circle at Point P.
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Chapter 3

Newton’s Method

Sometimes it is difficult or impossible to find the exact roots of an
equation. In such cases, approximate values may be found using
numerical methods. Newton’s Method is a popular approach for
determining roots this way, primarily because it is simple and
easily programmed for use with a computer.

Newton’s Method

Use the following steps to identify a root of a function f(x)
using Newton’s Method.

Applications of Differentiation

1. Select an estimate of the root you are looking for. Call this estimate x,. It may be

useful to graph the function for this purpose.

2. Use the differential formula (see above) to refine your estimate of the root:

y = f(xg) + f'(x0) - (x — xp)

We want an estimate of x when y = 0. Setting y = 0, the differential formula can be

manipulated algebraically to get:

— oy f(x0)
° f'(x0)
Let this value of x be our next estimate, x;, of the value of the root we seek. Then,
o = xn — f(x0)
SR )

3. Repeat the process to get subsequent values of x,,, i.e.,

f(xn—l)

X =X, _ _—
I ()

4. Continue Step 3 until the sequence {x,,} converges; that is, until successive estimates

round to the same value based on a predetermined level of accuracy.

When Newton’s Method Diverges

Newton’s Method diverges under certain conditions. That is, for some functions and/or

starting x values, successive values of x,, may not exist, may fluctuate back and forth between

values, or may grow further and further away from the initial estimate of the root. When this

occurs, you may want to select a different starting value of x and try again. However, the

student should be aware that there are situations where Newton’s Method fails altogether.
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Chapter 3 Applications of Differentiation

Example 3.12: Estimate the root of f(x) = e*"* — cosx near x = 5 to six decimal places.

Let’s graph the function. In the graph, itis
clear that there is a root close to x = 5. So,
we are hopeful that Newton’s Method will
converge quickly.

ol | | | | | | | | | |

We begin with the following: T

f(x) = e*® - cos(x)

21

[ ] xO = 5
o f(x)=e5"* —cosx

o f'(x)=(e"*-cosx)+sinx

Now, let’s develop successive values of x,,. Note: Microsoft Excel is useful for this purpose.

B flxo) _ e —cos5 . 0099643
X1 = Xp F(xo) - (esin5 . cos5) + sin 5 o —-0.8502
N fe) o ii0n eSn51172 — ¢055.1172 123764
Xy = Xq ) =o. (esin5.1172 . ¢055,1172) + sin 5.1172 o
- flx) I eSin5123764 _ ¢055.123764 _ 193787
X3 =X, i) (esin5123764 . c055.123764) + sin5.123764
B flr) 133787 eSin5123787 _ 05 5.123787 B
X4 = X3 F10xs) = 0. (esin5.123787 . 05 5.123787) + sin 5.123787

At this point, we stop the process because x, = x; when rounded to six decimals. The sequence
of {x,,} appears to have converged to which is our solution. If you like, you can use
a modern graphing calculator to verify that this is in fact a good estimate of the desired root of

f ).

Note: While the use of modern handheld graphing calculators makes Newton’s Method
unnecessary in the Calculus classroom, its use in mathematical computer applications is
essential. Itis very useful in Microsoft Excel, Visual Basic, Python, Java and other applications in
which the determination of a root is automated.
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Rules of Indefinite Integration

Note: the rules presented in this chapter omit the “ + C ” term that must be added to all
indefinite integrals in order to save space and avoid clutter. Please remember to add the
“+ C” term on all work you perform with indefinite integrals.

Basic Rules

chu =cu

fcf(u)du =c ff(u)du

[ rao+g@du = [ raodu + [ geodu

Integration by Parts

fudvzuv—fvdu

Power Rule

n — . nt1l 1 =
™) du u nm+1) ” du = Infu|

n+1

Exponential and Logarithmic Functions (a > 0,a # 1)

1 1
u — — u —
fa du g a fulnudu In(Inu)
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Chapter 4

Integration

Integrals of Special Functions

Exponential and Logarithmic Functions

fexdx= e*

ax

faxdx =—
1

f—dx = In|x]|
x

flnxdxlenx—x

1
J- dx = In(Inx)
xInx

Trigonometric Functions

fsinudu = —Ccosu

fcosudu = sinu

J-tanudu =In [secu| = —In |cos u|
fcotu du = —In|cscu| = In |sinu|
fsecu du = In [secu + tan u|

fcscudu = —In|cscu + cotu|
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au

fa”du= —
1

f—du=ln|u|
u

flnudxzulnu—u

1
J- du = In(Inu)
ulnu

sec’udu = tanu

csc’udu = —cotu

cscucotudu = —cscu
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Chapter 4

Integration

Derivations of the Integrals of Trigonometric Functions

sin x
tanx dx tanx dx = dx
cos x
Let: u = cosx so that: du = —sinx dx Then,
1
ftanxdxz _JH du = —In|u| + € = —In|cosx| + C
cos x
cotxdx cotxdx = — dx
sin x
Let: u = sinx sothat: du = cosx dx Then,

1
fcotxdx=fa du = Inju| + € = —=In|sinx| + C

j secxdx

Multiply the numerator and denominator by: (secx + tanx)

Then,

(secx + tanx) (sec? x + secx tan x)
secxdx = | secx - dx = dx
(secx + tanx) (secx + tanx)

Let: u = (secx + tanx) sothat: du = (secxtanx + sec?x)dx

Then,

1
fsecxdxzfa du = InJu| + C = In|secx +tanx| + C
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Integration

Derivations of the Integrals of Trig Functions (cont’d)

j cscxdx

Multiply the numerator and denominator by: (cscx + cotx)

Then,

(cscx + cotx) (csc? x + cscx cotx)
cscxdx = | cscx - dx = dx
(cscx + cotx) (cscx + cotx)

Let: u = (cscx + cotx) sothat: du = (—cscxtanx — csc? x) dx
Then,
1
cscxdx =— | —du =—Inlul] + € = —In|cscx +cotx| + C
u
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Chapter 4 Integration
Integration Involving Inverse Trig Functions

Key Formulas:

Base Formulas General Formulas
f;du:sin‘1u+C I;duzsin‘l(g)+C
V1 —u? va?z — u? a
1 1 1 u
— -1 _ -1
f1+u2du—tan u+C fmdu—atan (E)-I_C
1 . 1 1 1 |ul
————du=sec ‘|lul|+C ————du=—-sec '|—|+C
uvu? -1 uvu? — a? a a

About Inverse Trig Functions
As an example, sin~! x asks the question, what angle (in radians) has a sine value of x? So,
. (1) s . (\/E) i1 .1 ( 1) T
Sin - =- S1n —_) = - sin — ) ===
2 6 2 4 2 6

It is important, for these purposes, to understand the quadrants in which each inverse Trig
function is defined, as shown in the following charts.

Ranges of Inverse Trigonometric Functions Locations of Principal Values
of Inverse Trig Functions
Function Gives a Result In: y
sin’ 0 +
T T 3
sin14 ——<6< = cos' 0 — cos O +
2 2 tan' 0 +
X
cos™1 6 0<8<m -
sin" 0 -
tan-1 6 _E<9<E tan' 0 -
2 T2

Solutions to problems involving inverse Trig functions may be expressed
multiple ways. For example, in the triangle at right with sides a, b and c,

the measure of angle A can be expressed as follows: ¢ a
msA = sin™?! (a) = tan~! (a) =sec™! (C) A
c b b b

Some calculators will never give results using the sec™! function, preferring to use the tan™?!

function instead; the answers are equivalent. For example, sec™!|2x| = tan~™!V4x2 — 1.
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Chapter 4 Integration

Indefinite Integrals of Inverse Trigonometric Functions

Inverse Trigonometric Functions
J-sin_ludu =usintu+ /1—u?
fcos‘ludu =u cos tu— +1—u?

1
J‘tan‘1 udu=utan tu— > In(u? + 1)

1
cot™'udu =u cot™tu+ > In(u? + 1)

—

fsec‘ludu =useclu— Inlu++Ju? - 1) sec’luy €

fcsc‘ludu =ucsclu+ In(u++Ju? - 1) csclue

Involving Inverse Trigonometric Functions

f ! du=sin"lu f; du = sin™1 (E)
V1 —u? Vva? —u? a
1 1 1 u
[ T = | e =g = Q)
1 1 1 u
f—dxzsec‘llul f—dx=—sec‘1 <u>
uvu? —1 uvu? — a? a a
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Form

1
| =

1
faz+u2 du

f 1
uvu? — a2

1
———=du
f\/uz + a?

dx

1
——— du
fm
1
f—az—uz du
1
f—uz—az du
f 1
uva? —u?

f 1
uva? + u?

|a>u

|u>a

du

du

Integration

Integrals of Special Functions
Selecting the Right Function for an Integral

Function

sin~lu

tan"lu

. _ *
sinh~1u

_ *
cosh™1u

tanh~lu *

o

coth™tu *

_ *
sech™tu

— *
csch™lu

Integral
1 u
- =cin~1(—=
j e — du = sin (a)

[ dw=g o ()

1 1 |ul
j—dx=—sec‘1 —
uvu? — a? a a

.f—uzl—-l-az du=1n(u+m)
j\/% du=ln(u+ uz—az)
u?—a

j ! d —11
a? — u? u_Zan

a+u|
a—u

1 1 a+va? —u?

j du=——-In[———
uva? —u? a lul

1 1 a+Vva? +u?

f—duz——ln _—
uva? + u? a lul

* This is an inverse hyperbolic function. For more information, see Chapter 6. Note that you do

not need to know about inverse hyperbolic functions to use the formulas on this page.
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Chapter 5 Techniques of Integration

u-Substitution

Often, an integrand will contain a function within a function. For example, in the integral

flnx/f

. dx, we have the function v/x within the In function. When this happens, it is often

useful to substitute another variable for the internal function. Typically the variable u is used to
represent the inner function, so the process is called u—substitution.

The typical process used for u—substitution is described in steps below. When trying this
approach, note the following:

e u-—substitution will work for all integrals, even ones that look ripe for it, though it does
work often.

e [f one attempted substitution does not work, the student should try another one. It
takes practice to train the eye to identify what functions work well in this process.

e |tis possible that the student will be faced with an integral than simply cannot be

a2
integrated by any elementary method (e.g.,fe x dx).

Process

Following are the steps for the general solution to an integral using u—substitution.

1. Set a portion of the integrand equal to a new variable, e.g., u. Look to the rest of the
integrand in deciding what to set equal to u. You will need to have du in the integrand
as well, if this technique is to find success.

Find du in terms of dx.
Rearrange the integrand so that the integral exists in terms of u instead of x.
Perform the integration.

Substitute the expression for u back into the result of the integration.

o v s~ W N

If you are uncomfortable with the result, integrate it to see if you get the integrand as a
result. If so, you have achieved your goal. And, don’t forget the +C for an indefinite
integration.

InVx
Example 5.1: Find: f dx
x
InVx  Inx 1 1
nvx 5
j dx:J2 dxz—flnx—dx u=Inx
X X 2 X 1
du =— dx
—1fd—112— (Inx)?+C .
T M Ty T g anX _
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1-1n t)?
Example 5.2: Find: f % dt

1 —1In t)?
f%dt u=1-Int

1
du=——dt
t

Techniques of Integration

1 1
=—fu2du =—§u3= —E(l—lnt)3+C

dx

1
Example 5.3: Find: f\/ﬁ Recall: f\/ﬁ du=sin"'u with —%s sin"tu <
-x -u

[

1
J‘ 1 1 du=§dx

=sin"'u+C = sin™?! (g) +C

e* 1
Example 5.4: Find: f dx  Recall: f du =tan"'u with —g <tanlu <

14 e?* 1+u?
ex
———dx
,[1 + e?¥ u=ex
1 du = e* dx
= | ———— e¥dx
f1+ (e*)?

= f ! du =tan"'u = tan"1(e¥) + C
1+ u?
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Chapter 5 Techniques of Integration

Partial Fractions

Partial Fractions

Every rational function of the form R(x) = can be expressed as a sum of fractions with

D(x)
linear and quadratic forms in their denominators. For example:
x*+2x°-3x+4 P T S bix + ¢, N b,x + c,
(x—4)3(x2+2x+4)2 (x—4) (x—4)?2 (x—4)3 (x2+2x+4) (x2+2x+4)2

Our task is to determine the appropriate fractions, including the values of the a’s, b’s and c’s,
so we can integrate the function. The result of integration tends to contain a number of natural
logarithm terms and inverse tangent terms, as well as others.

The following process can be used to determine the set of fractions (including the a’s, b’s and
c¢’s) whose sum is equal to R(x).

Process

1. If N(x) has the same degree or higher degree than D(x), divide N(x) by D(x) to obtain
the non-fractional (polynomial) component of the rational function. Proceed in the next
steps with the fractional component of the rational function.

x%+2x-5 3
Example 5.5: R(x) =————=x+4+—.
x—-2 x—2

Since it is easy to integrate the polynomial portion of this result, (i.e., x + 4), it remains

3
to integrate the fractional portion (i.e., ﬁ)'

2. To determine the denominators of the fractions on the right side of the equal sign, we
must first factor the denominator of R(x), i.e., D(x).

Note that every polynomial can be expressed as the product of linear terms and
guadratic terms, so that:

D) =k(x —r)(x —15) . (x=7) = (¥ +p1x +q) (% + P2x + 42) . (X + PiX + i)

Where k is the lead coefficient, the (x — 1;) terms are the linear factors and the (x? + p;x +
q;) are the quadratic terms of D (x).
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Chapter 5 Techniques of Integration

3. Every rational function can be expressed as the sum of fractions of the following types:
a; bix+c;
-r° O R pprtapt

Where the exponents in the denominators, s and t, take all values from 1 to the
multiplicity of the factor in D (x).

Examples 5.6 — 5.8:

22 +5x—3 o P
(x+2)3  (x+2) (x+2)?2 (x+2)3

x}]—x?+6x—2  bx+g N byx + ¢,
(x2—-3x+7)2  (x2-3x+7) (x2-3x+7)2

x*+2x3-3x+4 . S T S byx + ¢,
(x—12x+3)(x2—4x+1) (x—-1) (x—-12 (x+3) (*2—4x+1)

We must solve for the values of the a’s, b’s and ¢’s. This is accomplished by obtaining a
common denominator and then equating the coefficients of each term in the
numerator. This will generate a number of equations with the same number of
unknown values of a, b and c.

Example 5.6a (using the first expression above):

2x*+5x -3 a4 P .
(x+2)3  (x+2) (x+2)2 (x+2)3

_ai(x+2)?  ay(x+2) a;  a;(x+2)*+ay(x+2) +a;
S TG+ T x+2? ar2R 1 2)°

Equating the numerators, then,

2x2+5x—3 = a;x?+ (4a; + ay)x + (4a, + 2a, + az)

So that:
a1 — 2 a1 = 2
We solve these
4a,+a, =5 equations to obtain: a, = -3
4a1+2a2+a3:_3 g a3:_5
Finally concluding that:
2x% 4+ 5x—3 _ 2 4 -3 + -5 _ 2 3 5
(x+2)3 (x+2) (x+2)?2 (x+2)3 (x+2) (x+2)2 (x+2)3
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Chapter 5 Techniques of Integration

4. The final step is to integrate the resulting fractions.

Example 5.6b (continuing from Step 3):

2x2+5x—3d 3 2 3 5 p
f (x +2)3 x_f(x+2)_(x+2)2_(x+2)3 x

5

= 21njx + 2| + +
nlx +2| (x+2) 2(x+2)?
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Integration by Parts

General
From the product rule of derivatives we have:

duv = udv+vdu

Rearranging terms we get:

udv = duv — vdu

Finally, integrating both sides gives us:

fudvzfduv—fvdu
fudvzuv—fvdu

This last formula is the one for integration by parts and is extremely useful in solving integrals.

When performing an integration by parts, first define u and dv.

LIATE

When integrating by parts, students often struggle with how to break up the original integrand
into u and dv. LIATE is an acronym that is often used to determine which part of the integrand
should become u. Here’s how it works: let u be the function from the original integrand that
shows up first on the list below.

e Logarithmic functions (e.g., Inx)

e Inverse trigonometric functions (e.g., tan~! x)
e Algebraic functions (e.g., x3 + x — 2)

e Trigonometric functions (e.g., cos x)

e Exponential functions (e.g., %)

In general, we want to let u be a function whose derivative du is both relatively simple and
compatible with v. Logarithmic and inverse trigonometric functions appear first in the list
because their derivatives are algebraic; so if v is algebraic, v du is algebraic and an integration
with “weird” functions is transformed into one that is completely algebraic. Note that the
LIATE approach does not always work, but in many cases it can be helpful.
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Example 5.9: Find [ cos? x dx (note: ignore the +C until the end)

fcoszxdx = sinx cos x — f(— sin? x) dx Let:
U = COoSX v =sinx
. . 2
= sinx cosx + | (sin“ x) dx .
f( ) du = —sinx dx dv = cosx dx

=sinxcosx+f(1—coszx)dx
= sinx cos x +f(1) dx—f(cos2 x)dx

jcoszxdx=sinxcosx+x—f(coszx)dx
2fcoszxdx=sinxcosx+x

1
jcoszxdx =§(sinxcosx+x) +C

Example 5.9A: Find [ cos? x dx without using integration by parts

1+cos2x

Let’s use the Trig identity: cos? x = 5

5 1+ cos 2x
cos“ xdx = (T) dx

1
=Ef(1+c052x)dx

—1( +1 i 2)+C
=5 |\x +sin2x

Next, recall that sin 2x = 2 sinx cosx. So,

1 1
jCOSZXdX=E<X+§'ZSIHXCOSX>+C

1
=§(sinxcosx+x) +C
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Example 5.10: Find [ Inx dx
X
flnxdx =xlnx—f;dx

=xlnx—f1dx

=xlnx—x+C

Example 5.11: Find [(x2e*) dx

f(xzex) dx = x%e* — f 2x e*dx  —

=xzex—2fxexdx

=xzex—2<xex—fexdx>

=x%e*—-2(xe*—-e")+C

=@x*—2x+2)e*+C

Example 5.12: Find [ tan™!x dx

an 'xdx =xtan"tx — X
tan txd tan~! >d
1+x
1 1 1
=xtan " x —— 2x dx
2) 1+ x2

1
=xtan lx —Eln(l +x3)+C
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Let: u=1Inx V=X
1
du =—dx dv = dx
b

Let: u = x? v=e¢e*
du = 2x dx dv = e* dx
Let: u=x v=e*
du = dx dv = e* dx
Let: u=tan tx v=x
d ! d d d
u= x v =dx
1+ x2
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Chapter 5 Techniques of Integration
Integration by Parts - Tabular Method

If the use of Integration by Parts results in another integral that must be solved using
integration by parts, the Tabular Method can be used to simplify repeating the process and
save time. This method is particularly useful when one of the terms of the integrand is a
polynomial.

Description of the Method
Create a table like the one below, starting with the u- and dv-substitutions to be used in the
initial integration by parts. Start the dv-column one line higher than the u-column.
e Inthe u-column, take consecutive derivatives until the derivative equals zero.
e Inthe dv-column, take consecutive integrals until the derivative column equals zero.
e In the sign column, begin with a + sign and alternate + and - signs.

e Multiply the sign and the expressions in the u- and dv columns to obtain each term of
the solution.

o Add all of the terms obtained as described above to obtain the complete solution.

Example 5.13: Tabular Method to determine [ x° sin 2x dx

Terms Sign u,du, d*u ... dv,v,fv,ffv,...

dv sin 2x dx

u,v i
du,fv take 2 take
consecutive consecutive
dzu, ffv derivatives integrals
1
d3u, fffv l l
16

Solution:

_ 1 1 1 1
fx3 sin 2x dx = (x3) (—Ecos Zx) — (3x2?) (—Zsm 2x> + (6x) <§ cos 2x> -6 (E sin 2x> +C

L e cos 2 4 3 cin2x 4 2% cos 2% — Ssin 2 4 C
= ZX COS 42X 4Slnx 4C05x 8Slnx
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Trigonometric Substitution

Certain integrands are best handled with a trigonometric substitution. Three common forms
are shown in the table below:

Integral Contains this Form Try this Substitution
[x2+ a2 or a2+ x2 x =atanf
[x2 — g2 X =asecl

a2 — x2 x=asinf or x=acosf

Why are these helpful? Quite simply because they eliminate what is often the most difficult
part of the problem — the square root sign. Let’s look at each of the substitutions in the table.

e Using the substitution x = atan @, we have:

\/x2 +a?= \/(atanB)z +a? = \/az (tan?6 + 1) = \/a2 sec? 6 = asecl
e Using the substitution x = a sec, we have:

Vx? —a? =\/(asect9)2 —a? =\/a2 (sec?8 —1) =\/a2 tan? 0 = atan6

e Using the substitution x = asin @, we have:

Jar —x? = \/az — (asin@)? = \/az (1 —sin?0) = \/a2 cos? 6 = acosb

e Using the substitution x = a cos 8, we have:

Jaz —x2 = \/a2 —(acosh)? = \/a2 (1 —cos?0) = \/a2 sin?0 = asinf

Example 5.14:
J‘ dx
X Vx? + 16 Let: x =4tané
B 4sec?0do dx = 4sec?6do
B f4tan9 \/(4tan9)2 + 16

_J‘ 4sec?®6do
" J 4tan@ - 4secO

_1J‘sec0d9_1f 0 do
“2) e 1) "

1 1
= —Zlnlcsc9+cot9|+C =— Zln

Vx?2+16+ 4

X

+c
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Example 5.15:

1
j VxZ+ 1dx
0

Let: x =tan®, so O = tan ' x

Techniques of Integration

and dx = sec?6d6f

s
Then the limits of integration become: & = tan ' 0 =0 and # =tan '1 = "

1 E b4 3
4 4 4
j \/x2+1dx=f Jtan20 + 1 - sec’6do =f \/sec2 @ - sec26d0=J sec3 6 do
0 0 0 0

We need integration by parts to integrate (sec® 6 d@).

T T T Let:
4 Z 4 2
f sec30df = sechtanb —f sec O tan” 6 d6 u = secf v = tan 6
0 0 du =secOtan8dl dv = sec’0db
m T n
4 Z 4 2
j sec3 6 df = secHtan 6 0 —f sec@ (sec” 6 — 1)d6
0 0
m n on s
2 v D 7
.f sec36df = secHtan 6 O—f sec 9d9+f secddo
0 0 0

Next, notice that (foz sec3 6 d9> is on both sides of the equation. So, add it to both sides:

T

4
Z.f sec36df = secHtan 6
0

V[

4
2[ sec3 6 dO = secHtan 6
0

T
4

2f sec39d9=(
0

),
),

Finally, divide both sides by 2:

1 T
f Vxz +1dx
0

4
f sec3
0

NE

NE

Version 5.6

. Otan0
secztanz — sec U tan
sec0df =(vV2-1-1-0)+[In(vV2+1) —In(1+0) |

sec30df =2 +1In(V2 + 1)

s

T
4+f secHdo
0

T
4
0

(WS

+ In|sec 8 + tan 8|

T )+(1n|sec%+tan%| —1n|sec0+tan0|)

L3 S

08

(e S

62

V2+In(v2 +1)
2

0do = ~ 1.14779
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Gamma Function

The Gamma Function is defined by the following definite integral:

F'(x) = joo(tx_le_t) dt
0

In this context, x is a constant and t is the variable in the integrand. Using integration by parts:

'x+1) = f (t*e Y dt Let: u=t¢t" v=—et
0 du=xt*¥1dt dv=etdt
0 [ee]
= —t¥et | —f (=x t* e ) dt
0 0
= [tlim (—t¥e b — 0] + xf (t*le t) dt
—00 0
= [0] + x I'(x)
So, we obtain one of the key properties of the Gamma Function:
Frx+1)=xT(x)
Next, let’'s compute: ['(1) = fooo(e‘f) dt
o oo
r(1) = f (e™)dt = —e™t| "= =(0-1)
0 0
rly =1
Now for something especially cool. Based on these two results, we have the following:
ra =1
re)y=1-r1))=1-1=1 = 1!
r) =2-r2)=2-1=2=2!
r4) =3-Ir3) =3-2=6 = 3!
I'B) =4-T(4) = 4-6 = 24 = 4!
Fx+1) = x!
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Using the Gamma Function to Solve a Definite Integral

Example 5.16:
(o]
f e~ dx The following properties of the Gamma
0 Function are of particular interest:
. .3 _ 1 _1 -2
let: t = x%, so x =t /3, dx = 3¢ /3 dt e I'(x+1)=x! forinteger values

of x

e I'(x+1)=x-T(x) forvalues of

The limits of integration do not change.

Then:
en x where I'(x) exists
«© *© 1 _
—-x3 _ -t .= 4+72/ 1\ _
Le dx—j0 et gt 3dt . F(Z) Vi
T
1 (o e I'(x) T1—x)= —— for
_ _f £ ot e sin (1x)
3Jy {0 <x<1}
e TI'(x)+# 0 foranyvalueof x
Compare this to the Gamma Function: o T'(x) does not exist for x = 0, nor

for negative integer values of x.

I'(x) =f t*letdt
0
1
If: x = 3 we get:

f e dx = lf t 3o tdt = lf t(3=1) o=t e
0 3 0 3 0

= 1F(1) = l"(4) 0.89298
~ 33/ \3 '
Some values of I'(x): _=
1 SRR [ T I A |
rw=0 r(3)=va AR Vi
| | [ AV | I'-.I 4
3 \/E [ { I | T \ i P
=1 r3)=7 )
M4 I JZ I | 2 4 %
5 3Vm ! ! |7~ I I
=2 ()= mEA
| 1l |1 i |
7\ _15Vm | L A
F(4)_6 F<§>_T | 1 I bl

Graph from: mathworld.wolfram.com/GammaFunction.html

1
F(g) ~ 2.67894

Note: There are a number of online Gamma Function calculators that provide values of I'(x).
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Beta Function

The Beta Function is defined by the following equivalent definite integrals:

1

B(x,y) = f t*"1 (1 —¢) dt

0

[} tx—l
B = | e

Relation between Beta and Gamma Function

B(x,y) = B(y,x) That is, the Beta function is symmetric.

Ty -DIy-1!
T Tx+y) (x+y-1D!

<+——— Very useful!

B(x,y)

Note: mathworld.wolfram.com/BetaFunction.html lists many other properties of the Beta
Function.

Example 5.17:

rGr7) 4-6 1
r(s+7) 11! 2310

jlt‘* (1—1t)°dt =B(5,7) =

Trigonometric Form

Rewrite the Beta Function integral with dummy variable u instead of t.

1

B(x,y) = f u* (1 —uw)? ldu
0

T
Substitute: 1 = sin’t, so du = 2sintcost dt, u|é = tl éz to get:

T[

/2
B(x,y) = 2f sin?*71(t) cos?’"1(t)dt =~ «——— Very useful!
0
Example 5.18:

1 rGre)  4-20 1
2 T(5+3) 2-7' 210

/2 1
f sin?(t) cos®(t) dt = > B(5,3) =
0

Note, in this example: 2x —1 =9, so x =5, and 2y —1 =5, so y = 3.
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vtan x

Example 5.19: Find the value of: J b lx
0

3 L
(cosx + sin x)?

f”/z Vtanx f”/z Vtanx ;
X = x
o (cosx + sinx)? o (cos?x)(1+ tanx)?
T/ o
Let: t =tanx, so dt =sec’x = dx, x = t|
cos? x 0 0

dx = —dt
(cosx + sinx)? * o (1+1)?

fn/Z vtan x o ¢l
0

This integral is now in the second Beta Function form shown above:

B oo tx—l p 1_1 - _3 -
B(X;Y)—J;)Wt,x— —E,x+y_2 = X_E'y_

jn/z Vtan x P J“’o t(3/2_1)
0 0

(cosx +sinx)2 "~ (1 + t)(/2+"2) at

2°2

0T

e 1>_F(§)F(%)_@-ﬁ_g

2
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Chapter 5 Techniques of Integration

Impossible Integrals

Some expressions are impossible to integrate using elementary methods. Examples are
provided below.

Error Function

2 This integral may be encountered in exercises related to the normal probability
f e dx distribution. It is important enough that tables of value associated with its
definite integral form have been developed.

X
erf(x) :f et dt

0

Other Functions with Tables of Values

A number of other integrals are important enough to have tables of values developed for them:

Function Name Indefinite Form Definite Form
I 1 1
Logarithmic Integral —dx li(x) =f —dt
Inx o Int
sin x * si
Sine Integral j dx Si(x) =f Lntdt
x o t
Ccos x «©
Cosine Integral f dx Ci(x) = —f &Stdt
X t
X
e™* o] e—t
Exponential Integral f_dx Ei(x) = _j —dt
X t
-X

Other Impossible Integrals

jsin (%) dx, Jcos G) dx, ftan (%) dx, jsin(\/}) dx, j\/}sinxdx, fsin(xz) dx

je(xz)dx, je(l/x)dx, je—dx, Jln(lnx) dx, jln(sinx) dx, jidx
X In x

Many more functions that cannot be integrated using elementary methods can be found at:

https://owlcation.com/stem/List-of-Functions-You-Cannot-Integrate-No-Antiderivatives
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Chapter 6 Hyperbolic Functions

Hyperbolic Functions

Definitions
eX —e X X _ X
sinh x = T tanh x = m sechx = m
e*+e* e*+e* 2
coshx = T cothx = W cschx = m

Geometric Representation

[
h

The illustration at right provides a geometric | X =cosh(z)

representation of a value "z" and its hyperbolic
area inside |

function values relative to the unit hyperbola. the nose

y = sinh(z)
cone =% N,

The hyperbolic cosine "y = cosh(x)", is the equation |-
of the Catenary, the shape of hanging chain that is
supported at both ends.

Many of the properties of hyperbolic functions bear a
striking resemblance to the corresponding properties

of trigonometric functions (see next page).

Graphs of Hyperbolic Functions

f(x) = cosh(x) h(x) = coth(x)

h(x) = tanh(x) f(x) = sech(x)

i;g{x) = csch(x)
g(x) = sinh(x)
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Chapter 6

Hyperbolic Functions

Hyperbolic Function Identities

Comparison of Trigonometric and Hyperbolic Identities

Hyperbolic Function Identity

Trigonometric Function Identity

sinh(—x) = —sinhx

sin(—x) = —sinx

cosh(—x) = coshx

cos(—x) = cosx

tanh(—x) = —tanhx

tan(—x) = —tanx

cosh? x —sinh?x =1

sin®x + cos?x =1

sech’?x = 1 —tanh?x

sec’x =1+ tan®x

csch? x = coth?x — 1

csc?x =1+ cot?®x

sinh(x + y) = sinhx coshy + coshx s

inhy

sin(x + y) = sinx cosy + cosx siny

sinh(x — y) = sinhx coshy —coshxs

inhy

sin(x —y) = sinxcosy —cosxsiny

sinh 2x = 2 sinh x cosh x

sin2x = 2 sinx cos x

cosh(x + y) = coshx coshy + sinh x sinh y

cos(x +y) = cosxcosy —sinxsiny

cosh(x — y) = cosh x coshy —sinh x sinh y

cos(x —y) = cosxcosy + sinxsiny

cosh 2x = cosh? x + sinh? x

cos 2x = cos® x — sin? x

tanh x + tanh y

tanx + tany

tanh(x +y) = tan(x +y) =
anh(x +y) 1 + tanh x tanh y x+y) 1—tanxtany
tanh x — tanh y tanx —tany
tanh(x —y) = tan(x —y) =
anh(x —y) 1 —tanhx tanhy x=y) 1+ tanxtany
_ —1 + cosh 2x . 1 — cos 2x
sinh?x = ———— sin® x = ———
2 2
1 + cosh 2x 5 1+ cos 2x
cosh?x = ——— CoOs* X = ——
2 2
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Chapter 6 Hyperbolic Functions

Hyperbolic Function Identities

Relationship between Trigonometric and Hyperbolic Functions

sinh x = —isin(ix)
From these two relationships, the other four may be determined.
cosh x = cos(ix)

tanh sinh x  tan(ix)
anhx = = —jtan(ix
cosh x
th coshx (ix)
cothx = = i cot(ix
sinh x
sechx = = sec(ix
cosh x (x)
cschx = = icsc(ix
sinh x ()

Series Expansions

Appendix G provides series expansions for the trigonometric functions sin x and cos x. Those
are repeated here, along with the series expansions for the corresponding hyperbolic functions
sinh x and cosh x.

. x3 x® x7 X2yt 6

smx—x—§+§—ﬁ+--- COSX—1—§+Z—E+“'
x3 x> X7 x2  x* x6

SlnhX:X—F?‘}—;—*—W‘}— COth:1+?+E+E+

It is possible to develop series expansions for the other four hyperbolic functions, but they
involve the more esoteric Bernoulli numbers and Euler numbers. Instead, the student may wish
to develop values for the other four hyperbolic functions from the expansions of sinh x and

cosh x.
.X'3 x5 X7
sinhx X+oy++t—r+
Example 6.1: tanhx = = R T
coshx X2, X, x
Tt tatet
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Chapter 6

Hyperbolic Functions

Inverse Hyperbolic Functions

Logarithmic Forms of Inverse Hyperbolic Functions

Principal Values

sinh™'x =In (x +/x%2 + 1)
cosh™'x = In (x ++/x2 — 1)

1 1+x
tanh~1x =5 ln( )

1—x
1 1 x+1
coth ™ x = tanh~! (—)z—ln( )
X 2 x—1
) ! 1+V1—x2
sech™ x = cosh 1(;) =In —

1 1 V14 x2
csch ™l x = sinh™? <;) =In <— + )

x | x|

Graphs of Inverse Hyperbolic Functions

Function Function
Domain Range
(—o0,00) (—00,00)

[1,c0) [0, )
(-1,1) (~90, )
(—%0,~1) U (1, ) (—90, )
©,1] [0, o)
(—o0,00) (—00,0)

f(x) = sinh'l(x)z:

| 8(x) = sech™(x)

f(x) = cosh’l(x)

2l

f(x) = tanh{x)-

| 8(x) = eschi(x)

+g(x)=fcoth™(x) 5
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Chapter 6 Hyperbolic Functions

Graphs of Hyperbolic Functions and Their Inverses

f(x) = sinh(x)

2+ 24

g(x) = sinh™(x) f(x) = csch(x)

ig(x) = csch'(x)

f(x) = cosh(x)
| 8(x) = sech*(x)

g(x)=—cosh{x) / f(x) =sech(x)

-z 2
4 +
- -

g(x) = coth(x)

f(x) = tanh(x)

f(x) = coth(x)
g(x) = tanh}(x)
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Chapter 6 Hyperbolic Functions

Derivatives of Hyperbolic Functions and Their Inverses

Hyperbolic Functions

) ) du
asmhx = coshx asmhu = coshu Ix
d hy = sinh d hy = sinh du
I cosh x = sinhx I coshu = sinhu I
du
_— = 2 B = 2 - —_—
I tanh x = sech“x I tanhu = sech“u I
du
_ = — 2 _ —— 200 o
I cothx cschéx I cothu cschu I
du
—sechx = —sechx tanhx —sechu = —sechu tanhu - —
dx dx dx
d d du
—cschx = — csch x coth x —cschu = —cschucothu - —
dx dx dx
Inverse Hyperbolic Functions
d 1 d 1 du
—sinh™1x = —sinh 1y = - —
dx xZ+1 dx uz+1 dx
d b1y — 1 d b1y — 1 du
I cos X = — I cos u= ——7 dx
canh-1x = 1 d canh-1y = 1 du
d an x_l—x2 dx an u_l—uz dx
—coth™ x = it S du
d €0 x_l—xz dxco u_l—u2 dx
hot oy = -1 d holy — -1 . du
d—sec x—x 0 asec u——u — Tx
d p-1 -1 d p-t -1 du
— CSC X =————— —CSC u=——memesr —
d |x| V1 + x? d lul VI+u? dx
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Chapter 6

Hyperbolic Functions

Integrals of Hyperbolic Functions and Their Inverses

Hyperbolic Functions Be careful with these integrals. A couple of

fsinhu du = coshu

them have inverse trigonometric functions in
the formulas. These are highlighted in blue.

f coshudu = sinhu

ftanhu du = In(coshu) f sech? udu = tanhu

f cothu dx = In|sinh u| f csch? udu = —cothu

fsechudu = 2tan"1(e%) fsechutanhudu = —sechu
u

f cschudu =1In |tar1h (E)| f cschu cothu du = —cothu

Inverse Hyperbolic Functions
f sinh™*udu = usinh™tu —\u?2+1
f coshtudu=ucosh™tu+Ju2-1
1
f tanh™'udu = utanh ™t u + > In(1 — u?)
1
f coth™ludu =ucoth™tu + P In(u? — 1)

f sech™*udu =usech™tu+sin"tu

f csch™*udu =ucsch™*u+sinh™*u if u>0

=wucsch™tu—sinh™'u if u<0
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Chapter 6 Hyperbolic Functions

Other Integrals Relating to Hyperbolic Functions

1 X 1
———— dx =sinh™1— f—dlen x ++/x2+ a?
| a N ( )
1 X 1
———dx = h-1-— f—d =] \Vx2 —a?
f—xz—az X = COS " S x n|x+ x a|
1
f—dx| = —tanh™!
a? — x2 a>x a a 1 1 a+x
R SO IR
1 1 X az — x2 2a la—x
f— dx| =—coth™1—
a? — x2 x>a a a
1 1 _, Ixl 1 1 a+va? — x2
——— dx =——sech ™ — f—dx=——ln _
xva? — x2 a a xVa? — x2 a | x|
1 1 _, Ixl 1 1 a+va? + x?
————dx =——csch ™ — f—du=——ln _—
xvVa? + x2 a a x Va2 + x2 a | x|

Note: The results above are shown without their constant term (+C). When more than one
result is shown, the results may differ by a constant, meaning that the constants in the formulas
may be different.

Example 6.2: From the first row above:

x
dx:sinh_la—FCl an =ln(x+ x2+a2)+C2

1 1
S T S—
f x% + a? x% + a?
From earlier in this chapter, we know that the logarithmic form of sinh™! x is:
sinh™'x =1In (x + v x2 + 1)

Then:

1 _ X X X\ 2
f—dx:smh_l——FCl:ln -+ (—) +1|+C
a a

Zra a
x +Vx? + a?
=In{———|+(C; =ln(x+ x2+a2)—lna+C1
a
So we see that €, = —Ina + C; and so the formulas both work, but have different constant
terms.
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Chapter 7 Definite Integrals

Definite Integrals as Riemann Sums

Riemann Sum

A Riemann Sum is the sum of the areas of a set of rectangles that can be used to approximate
the area under the curve over a closed interval.

Note: the term “under the curve” is generally used to refer to the area between a curve and the
x-axis. Some of this area may not be strictly under the curve if the curve is below the x-axis.

Consider a closed interval [a, b] on x that is partitioned into n sub-intervals of lengths
Axy, Ax,, Axs;, ... Ax,. Letx; be any value of x on the i-th sub-interval. Then, the Riemann
Sum is given by:

5= if(x:) b,
i=1

A graphical representation of a Riemann sum
on the interval [2, 5] is provided at right.

Note that the area under the curve from
x=atox=»>bis:

max Ax; =0

lim Zn:f(xlf*)-Axi = fbf(x) dx
i=1 a

The largest Ax; is called the mesh size of the partition. A typical Riemann Sum is developed
with all Ax; the same (i.e., constant mesh size), but this is not required. The resulting definite

integral, f: f(x) dx is called the Riemann Integral of f(x) on the interval [a, b].

With constant mesh size, the Riemann Integral of f(x) on the interval [a, b] can be expressed:
n b
lim Zf(x;) Ax = j FOx) dax

where,

interval length
Ax = . .
number of subintervals
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Chapter 7 Definite Integrals

Methods for Calculating Riemann Sums

Riemann Sums are often calculated using equal sub-intervals over the interval specified. Below
are examples of 4 commonly used approaches. Although some methods provide better
answers than others under various conditions, the limits under each method as max Ax; — 0
are the same, and are equal to the integral they are intended to approximate.

8
Example 7.1: Given: f(x) = Iz (X2 - X)dx. Using n =3, estimate the area under the curve.

Ax = 83;2 = 2. The three intervals in question are: [2,4], [4, 6],[6,8]. Then,

A= if(xi) - Ax; = Ax 'if(xi)
i=1 i=1

Left-Endpoint Rectangles (use rectangles with left endpoints on the curve)

L=2-[f2)+f(4)+f(6)]=2-(2+ 12+ 30) = 88 units?

Right-Endpoint Rectangles (use rectangles with right endpoints on the curve)

R=2-[f(4)+f(6)+f(B)]=2-(12+ 30+ 56) = 196 units?

Trapezoid Rule (use trapezoids with all endpoints on the curve) Note: the actual value of

the area under the curve is:
L+R _ 88+196

2 2

T = = 142 units?

8
J. (x? —x)dx = 138
2

Midpoint Rule (use rectangles with midpoints on the curve)

M=2-[f3)+f(5) + f(7)] =2 (6 + 20 + 42) = 136 units?

.+ Left-Endpoint “ Right-Endpoint i Trapezoid ! Midpoint
g Method ! Method I Method 3 Method
=0 =] ] 3

f(x) = (- ) 4 =08 %) i M09=0¢ %) L =(¢0x)
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Chapter 7 Definite Integrals
Riemann Sums of Tables Using the TI-84

Consider the following problem:

Use a right Riemann Sum to approximate the area under the curve on the interval [2,13].

X 2 4 5.5 8 9.2 10.3 11.8 13
£(x) 4 -1 -2 1 5 11 13 9

There are eight columns and, therefore, seven intervals in the table. The formula for the
required Riemann Sum, then, is:

7
A=) f(x;) - Ax;
2

where the Ax; are the widths of the intervals and the f(x;) are the values of the function at
the right side of each interval (because we are calculating a right Riemann Sum).

The student can calculate this directly as:
A=(-1(4-2)+(-2)(55—4) + 1(8 —.5.5) + 5(9.2 — 8) + 11(10.3 — 9.2) + 13(11.8 — 10.3) + 9(13 — 11.8) = 45.9
Alternatively, the student can use the TI-84 calculator as follows:
Step 1: STAT — EDIT = L1 — enter the values of Ax; in the column for L1.
Step 2: STAT — EDIT — L2 — enter the appropriate values of f(x;) in the column for L2.
Step 3: 2ND — QUIT - this will take you back to the TI-84’s home screen.

Step 3: L1 x L2 STO> L3 — this will put the product of columns L1 and L2 in column L3.
Note that L3 will contain the areas of each of the rectangles in the Riemann Sum.

Step 4: 2ND — LIST — MATH - SUM( — L3 — this will add the values in column L3, giving the
value of A, which, for this problem, matches the sum of 45.9 shown above.

Note: entering L1, L2 or L3 requires use of the 2ND key.

The student can review the contents of the lists L1, L2, and L3 using

'
[N

STAT — EDIT. For this problem, the display will look something like
the image at right. The advantages of this are:

s )
LSRNl SR R, |

» It allows the student to check their work quickly. | Zl_ | |20

> If the student is asked for some other kind of Riemann Sum, a

be={-2, -3,2.5.,6,12,.1,19.5,1

portion of the required input is already in the TI-84.

Each student should use whichever method of calculating Riemann Sums works best for them.
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Chapter 7

Definite Integrals

Riemann Integrals with Constant Mesh Size

With constant mesh size, the Riemann Integral of f(x) on the interval [a, b] can be expressed:
n b
lim Ef(xg*) Ax = f FOo)dx
n—oo
i=1 a

where,

interval length
Ax =

number of intervals

A formula for a right-endpoint Riemann Sum with n sub-intervals, then, can be developed
using:

x; = right endpoint = left endpoint +i-Ax, i =

4
Example 7.2: Provide the exact value of f x% dx by expressing it as the limit of a Riemann sum.
2

Start with the definition of a Riemann Sum with constant mesh size (see above):
b n
f FOO)dx = lim z £l - Ax
n—oo
a i=1

Using n sub-intervals and a right-endpoint Riemann Sum,

4—-2 2
Ax = =—
n n
yi=2+i()=2+%, i=12,.,n
(x}) = <2+2i>_<2+21>2_4 8i 4i?
fxi)=f e o) = T3
So,
* 2i\*] /2 8i 4i?\ /2
fxzdx = lim (2 —) (—) = llmz 4+ —+— (_)
2 n—oo n n n—-oo n n n
i=1 i=1
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Definite Integrals

Riemann Sum Methods - Over- or Under-Estimates

Left and Right Endpoint Methods

Over- or Under-estimates for the Left and Right Endpoint Methods depend on whether a
function is increasing or decreasing over the interval used.

Increasing
Method Over- c.>r Under-
Estimate
Left Endpoint Under
Right Endpoint Over

Decreasing
Method Over- c.>r Under-
Estimate
Left Endpoint Over
Right Endpoint Under

Midpoint and Trapezoid Methods

Over- or Under-estimates for the Midpoint and Trapezoidal Methods depend on whether a
function is concave up or concave down over the interval used.

Concave Up
Method Over- t?r Under-
Estimate
Midpoint Under
Trapezoidal Over

Version 5.6

Concave Down

Over- or Under-
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Chapter 7 Definite Integrals

Rules of Definite Integration

First Fundamental Theorem of Calculus

If f(x) is a continuous function on [a, b], and F(x) is any antiderivative of f(x), then

b
[ fedx = F@) - F@

Second Fundamental Theorem of Calculus

If f(x) is a continuous function on [a, b], then for every x € [a, b]

d (* g =
& | r@de=fe

Chain Rule of Definite Integration

If f(x) is a continuous function on [a, b], then for every x € [a, b]

d 9™ d
— | f®d=7(gt) - g

a

Mean Value Theorem for Integrals

If f(x) is a continuous function on [a, b], then there is a value ¢ € [a, b], such that

b
j fG)dx=(b—a) f(0)

The value f(c) is called the Average Value of the function f(x) on the interval [a, b]. A
formula for the average value is:

1 b
Average Value = —— f f(x)dx
b—al,
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Definite Integrals

Average Rate of Change vs. Average Value

Average Rate of Change

Average Value

Math Level

Algebra 1

Integral Calculus

Requirement

f(x) is continuous on [a, b]

f(x) is continuous on [a, b]

Description Slope of the secant line Height of the rectangle with
connecting the endpoints of area equal to the area under
the curve on the interval [a, b] | the curve on the interval [a, b]
Formula b) — f(a 1 (b
b—a b—a a
lllustration Average rate of change of Average value of

flx) = %xz over the interval
1,5].

1.v2 1,52
rAC €Y _
5-1 B

flx) = ﬁxz on the interval
1,5].

1 f(l 2>d =1.722
51/, 6x x =1

24
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Chapter 7 Definite Integrals

Properties of Definite Integrals

Same Upper and Lower Limits

a
f F(x)dx =0 If the upper and lower limits of the integral
a are the same, its value is zero.

Reversed Limits

Reversing the limits of an integral negates

a b
_[ fQ)dx = —f f(x) dx its value.
b a

Multiplication by a Scalar

b b The integral of the product of a scalar
f kf(x)dx = k- f f(x) dx and a function is the product of the
a a scalar and the integral of the function.

Telescoping Limits

b . b The integral over the interval [a, b] is equal to
f f(x)dx = f f(x)dx + f f(x) dx the integral over the interval [a, c], plus the
a a c integral over the interval [c, b].

Sum or Difference

The integral of a sum (or difference) of

b b b functions is the sum (or difference) of
f [f(x)+g(x)]dx = J f(x)dx + f g(x) dx the integrals of the functions.
a a a

Linear Combination

The integral of a linear
combination of functions is
the linear combination of the
integrals of the functions.

b

b b
j [k-f(x)+m-g(x)]dx=k-f f(x)dx+m-fg(x)dx

Version 5.6 Page 94 of 242 April 8, 2023



Chapter 7 Definite Integrals

Solving Definite Integrals with Directed Line Segments

A common problem in elementary Calculus is to use the values of definite integrals of a given
function f(x) over two or more intervals to obtain the value of a definite integral of f(x) over
a related interval. The illustration below shows how directed line segments can be used to
simplify the calculations required for this kind of problem.

Example 7.3: Given that f_83 3f(x)dx = 84 and ff 5f(x) dx = =75, find f_43f(x) dx.

Step 1: Remove any scalar multipliers by dividing the values given by the scalar multipliers.
Divide: f_83 3f(x)dx = 84 by 3 toget f_83f(x) dx = 28.

Divide: [, 5f(x) dx = —75 by 5 toget [, f(x)dx = —15.

Step 2: Draw directed line segments for each of the definite integrals in the problem. Label
each segment with its magnitude. The starting

8 28 ~—
and ending points of each segment reflect the [ /()dx i

: ;
limits in the integral. Known values are shown s f(xdx ¥

1 : : -~
in blue and the target value is in green. L;(xax -

| | | | | | | | | | i | | | |

Notice that the first segment stretches over ” E. . s’ 8

the interval [—3, 8] and has magnitude 28, reflecting f_83f(x) dx = 28. The other segments

are constructed similarly. We want to find the magnitude of the third (green) segment.

We could subtract the second segment from the first to obtain the solution segment. Its

magnitude would be: f_43f(x) dx = 28 — (—15) = 43. If we do this, we are done; we have

our solution. Alternatively, we could take a more fluid approach to this problem as in Step 3.

Step 3 (if desired): Reorient segments as - 28

needed so we can follow the known directed 'J‘fﬂxjdx 15 >
segments from the beginning to the end of the f‘lﬂx) i ? =

interval required for the solution (i.e., from J‘3)‘c{xm S /. o
x =-3 to x = 4). BT

If we reorient the middle segment so it is pointing to the left, the magnitude of the new second
segment becomes 15, reflecting the fact that we are moving to the left instead of to the right.

Using Calculus, this reflects the fact that f84f(x) dx = — fff(x) dx = 15. We are now able to
getto x = 4 by following the known segments in the directions shown. Then, we simply add

the magnitudes of the known segments to get our solution: f_43f(x) dx = 28 + 15 = 43.
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Chapter 7 Definite Integrals
Definite Integrals - u-Substitution

u-substitution may be used in the evaluation of definite integrals as well as indefinite integrals
(note: using u-substitution with indefinite integrals is covered in Chapter 5). The process with
definite integrals is slightly different and may even be a bit easier.

Process

Following are the steps for the general solution to a definite integral using u—substitution.

1. Seta portion of the integrand equal to a new variable, e.g., u. Look to the rest of the
integrand in deciding what to set equal to u. You will need to have du in the integrand
as well, if this technique is to find success.

Find du in terms of dx.

Rearrange the integrand so that the integral exists in terms of u instead of x.

H owo N

Perform the integration.

5. Evaluate the values of the limits of integration in terms of the new variable and
substitute these into the definite integral in terms of u.

6. Evaluate the result.
Note that by calculating the limits of integration in terms of the new variable, u, we are able to

avoid the step where we must substitute the expression for u back into the result of the
integration. This saves time and reduces the likelihood of error in the calculation.

0 2dx
Example 7.4: Evaluate: f_1(2x_1)2
O 2dx
| e wm2e-
du =2 dx
0 1
g N ce LI
x=—1 = u=-3

-1
=f u~?du
-3
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Chapter 7 Definite Integrals

Example 7.5: Evaluate: f:fsin 2x dx

/4
f sin 2x dx u=2x
o du =2 dx
1 /4
:E.f sin2x 2 dx =T,
- 4 2
1 (" X=-m = u=-2m
== sinu du
2 —[—27'[
1 ny 1 ny 1 1
2 2
== (—cosu = —Z cosu =-——0-1)=—
2( ) —-2r 2 —2r 2 ( ) 2
Example 7.6: Evaluate: fon/4 tan x sec? x dx

For trig functions other than sine and cosine, we need to make sure the denominators of the
functions are not zero within our interval. If they are zero, the function is not continuous on the
interval and so the Fundamental Theorem of Calculus does not apply.

For the current problem, we need to make sure cosx # 0 over the interval [0, ﬂ in order to use

the Fundamental Theorem of Calculus. Since cosx =0 at x = {—%,%} in this neighborhood, we
are okay to proceed.

/4 u=tanx
f tan x sec? x dx du = sec? x dx
0

1 1 1 1 1 x—Eﬁu_l
=fudu=§u2 =-(1%2-0%) == N

0 0 2 2 x=0 =2 u=0

ALTERNATIVE APPROACH: setting u = secx

u =secx

/4
tan x sec? x dx
0 du = secxtanx dx

T/4 T
= — D = 2
=f secx (secx tanx dx) YTy u=v2
0

x=0 => u=1
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Chapter 7 Definite Integrals
Definite Integrals - Special Techniques

Sometimes it is difficult or impossible to take an antiderivative of an integrand. In such cases, it
may still be possible to evaluate a definite integral, but special techniques and creativity may be
required. This section presents a few techniques that the student may find helpful.

Even and Odd Functions

The following technique can sometimes be used to solve a definite integral that has limits that are
additive inverses (i.e, —a and a).

Every function can be split into even and odd components. The even and odd components of a given
function, f(x), are:

fe) +f(=x) fO) = f(=x)

feven(x) = 2 fodd(x) = 2

Notice that:

¢ foven(X) = foven(—x), so that foyen(x) is an even function.

o foad(x) = —foqa(—x), so that f,q4(x) is an odd function.

o f(x) = feven(®) + foqa(x)

Further recall that, for an odd function with limits that are additive inverses, any negative areas “under”
the curve are exactly offset by corresponding positive areas under the curve. That is:

f_ foaa () dx = 0

Additionally, for an even function with limits that are additive inverses, the area under the curve to the
left of the y-axis is the same as the area under the curve to the right of the y-axis. That is:

j_ aafeven(x) dx = f_ 1feven(x) dx + fo afeven(x) dx = 2 fo ’ Foven () dx

Therefore, we have:

[ feax= [ e+ foaa@ 1 dx = [ fuvenGx + [ fraa) dx

And, finally, substituting from the above equations:
a a
f fx)dx = 2 f feven(x) dx
-a 0

Let’s look at an example of how this can be used to evaluate a difficult definite integral on the next page.
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Chapter 7 Definite Integrals

T

2 , coSx
Example 7.7: Evaluate j ( )dx

_m\14eX cos(x)
f(x) = .
First, define: f(x) = —— e
irst, define: f(x) = .
/ 1+e*
0.4
Notice that there are no singularities for this integral. That is, there 02
are no points between the limits (i.e., ~I<x< E) at which
2 2 1.5-10-0.5 05 1.0 1.5
f(x) does not exist. So we may proceed in a normal fashion. —0.2
Next, let’s look at the even and odd components of f(x).
o) fx)+f(—x) 1pcosx N cos(—x)
X)=———=—
feven 2 211+e* 14eX
Noting that cos(—x) = cos x, we get:
1 cosx cos X cos x 1 1 cos(x)
fevn ) = 5 T s " T e =2 [T5er 1156 fevn(¥) =75

_cosx [(1+e™)+(1+e”)
2 [(1+ex)(1+e‘x l

cosx [2+e *+e* COS X e R
= 2 [2+e—x+ex] = 2 /1.5—1.[]—[1%1 0nAs 1.0 1.5\\

The odd component of f(x) is (note: this work is not necessary to evaluate the integral):

) = f)—f(—=x) 1 [ cosx  cos(—x)

foaalx) = 2 "2 1Her Trex
_1 [COSX cos x ]_cosx[ 1 1 ] ] _cos(x)[ e™-e* ]
T2l 4ex 14exl 2 l14e* 14e* w(X) = 2 2+e*+e*
_cosx [(1+e™)—(1+e”) 10 {,’
S22 (1+e*)(1+e™) o /

1.5-1.0-0.5 05 10 1)
CoS x e * —e* —0.05
T2 l2+er+ex : -

Since the value of the odd component of the definite integral is zero, we need only evaluate the
even component of the definite integral using the formula on the previous page:

3 ™
[ () a2 ) -

Ly -
2 — ain(Z) _ o —1_0 —
0 = sm(z) sin(0) =1-0=1
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Chapter 7 Definite Integrals
Derivative of an Integral

The Second Fundamental Theorem of Calculus states that if f(x) is a continuous function on
the interval [a, b], then for every x € [a, b], %f;f(x)dx = f(x). Essentially, this is a

statement that integration and differentiation are inverses. But, there is more. If the upper
limit is a function of x, say u(x), then we must apply the chain rule to get:

du

d u
) r@ae = rao- g

Note that a is a constant and u is a function in x. Also note that the value of the constant a is
irrelevant in this expression, as long as f (x) is continuous on the required interval.

If both of the limits in the integral are functions of x, we can take advantage of a property of
definite integrals to develop a solution. Let u and v both be functions in x, and let a be an
arbitrary constant in the interval where f(x) is continuous. Then,

d u d u d v
— t)dt = — t)dt — — t)dt
) fwae = | roa - 2] o
So,
d J‘“ Odt = F@) du dv
dxvf = Jlu dx f@) dx
Example 7.8:
3sin2x
Tx t?dt = (3sin2x)?-(6cos2x) = 54 sin?2x cos2x
a
Example 7.9:

d tanx 5 .

d—f etdt = [e™"% -sec?x] — [e* -2x] = e *sec?x — 2xe*
X J, 2
X
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Area Under a Curve

The area under a curve can be calculated directly by integrating the curve over the desired
interval. Note the following:

e The area “under” a curve is actually the area between the axis and the curve. In this
sense, the word “under” may be a bit of a misnomer.

e The area under a curve may be positive (if above the x-axis) or negative (if below the
X-axis).

Example 8.1: Find the area under the curve y = t/3 — 2 on the
interval [—1,1].

jl (tl/a - 2) dt = (%t4/3 - Zt) |_11

-1
()2 -

5 11

4 4

s

Example 8.2: Find the area under the curve y = 4sec tan @ on the interval [—g ;].

e /3
j (4 secO tanB) df = (4 secH) - . N
-T/3 — /3 Negative Positive

Area Area
_( 4 ) /3
~ \cos®

(A - [ \
_T 1
3\ 7 .
Note: this interesting result means that the negative area
under the curve of f(0) = 4sec@ tan 6 on the interval

4
1
2

o34
-

[— %, 0] is exactly offset exactly by the positive area above

the curve on the interval [O, g]
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Chapter 8 Applications of Integration

Area Between Curves

The area between two curves is the difference of the areas under the curves. It is always
positive, so if the curves switch position in terms of which one is superior (on top or to the
right), the integration must take that into account.

Example 8.3: Find the area of the region is bounded by the y-axis and the curves y = sin x and
y = cosx (i.e., inside the green lines in the illustration).

First, we must find the point of intersection in Quadrant 1. y = sin(x)
T /1"
sinx =cosx at x= o so our interval of integration is [O, %]
Next, consider which curve is superior to the other (i.e., which one is = X =
higher if the form of the equations is y = f(x), or more to the right if 1 ?\
the form of the equations is x = g(y)). The other curve is inferior. The Ll y=cos(x)

inferior curve is subtracted from the superior curve in the integrand.
On the interval [0, ﬂ, y = cos x is the higher of the two curves.

Finally, calculate the area by integrating the difference between the curves.

T
/4 = (sinz+ cosz) — (sin0 + cos 0)

s
/a
A= — si dx = (si
jo (cosx — sinx) dx = (sinx + cos x) 0 2 2

=<g+g>—(o+1) =+V2-1

Example 8.4: Find the area of the region between y = e”* and
y = x? — 1 ontheinterval [—1, 1] (i.e., inside the green lines in
the illustration).

On the interval [—1, 1], the highest curveis y = e*.

Calculate the area by integrating the difference between the curves.

fl[ex—(xz—1)]dx=f1(ex—x2+1)dx
-1

-1

1 1
= (ex —=x3 +x>
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Chapter 8 Applications of Integration

Area in Polar Form

Area in Polar Form is given by:

b
f r2de
a

N =

Let: r = f(60) Then, A =

Why?

The diagram at right illustrates the reason that we use the above formula
for area. The integral adds all of the slices (see the color slices in the
diagram) inside the curve in question. Each slice is a sector of a circle

with radius r and angle d@ (an infinitesimally small angle). The area of a

r* = 4sin(20)

ao
single slice, then, is Py times the area of the circle containing it. That is:

o, 1,
Aslicezﬁ-nr :ET dao

Integrating this over the desired interval of 8 results in the above formula for area.

Example 8.5: Find the area in the first quadrant inside the lemniscate 7 = 4 sin 260 shown in
the above diagram.

First, we need to determine the limits of integration. Consider that the loop in Quadrant 1
begins and ends at locations where r = 0. So, we need to find two values of the variable 8
that make r = 0. We do this by setting v = 0 in the equation of the lemniscate.

0% = 4sin 26, which occurs when sin 26 = 0, which occurs at 6 = {O,S,H,%n, }
For our limits of integration, we will use 0 and g because these two values define the loop in

Quadrant 1. We can check this by evaluating r for a value in the interval [O, g] and making

sure the resulting point is in Quadrant 1. Let’s find r when 6 = %.

T

9=g = r2=4sin(2-z)=4-1=4 = r = 2 (in Quadrant 1)

The area of the lemniscate above in Quadrant 1, then, is calculated as:

™/

1 (b 1 (" 2 7T/2
A= —f r2df = —f (4sin26)d@ =.[ 2sin26 df = — cos 26 = 2
2 ), 2 ), 0

0
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Example 8.6: Calculate the area of the general lemniscate of the form 72 = a? sin 26.

Note that the area of the entire lemniscate is double that of the loop in Quadrant 1. Then,

1 (P /2 /2 1 T/
A=2(= f r2df | = f (a?sin20)d = azf sin26 df = —=a%cos 26 = a?
2 ), 0 0 2 0

Example 8.7: Find the area within the inner loop of the limagon r = 1 + 2 cos 6.

First, we need to determine the limits of integration. Consider that
the loop begins and ends at locations where r = 0. So, we need
to find the values of the variable 8 that make r = 0 and define
the inner loop. We do this by setting r = 0 in the equation of the

lemniscate.

r=1+2cos(8)

0 =1+ 2cosf, which occurs when cosf = —%, which

27T AT
occurs at 8 = {?,?}

Next, we need to make sure that the inner loop is defined as 8 progresses from 2?77: to 4?”. We

can do this by evaluating r for a value of 6 in the interval [2?”,4?”] and making sure the resulting

point is on the inner loop. Let’s find r when 6 = m.
0=m = r=14+2cosm=-1

We check the polar point (—1,7) on the curve and note that it is on the inner loop.

21 41[}

Therefore, our limits of integration are the values 6 = {?,? .

The area of the inner loop of the limagon r = 1 + 2 cos 8, then, is calculated as:

4-1'[/ 47‘[/

1 (P 1 3 1 3
Az—f r2d9=—f (14+2cos0)?do = —f (1+4cosB +4cos?0) db
2 a 2 27'[/3 2 27'[/3

1 /s 1+ cos 260 M 3
=—f <1+4c059+4-—) dao =f <—+2c059+c0529) daeo
2n/3 2 2n/3 2

4n/3 ~ 3v3

3 . 1
=§0+251n9 +§sm29 271'/3 =T — >
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Areas of Limag¢ons

Limacons that have both inner and outer loops present a challenge when calculating area. The
general form of a limacgon is:

r=a+bcosf or r=a+bsinf

When |a| < |b|, the limagon has an inner loop that covers part of its outer loop, so we must
be careful calculating areas in this kind of limagon.

Example 8.8: Find the area between the loops (i.e., inside the outer loop but outside the inner
loop) of the limagon: r =1 — 2siné.

First, we need to find where r = 1 — 2sin 6 = 0 so we can identify the starting and ending 8-
values for the inner loop. After finding these values to be 6 = %,5?”, we can look at the curve

over various intervals on [0,27] and calculate the areas associated with those intervals.

oo [0,/6] o In/6,5m/6] \E/ /isugeca)
T & start . T start T start
w1 e m+3V3-8 1
0, —]: —J (1 —2sin8)?dg = —— ~ 0.0844 :
L ' 6 2 0 4 05; [, 2m]
T end
[T 5] 5m/6 21 — 33 TR
—,—: —f (1-2sinf)?df = —— ~ 0.5435
6 61 2 /6 2
B 1r" 7+ 3V3 -8
—, 1|: —f (1-2sin6)?df = — ~ 0.0844
6 2 s7/6 4
1 (%" 37+ 8
[, 2m]: > (1-2sin6)?do = ~ 8.7124
T

The total area of the limacon, including both the outer and inner loops, is the sum of these:
2T

1
[02m]: (1-—2sin6)%2d = 37 ~ 9.4248
0
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A sketch of the complete limagon 7 = 1 — 2sin 6 is shown in Figure 1 below. Since taking the
area from 0 to 2m includes the area completely inside the outer loop plus the area inside the
inner loop, the total area can be thought of as shown in Figure 2.

This illustrates that the area within the inner loop is included in A = %fozn(l —2sin6)?do

twice, and therefore, must be subtracted twice when looking for the area between the loops.
Subtracting it once leaves all of the area inside the outer loop (Figure 3). A second subtraction
is required to obtain the area between the loops.

start / end + start / end

Figure 1 Figure 2 Figure 3
r=1-—2sin6 r=1|1—-2sin6| r=1-—2sin6
Graphed on [0, 27] Graphed on [0, 27] Graphed on [0, E] U [5_"’ Zn]
6 6

Given all of the above, let’s calculate the key areas of the limacon r =1 — 2sin0:

The total area of the limacon, including both the outer loop and the inner loop, is:

1 2T
Interval [0,27]: > (1-2sin8)?df = 3w ~ 9.4248
0

The area inside the inner loop is calculated as:

w Smp 1 (576 _ 2m — 33
Interval [—,— : —f (1-2sin6)?ds = —— ~ 0.5435
6 6 2 /6 2
The area between the loops (i.e., the solution to this example) is calculated as:

51

1 (%" 1(%6
E,f (1—25in9)2d6—2-§j;r (1-2sin6)?>dd = m+3V3 ~ 8.3377

0 —
6
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Arc Length

The arc length, L, of a curve, in its various forms, is discussed below:

Rectangular Form:

For a function of the form: y = f(x), from x = a to
x =b.

b d)/ 2
L= f 1+ <_) dx ol Arc
“ o e

For a function of the form: x = g(y), from y =c to — ; \/ :

y=d L
d dx\?
L= f 1+ (—) dy
c dy

Example 8.9: Find the length of the arc on the hyperbolic curve y = coshx =
interval [0,2].

eX+e ¥

on the x-

= sinh x:

b dyz 2 ex_e—xz
=f 1+ () dxzf 1+ (55—)
a dx 0 2

2
1
=f \/1+—(ezx—2 + e72%) dx
0 4

; . dy eX—e~
Using the above formula, and noting that — =

2 1 | | | | | | | . |
=j —(e?* +2 +e7%*) dx 1 | | R
0 % 1
2 eX 4+ e—x\2 2 joX 4 =X
fo ( 2 ) * fo 2 x
e* —e™¥|2 e?2—e? 1-1 e? —e? _
= ) 0o 5 T, = > = sinh 2
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Polar Form:

For a function of the form: r = f(60),

L= [ Jre e (& as
B A LRRAV:T:

Applications of Integration

Example 8.10: Find the length of the arc of one petal on the rose r = 2 cos 36.

To find the interval which defines one petal, we set r = 0.

0 = 2 cos 36, which occurs when cos 36 = 0, which
T T 51

occurs at 8 = {2'5'?' etc}. A little investigation reveals

T

we can define a full petal over the interval 6 € E’E]'

Next find: 2 = —6 sin 36.
do
Then, the arc length of a single petal is:

Vi

r =2 cos(30)

b dr 2 /2
L= J re + (—) do = \/(2 cos 30)? + (—65sin36)? d6
a do /e

T
/2
= V4 cos? 30 + 36sin2 30 d
V3
/6

/2
= 2 \Jcos? 36 + 9sin? 36 db
/e

s
/2
=2 \/(cos? 36 + sin? 36) + 8sin2 36 do
VA
/6

/s
=2f 1+ 8sin%30 do
/e

This expression is quite ugly but can be handled by a modern calculator. Its value is
approximately 5.341 as calculated on both the TI-84 Plus and the TI nSpire.
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Chapter 8 Applications of Integration

Parametric Form:

For a function of the form: x = (), y = g(t)

SCRCK

Example 8.11: Find the length of the arc of one petal on the rose defined by the parametric
equations x = 2cos36 cosf and y = 2cos 36 sin6.

This is the same curve defined in the example above. So we will
integrate over the same interval: 6 € EE]

dx d
To integrate in parametric form, we need 20 and ﬁ. Let’s

calculate them:

x =2 cos(30) cos(0)

dx , .
— = 2[(cos30)(—sin @) + (cos 8)(—3 sin 36)] | y=2cos(30)sin()

do

Z—}; = 2[(cos 30)(cos ) + (sinB)(—3 sin 36)]

Then,
bolrdx\*>  rdy\*
b= @) + (@)
_J\at dt

/
= : \/4[—(cos 30)(sin8) — (cos 0)(3sin30)]? + 4[(cos 36)(cos B) — (sinB) (3 sin30)]? db
A

do

_> /2 (cos?360)(sin? 0) + 6(cos ) (cos 36)(sin ) (sin 36) + 9(cos? ) (sin? 36)
B L . +(cos? 30)(cos? 8) — 6(cos B)(cos 36)(sin 8)(sin 36) + 9(sin? H)(sin? 36)

Notice in this expression that terms above and below each other can be combined to get:

/>
L=2 \/[(cosz 36)(sin? 6 + cos? B) + 9(sin? 6 + cos? B)(sin? 36)] dO
/e

/2 /2
= zf J[(cos?36) + 9(sin236)] df = zf 1+ 8sin236 do
/e /6

This is exactly the same expression that was derived on the previous page in polar form.
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Applications of Integration

Comparison of Formulas for Rectangular, Polar and Parametric Forms

Rectangular Form Polar Form Parametric Form
= = t
Form y f&) r=f(0) x=f
position = s(t) y=g(t)
xt4+yt=r? — _
Conversion N y x =1rcos6 X =rcost
tanez; y =rsinf y =rsint
b 1 (B a
Area Under Curve f f(x)dx Ef r2do f [g(t) - f'(t)] dt
a a Cc

Area Between Curves

b
f [F(x) — g(0)] dx

1 g 2 2
Ef [router - rinner] do

a

Arc Length (L)

[ md

B
f JZ T )2de

a

[ (2

Magnitude of Speed (2D)

vl =] 50|

&y @

Slope of Tangent Line dy dy _dy/d® _r'sinf+rcosf | dy dy/dt r'sint+rcost
dx dx dx/d8 r'cosf —rsinf dx dx/dt r'cost—rsint
2 (@) 4 (4)
Second Derivative @y do \dx dt \dx
dx? dx dx
do dt
. d d d
Horizontal Tangents _y=0 —y=r’sin6+rc056=0 —y=r’sint+rcost=0
dx deo dt
: y . dx , dx _
Vertical Tangents —— undefined — =1r'cos@ —rsinf =0 — =7r'cost—rsint=0
dx do dt
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Area of a Surface of Revolution

Rotation about the x-Axis

Rotation of acurve y = f(x) from x =a to x =

b ’
S=| 2rnyd S=2 1+
Lnys or nfy dx

d 2
ds= |1+ (—y> dx
dx
s is the arc length of the curve on [a, b].

If the curve is defined by parametric equations, x = f(t), y = g(t):

t=tz \/ dx\?  rdy\?
S = Zﬂf y (—) + (—) dt
. dt dt

Rotation about the y-Axis

Rotation of a curve x = g(y) from y =c to y =d.

d d dx\?
Szf 2w x ds or S=2T[f X 1+(—) dy
c c dy

d 2
ds = |1 ( )d
+dy y

s is the arc length of the curve on [c, d].

If the curve is defined by parametric equations, x = f(t), y = g(t):

t=tz dx\*  rdy\?
oo [T () ()
e A \at) T \ae
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Volumes of Solids of Revolution

Solids of Rotation about:
Revolution x-axis y-axis
. b d
sk vem| (G dx ver| (o) dy
b d
Mot | V=] [0 - (0e)] ax | v=r [ 17007 - 0O dy
d b
V=27tfyf(y)dy V=27zjf(x)dx
Cylindrical Shell ‘ ¢
Method®) or or
d b
V=27rf rf(y)dy V=27rfrf(x)dx

d b
v=2n| yGo)-gondy | V=2 | x(fe0) - gt) dx

Difference of

Shells Method)(3) or or
d b
V=27Tf r(f) —g9()dy V=2nf r(f(x) — g(x)) dx
¢ a
b d
Area Cross Section _ _
Method @ V= ]a A(x) dx V= jc A(y) dy
Notes:

1. The Washer Method is an extension of the Disk Method.

2. risthe radius of the cylindrical shell. In cases where there is a gap between the axis of
revolution and the functions being revolved, 7 is the distance between the axis of
revolution and either x or y, as appropriate.

3. The Difference of Shells Method is an extension of the Cylindrical Shell Method.

4. The function A is the area of the cross section being integrated.
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Disk and Washer Methods

The formulas for the Disk Method and Washer Method for calculating volumes of revolution
are provided above. Below, we present an approach that can be used to calculate volumes of
revolution using these methods.

Under the Disk Method, we integrate the area of the region between a curve and its axis of
revolution to obtain volume. Since each cross-section of the resulting object will be a circle, we
use the formula area = mr? as our starting point. The resulting formula is:

b d
V= nj (cross sectionradius)>dx or V= nj (cross section radius)? dy
a C

The Washer Method is simply a dual application of the Disk Method. Consider the
illustration at right. If we want the area of the shaded region, we subtract the
area of the smaller circle from the area of the larger circle. The same occurs with
the Washer Method; since we integrate cross-sectional area to find volume, so to
obtain the volume of revolution of a region between the two curves we integrate
the difference in the areas between the two curves.

Below is a set of steps that can be used to determine the volume of revolution of a region
between two curves. The approach is illustrated based on the following example:

Example 8.12: Find the volume that results from revolving the region between the curves y =

2Vx and y = %xz about the line y = 6.

Steps
1. Graph the equations provided and any other information given 2o,
in the problem (illustrated below). Then, isolate the section of ' +
the graph that we want to work with (illustrated at right). The e

disks we will use are shown as green and orange vertical lines.
The dashed objects are reflections of the curves and disks over Ak
the axis of revolution; these give us an idea of what the central i V=6

cross-section of the 3D shape will look like after revolution. You
do not need to draw these.

Integration

Interval
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2. Identify whether there is a gap between the region to be revolved and the axis of
revolution. In the example, the axis of revolution is y = 6, so there is clearly a gap
between a) the red and blue curves, and b) the axis of revolution. Therefore, we will use
the Washer Method.

3. Set up the integral form to be used.
a. Disk Method: V=1 f:(radius)2 dx or V= 7tfcd(radius)2 dy

b. Washer Method: V = nf; [(big radius)? — (small radius)?]dx or V =
nfcd [(big radius)? — (small radius)?] dy

4. Identify the variable of integration (i.e., are we using dx or dy?). The disks used must
be perpendicular to the axis of revolution.

a. If we are revolving around an axis, use the variable of that axis.

b. If the axis of revolution is a line of the form, x = a or y = b, use the opposite
variable from the one that occurs in the equation of the axis. In the example, the
axis of revolutionis y = 6, so we will integrate with respect to x.

Note: The expressions used in the integration must be in terms of the variable of
integration. So, for example, if the variable of integration is y and the equation of a
curve is given as y = f(x), we must invert this to the form x = g(y) before
integrating.

5. Identify the limits of integration. In the example, the curves intersectat x = 0 and
x = 4. This results in an equation for volume in the form:

4
vV = nf [(big radius)? — (small radius)?] dx
0

6. Substitute the expressions for the big and small radii inside the integral. In the
example, we have the following:

a. bigradius = 6 — ixz
b. small radius = 6 — 2vx

This results in the following:

2

v = nf;[(6—%x2> —(6-2Vx)"

dx ~ 140.743

Note that this matches the value calculated using the Difference of Shells Method
below.
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Chapter 8 Applications of Integration

Cylindrical Shell Methods

The formulas for the Cylindrical Shell Method and Difference of Shells Method for calculating
volumes of revolution are provided above. Below, we present an approach that can be used to
calculate volumes of revolution using these methods.

Under the Cylindrical Shell Method, we integrate the volume of a shell across the appropriate
values of x or y. We use the formula for the volume of a cylinder as our starting point (i.e.,
Volume = 2nrh, where h is typically the function provided). The resulting formula is:

b d
V= Zﬂf r (height of shell)dx or V = 27‘[] r (height of shell) dy
a Cc

The Difference of Shells Method is essentially a dual application of the f(x)

Cylindrical Shell Method. We want the volume of the cylinder whose -
fx) —g(x)

height is the difference between two functions (see illustration at
right). 8(x)

Below is a set of steps that can be used to determine the volume of revolution of a region
between two curves. The approach is illustrated based on the following example:

Example 8.13: Find the volume that results from revolving the region between the curves y =

2v/x and y = %xz about the line y = 6.

Steps

1. Graph the equations provided and any other information given in the problem
(illustrated below left). Then, isolate the section of the graph that we want to work with
(illustrated below right). Also shown are reflections of the curves over the axis of
revolution (dashed curves); this allows us to see the “other side” of the cylindrical shells
we will use. A typical shell is shown as a green cylinder.

Integration

Interval
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Chapter 8 Applications of Integration

2. Identify whether the integration involves one or two curves.
a. One curve: Use the Cylindrical Shell Method.

b. Two curves: Use the Difference of Shells Method. This is the case in the example.

3. Set up the integral form to be used. Let r be the radius of the shell.
a. Cylindrical Shell Method: V = 27 ffrf(x) dx or V=2m fcdr g dy.

b. Difference of Shells Method: V = 2n f: r (difference of shell heights) dx or
V=2n fcd r (difference of shell heights) dy.

4. Identify the variable of integration (i.e., are we using dx or dy?). The shells used must
be parallel to the axis of revolution.

a. If we are revolving around an axis, consider the equation of that axis (i.e., the x-
axis has equation: y = 0).

b. The axis of revolution is a line of the form, x = a or y = b, use the same
variable as the one that occurs in the equation of the axis of revolution. In the
example, the axis of revolutionis y = 6, so we will integrate with respect to y.

d
V= Zﬂf r (difference of shell heights) dy
Cc

5. Identify the limits of integration. In the example, the curves intersectat y = 0 and
v = 4. This results in an equation for volume in the form:

4
V= 27rf r (difference of shell heights) dy
0

6. Substitute the expressions for r and the difference of shell heights into the integral. In
the example, we need to convert each equation to the form x = g(y) because y is the
variable of integration:

a.y=ix2 so x =2y y = 2/x so x:%y2
The difference of shell heights, then, is (2\/_ - iyz).

b. The radius of a shell is the difference between the line y = 6 and the value of y
in the interval, so the radiusis 6 — .

This results in the following:
4 1
vV = an 6-1y) (2 y — Zﬁ) dy ~ 140.743
0

Note that this matches the value calculated using the Washer Method above.
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Chapter 8 Applications of Integration
Volume by Area of a Cross-Section

Some problems require us to determine volume of a solid using its base and cross-sectional
area across that base. These are not problems based on revolution of a shape, so we use a
more basic formula (that does not involve m):

b d
V= j (area cross section)dx or V= f (area cross section) dy
a c

Below is a set of steps that can be used to determine volume for this type of problem. The
approach is illustrated using the following example:

Example 8.14: Find the volume of a solid with a base of y = 2+v/sinx over the interval [0, ]
if the cross-sections perpendicular to the x-axis are equilateral triangles whose bases stretch
from the x-axis to the curve.

Steps

1. Graph the curve of the base over the interval specified. y = /sinx

2. Determine the variable of integration. This will always be the N
variable whose axis is perpendicular to the cross-sections | 7

specified. In the example, the variable of integration is x. ‘ r

Cross section
&

[ EREE

3. Determine the limits of integration. This is typically the interval
provided in the problem. In the example, this is the interval |0, ].

4. Draw the cross-section you are provided in the problem. In the example, we are

working with equilateral triangles with base equal to
the function y = 2+/sin x.

Cross section: Vv3sinx

5. Determine the area of the cross-section in terms of einx
the appropriate variable. We need the area of an
equilateral triangle for this example. This area can be

2vsinx

developed from basic principles using the illustration

at right, or from the formula: A = ?bz, where b is the length of the base of the triangle.

2
In the example: A = \/;bz = \/;(2\/511195) =3 sinx
6. Integrate the area of the cross-section using the limits determined in Step 3.

|7T = 2V3 ~ 3.464

s
V=f\/§sinxdx=—\/§cosx0
0
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Chapter 9 Improper Integrals

Improper Integration

Improper integration refers to integration where the interval of integration contains one or
more points where the integrand is not defined.

Infinite Limits

When either or both of the limits of integration are infinite, we replace the infinite limit by a
variable and take the limit of the integral as the variable approaches infinity.

fmf(x)dngggofbf(x)dx J;if(x)dxzagrwabf(x)dx

co b c
f f(x)dx = lim f f(x)dx + lim f f(x)dx
- a==°Jg c>®Jp

Note: in this third formula, you can select the value of b to be any convenient value
that produces convergent intervals.

C
C
C
[ee) a oo03fl |
1 dx = lim 1 dx ool
1 xz a— o 1 xz [].E]'I ‘ \_—7_

0.00
10 20 30 40 50
a a
= lim | (x™3)dx = llm( x 1)|
a— oo 1

1

1'm( )| 1'm< 1+1) 0+1=1
= li —_— i —_ 4t -] = =
a— o 1 a>w a 1

o0k |
L. [l
o W7D |

|
f.oz

/'[J.m
— 1 i f ldx —50 —40 —30_—_2:1- T
3ol \(®) 3

=3 Jim (n3) |2

= %al_}moo (tan‘1 0 —tan™? %) = L 0— (—E)] -z
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Discontinuous Integrand

Limits are also required in cases where the function in an integrand is discontinuous over the
interval of its limits.

If there is a discontinuity at x = a, If there is a discontinuity at x = b,
b b b t
ff(x)dxz lim f f(x)dx ff(x)dxz lim ff(x)dx
a toat ¢ a t-b~ J,

If there is a discontinuity at x = ¢ where a < c < b,

b t b
f f(x)dx = lim f f(x)dx + lim f f(x)dx
a t>c” J, t>ct ),

o1 t, 1
»fO (4 - X) dx = tl—l>IlrLl_ 0 (4 — .X,') dx __/.

. t ] 0
= = lim [In(4 - 0] | = lim [n4— 0] |,

= lim [In(4 - 0) — In(4 — 0]

1,4 1 y . 1 y
L(ﬁ)dx=]0 (x 2)dx=tlirgl+ (x Z)dx

hm

= lirq (Zx /2)

t—-0

I
(N

lim (2v1 - 2Vt) =

TL'
(secxtanx)dx = lim f (secxtanx) dx
m, tom/2* J,

/i
= hm secx |t 11m (secm — sect)

t—>— t—>—

2 2

= —-14+0 = 4
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Chapter 10 Differential Equations

Differential Equations

Definitions

A Differential Equation is an equation that contains an independent variable, one or more
dependent variables, and full or partial derivatives of the dependent variables.

An Ordinary Differential Equation (ODE) is a differential equation that contains ordinary (not
partial) derivatives. Generally, an ODE is expressed in one of the following forms:

Flx,3,9,9" ., y™)=0  or  F(x,yy,y" .. .y" )=y
A Partial Differential Equation (PDE) is a differential equation that contains partial derivatives.

The Order of a differential equation is the highest derivative of a dependent variable in the
equation.

A Linear ODE of Order n is an equation of the form:

@ (1) Y™+ an () YTV A+ @ () Y+ ap(0) Y = f(x)

where each of the a;(x) is a function in x only, (i.e., not in y or any of its derivatives). The
a;(x) need not be linear functions. The label “Linear” refers to y and its derivatives; that
is, there are no powers of y and its derivatives and no products of y and/or any of its

2
derivatives. For example, there are no terms like (y(”)) , (y-y"), etc.
A Separable first order ODE is one that can be written in the form:

dy _ .
T f&x)-9)

A Solution to a differential equation is any function that satisfies the differential equation in the
interval specified.

Initial Conditions are those that allow us to determine which of a possible set of solutions to a
differential equation we seek. In essence, these allow us to determine the value of any
constants that turn up in the integrations required to solve the differential equations.

An Initial Value Problem is a differential equation whose solution depends on the initial
conditions provided.

The Actual Solution to a differential equation is the specific solution that satisfies both the
differential equation and the initial conditions.

An Explicit Solution is a solution that can be expressed in the form y = f(x).

An Implicit Solution is a solution that cannot be expressed in the form y = f(x).
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Chapter 10 Differential Equations

Separable First Order ODEs

Most of the differentiable equations that will be encountered in first year Calculus will be
separable first order differential equations. Typically, we will use Algebra to identify f(x) and

d
g(x) to get the equation into the form ﬁ =f(x) -g).
Next, we treat dy and dx as separate entities, and convert the equation to the form:

dy
gy S

Finally, we integrate both sides to obtain a solution:

The final result will have a +C term. Typically, you need only one +C term since the
constants from each integral can be subtracted to get a single constant term. Often, there is an
initial condition provided which allows us to calculate the value of C.

da
Example 10.1: Find the explicit actual solution to d—z = e” if (1,0) is a point on the curve.

An explicit solution is one of the form “y = f(x)”. An actual solution is one in which we have
solved for any constants that pop up.

Let’s begin by separating the variables.

dy_

= ey
dx

e Vdy =dx

fe‘ydy=fdx

—eV=x+C
Substituting (1,0) for (x,y) gives —1=1+4+C so,C = -2
—eV=x-2
eV =2—-x
—y =1In(2 — x)

y=-In(2 —x) Note the resulting domain restriction: x < 2.
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da
Example 10.2: Find the explicit actual solution to Ix

Differential Equations

Z_if (4,5) is a point on the curve.

"~ Votx2

An explicit solution is one of the form “y = f(x)”. An actual solution is one in which we have

solved for any constants that pop up.

Let’s begin by separating the variables. Note that since there is an x in the numerator, we do not

need to use inverse trig functions.

dy  «x
dx Vo taZ
dy =—~ 4
= &

fd lf 2x d
=—| ——— dx
Y=2 V9 + x2

1 1
y=§fthdu=§aJh+c

y=vu+C

Then, substituting (25, 5) for (u, y) gives:

u=9+x?
du = 2x dx
x=4 = u=25 and y=5

f(x)=17
) Vo x3

21

y:\/ﬂ = y =49 + x2

An alternative way to develop a solution, involving x more directly, would be to replace the

three lines immediately above with these:

y=Vu+C =

A

y=+9+x?2

Version 5.6

Then, substituting (4, 5) for (x,y) gives:

y=+49+x2+C
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5=v25+C so, C=0

5=vV9+42+C = 5=+v25+C so, C=0
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Chapter 10 Differential Equations

Slope Fields

A Slope Field (also called a Direction Field) is a graphical representation of the slopes of a curve
at various points that are defined by a differential equation. Each position in the graph (i.e.,
each point (x, y)) is represented by a line segment indicating the slope of the curve at that
point.

dy i dy
— pSinx : — a2 2
Example 10.3: — = ¢ cos x + sinx Example 10.4: =x“-y
dx dx
p— N R R — ———— -
s Al s ; 1 4
RN
NN ~ ’: ;::::::: LN WS ': =% 4§ L ll ':
Pl SN NN NAN \.-’3 rff/"-\\\\\\' i ..... N t
R VYRR | \ H
e N Tt f}f’x'/'\\\\\\ !
PR RRRRR ¥ YN NN I !
TTNANNN NN il Y RSN :' |
AN "\,J, T NN !
< - SR ; NN | !
- AN L RSN : :
g A A
g ESRNRN I I
i SRNEN !
g SRNEN | !
- RN | !
g RIS I !
z NN | !
g ~ NN I !
&~ | !
- ! !
- ! !
- SRR ! !
4 Y i f
. NN = B

If you know a point on a curve and if you have its corresponding slope field diagram, you can
plot your point and then follow the slope lines to determine the curve.

X
Example 10.5: Find the explicit actual solutionto f'(x) = 5 if (1, —2) is a point on the curve.

dy _x

NN S "y Slope Field generator
ydy =xdx Slope Field for: |11 Tosboo ooy available at:

dy «x PRPIPINNN 220000001 http://www.mathscoop.com
dy = | xdx ==

fy 4 f dx vy i \ ) /calculus/differential-
1 1 A~ s NN equations/slope-field-
Eyz — Exz +C / Y :',.: .':: ‘_‘ .'_': .Z N generator.php
y2=x%+C

Substituting (1, —2) for (x,y) gives: C = 3
y2=x%+3

y=1+x?+3

Finally, noting that (1,—2) is a solution, we can narrow the solution down to:

y=—-vx2+3
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Logistic Function

A Logistic Function describes the growth of a w0y e
population over time. Early in its growth phase, the :: P = 5+ (100-5)e 5t
model describes near-exponential population growth. o1
As the population grows larger, it eventually faces 5 Pg=5
limits that reduce its growth rate. Late in its growth 50{ 5:01,2[5)
phase, a population approaches a maximum value, il
called the carrying capacity. ::
Several forms of the Logistic Function for a population .:U;”;mwmmmmmummmmmmmm
P(t), over time, are common: 1 T i ? i
P(t) = K or P(t) = Fo K or P(t) = K Py e™®
1+ (K;_OPO) ot Py + (K — Py)e "t K+ Py(e™ — 1)

The symbols in these equations have the following meanings:

e P(t)isthe population at time t.

e K is the carrying capacity of the population. It is the maximum population sustainable

in the system
e P, = P(0) is the initial population.
e 1 isthe rate of growth of the population, and is called the growth parameter.
e tisthe variable for time.

The differential equation that leads to the Logistic Function is:

Characteristics of the Logistic Function
o LS oforallt
dt
o tlim P(t)=K
. . . 1 K K
e P(t) has aninflection pointat t = ;ln (P— - 1), when P(t) = > Therefore, the
0

maximum rate of growth for the population occurs when P(t) = g
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Numerical Methods

If we know a point on a curve and the slope of the curve at each point, but do not know the
equation of the curve, it is possible to estimate the value of another point on the same curve
using numerical methods. Several of these numerical methods are presented below.

Euler’'s Method

Euler’'s Method estimates the location of the new point based on the position of the first point
and the slope of the curve at intervals between the two points. Any number of intervals, n, can
be used. Each interval is called a time step. The formulas involved are as follows.

Let:  (xg,¥o) be the initial (known) point.
(xk, Yx) be the intermediate points, fork = 1,2, ....

(%, y,) be the desired point. Note that n is the number of time steps and x,, is known.

Xn—X
h be the distance between successive x-values. Thatis, h = nTO.

Then, Euler’s Method estimates each yy,, based on y; and the slope of the function at
(Xx, Vi), using the formulas:

Xks1 = X+ h Viv1 = Ve ¥ (xx) - h

d
Example 10.6: Le d—z = y'(x) = 2y — x. Estimate y(2) using 4 time steps if we know (1, 2) is
a point on the curve.

We start at point (xy,y,) = (1,2), using a time step of h = % = 0.25. The following table

shows the iterations required to estimate y(2). Values in the table are rounded to 2 decimals
for display, but the exact values are used in all calculations.

k Xk Vi y' () =2y —x Yi+1

0 1.00 2.00 2(2.00) —1.00 = 3.00 2.00 + 3.00 (0.25) = 2.75

1 | 125 | 275 2 (2.75) — 1.25 = 4.25 2.75 + 4.25 (0.25) = 3.81

2 | 150 | 381 2 (3.81) — 1.50 = 6.13 3.81 + 6.13 (0.25) = 5.34

3 | 175 | 5.34 2 (5.34) — 1.75 = 8.94 5.34 + 8.94 (0.25) = 7.58

4 | 200 | (758)
Since it is natural to develop Euler’'s Method in table form, it is B,
relatively easy to adapt it to a spreadsheet program such as (2,7.58)
Microsoft Excel. T i

I 12)e°

A plot of successive values of xj, is shown in the graph at right.
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Modified Euler’s Method

The Modified Euler’s Method is like Euler’s Method, but develops the slope at each point as the
average of the slopes at the beginning and end of each interval. Using the same notation as on
the previous page, the Modified Euler’s Method uses a two-step formula:

Predictor step:  Xp41 =xx +h Yis1 =V ¥V () - h
1 ! !
Corrector step: Y41 = Vi +3 [y (xi) + y' (xep )] - R

In the corrector step, the estimate of y'(x;,) is based on the value of y, ., generated in the
predictor step.

Example 10.7: Let % = y'(x) = 2y — x. Estimate y(2) using 4 time steps if we know (1,2) is
a point on the curve.

We start at point (x,, ¥o) = (1,2), using a time step of h = % = 0.25. The following table

shows the iterations required to estimate y(2). Values in the table are rounded to 2 decimals
for display, but the exact values are used in all calculations.

k Xk Yk y' () or y'(xp1) Yk+1
0 | 1.00 | 2.00 2 (2.00) —1.00 = 3.00 2.00 + 3.00 (0.25) = 2.75
Corrector | 2 (2.75) — 1.25 = 4.25 2.00 + (3.00 + 4.25)/2 - (0.25) = 2.91
1 | 125 | 291 | 2(291)—125=456 2.91 + 4.56 (0.25) = 4.05
Corrector | 2 (4.05) —1.50 = 6.59 291+ (4.56 + 6.59)/2 - (0.25) = 4.30
2 | 150 | 430 | 2(4.30)-150=7.10 4.30 4+ 7.10 (0.25) = 6.08
Corrector | 2 (6.08) —1.75 =10.40 | 430+ (7.10+10.40)/2 - (0.25) = 6.49
3 | 1.75 | 649 | 2(649)—1.75=11.23 6.49 + 11.23 (0.25) = 9.30
Corrector | 2(9.30) —2.00 =16.59 | 6494 (11.234+16.59)/2 - (0.25) = 9.97
4 | 2.00 [(9.97)
A plot of successive values of x; is shown in the graph at right. 1] (2,9.97) o
The Modified Euler’s Method is more complex than Euler’s Method, but it 1, e

tends to be more accurate because it uses a better estimate of the slope ’

: . . : : I @m2)e"°
in each interval. Though complex, this method is also relatively easy to [ ai ) .

adapt to a spreadsheet program such as Microsoft Excel. ! 1

Order: A numerical method is said to be of order n if it produces exact results for polynomials of
degree n or less. Euler’s method is of order 1. Modified Euler’s Method is of order 2. The
Runge-Kutta Method, described on the next page, is of order 4.

Version 5.6 Page 126 of 242 April 8, 2023



Chapter 10 Differential Equations

Runge-Kutta Method

Runge-Kutta Method an order 4 numerical method for estimating points on a curve using an
initial point and slopes of the curve at various locations. Using similar notation to that on the

previous pages, the Runge-Kutta Method uses the following formulas:

Note: Since k-
1
Xpi1 = Xn +h Vne1 = Yn += (kg + 2k, + 2ks + ky) values have a
6 specific meaning
where the following k-values are weighted together to obtain incremental in this method,
values of y. we have

e f(x,y) isthe derivative of the function at x, i.e., f(x,y) = y'(x). ?WQtChed,Ozlr
Index variable

o ky=h-f(xny) from k to n.

o ky=h-fQn+5hyn +5k)
o« ky=h-fQn+3hyn k)
o Jy=h-fQ+hy,+ks)

Note that the slope, f(x,y), used in defining each successive k value builds on the slope
determined in the previous k value.

Example 10.8: Let Z—i = y'(x) = 2y — x. Estimate y(2) using 4 time steps if we know (1,2) is

a point on the curve.

Time Step 1: Once again, we start at point (xg, ¥o) = (1,2), and h = 0.25. The following steps
show the calculation of y(1.25):

(x0,¥0) = (1,2) y' =fly) =2y —x
ky = h-f(xo,v) = (0.25)f(1,2) = (0.25)(2-2 — 1) = 0.75

1 1
ky=h-f (xo +5hyo+ Ekl) — (0.25)f(1.125,2.375)
— (0.25)(2 - 2.375 — 1.125) = 0.90625

1 1
ks =h-f (xo +5hyo+ Ekz) — (0.25)f(1.125, 2.453125)
— (0.25)(2 - 2.453125 — 1.125) = 0.9453125

= (0.25)(2 - 2.9453125 — 1.25) = 1.16015625

1

1
=2+-=(0.75+2-0.90625 + 2-0.9453125 + 1.16015625) =
3 )
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Differential Equations

Time Steps 2 to 4: Performing the same set of calculations for three more steps gives the

following values, all rounded to two decimals:

y(1.50) = 4.40

y(1.75) = 6.72

y(2.00) = 10.48

To nine decimal places, with 4 time steps, our calculated value of y(2.00) is 10.479962905.

Changing the number of time steps produces the results in the following table.

Number of Value of
Time Steps y(2.00)
4 10.479962905 Notice how the increasing the number
10 10.486111552 of time steps in the calculation
20 10.486305959 improves the accuracy of the results.
50 10.486319742 With 500 time steps the result is
100 10.486320099 accurate to 9 decimal places.
200 10.486320122
500 10.486320124
Actual 10.486320124

In summary, let’s compare the results under the three methods above to the true values for the

5

function defined by our conditions: y = (_er + %x + i)

4e2

Estimates of y at Each Time Step Under Four Numerical Methods

Time Euler’s MOdlfl,ed Runge- Actual
Step | x-value Method Euler’s Kutta Value
Method (4-steps)
1 1.25 2.75 2.90625 2.935546875 2.935901588
2 1.50 3.8125 4.30078125 4.396682739 4.397852286
3 1.75 5.34375 6.488769531 6.724219203 6.727111338
4 2.00 7.578125 9.966125488 10.479962905 10.486320124

Clearly, the higher the order, the more accurate the estimates were for the function defined in the

example. This will tend to be true, but will not be true in every case. Increasing the number of steps,

and correspondingly decreasing the value of h, will also tend to increase the accuracy of the estimates.

Even though there are a significant number of steps and calculations involved in developing Runge-Kutta
estimates, their accuracy may warrant the effort, especially if a spreadsheet proram is readily available
to the student.
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Vectors

A vector is a quantity that has both magnitude and direction. An example would be wind
blowing toward the east at 30 miles per hour. Another example would be the force of 10 kg
weight being pulled toward the earth (a force you can feel if you are holding the weight).

Special Unit Vectors

We define unit vectors to be vectors of length 1. Unit vectors having the direction of the
positive axes will be quite useful to us. They are described in the chart and graphic below.

Unit Vector Direction Graphical S i
i positive x-axis representation of jos
j positive y-axis unit vectors 1 and J T .
in two dimensions. I i
k positive z-axis T

Vector Components

The length of a vector, v, is called its magnitude and is represented by the symbol ||v||. If a
vector’s initial point (starting position) is (x4, y1,Z1), and its terminal point (ending position) is
(x2,¥2,2,), then the vector displaces a = x, — x; in the x-direction, b = y, — y; in the y-
direction, and ¢ = z, — z; in the z-direction. We can, then, represent the vector as follows:

v =ai+ bj+ck

The magnitude of the vector, v, is calculated as:

[lv]| = Va2 + b?% + c2

Space

| Diagonal
If this looks familiar, it should. The magnitude of a vector in three ) T

|
dimesnsions is determined as the length of the space diagonal of a i

”,
rectangular prism with sides a, b and c. y Face
Diagonal

In two dimensions, these concepts contract to the following:
vV = ai + bj |[v]l = Va? + b?

In two dimensions, the magnitude of the vector is the length of the hypotenuse of a right
triangle with sides a and b.
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Vector Calculus

Vector Properties

Vectors have a number of nice properties that make working with them both useful and

relatively simple. Let m and n be scalars, and let u, v and w be vectors. Then,
e If v=ai+ bj,then a =||v|| cosf and b = ||v|| sinb

e Then, v=||v| cos@ i + ||v] sin@ j (note: this formula is used

in Force calculations)

v=ai+ bj

e Ifu=a;i+bjjandv = a,i+ b,j,thenu+v = (a, +a,)i+ (b; + b,)j

e Ifv =ai+ bj, then mv = (ma)i + (mb)j

e Define 0 to be the zero vector (i.e., it has zero length, so that a = b = 0). Note: the

zero vector is also called the null vector.

Note: v = ai + bj can also be shown with the following notation: v = (a, b). This notation is

useful in calculating dot products and performing operations with vectors.

Properties of Vectors
e 0+v=v+0=v
o v+(—v)=(-Vv)+v=0
e ut+v=v+u
e u+(v+w)=(u+v)+w
e m(nu) = (mn)u
e m(u+wv)=mu+mv
e (m+n)u=mu+nu

e 1(v)=v

Also, note that:

o |Imv| = [m]|v]|
\"%
lIvll
Version 5.6

Additive Identity
Additive Inverse
Commutative Property
Associative Property
Associative Property
Distributive Property
Distributive Property

Multiplicative Identity

Magnitude Property

Unit vector in the direction of v
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Vector Dot Product

The Dot Product of two vectors, u = a4i + b;j + c;k and v = a,i + b,j + ¢, K, is defined as
follows:
u-v=_(a;-ay)+(by-by)+(c1cz)

It is important to note that the dot product is a scalar, not a vector. It describes something
about the relationship between two vectors, but is not a vector itself. A useful approach to
calculating the dot product of two vectors is illustrated here:

u= ali + bli + Clk = <a1, bl’ C1> } alternative
vector
vV = azi + bzi + cZk = <a2, bz, Cz) notation General Example 11.1
In the example at right the vectors are lined up vertically. (ay, by, cq) (4,-3,2)
The numbers in the each column are multiplied and the o (ay, by, Cy) 0(2,—2,5)

results are added to get the dot product. In the example,

(4,-3,2) 0 (2,—2,5) = 8+ 6 + 10 = 24 a,a, + bib, + cic, 8+6+10

=24

Properties of the Dot Product

Let m be a scalar, and let u, vand w be vectors. Then,

e Qou=uc0=0 Zero Property

e joj=jok=Kkoi=0 i,j and Kk are orthogonal to each other.
e uUov=Vou Commutative Property

e uou=|ul? Magnitude Square Property

e uo(v+w)=(uov)+ (uow) Distributive Property

e m(uov)=(mu)ov=uo(mv) Multiplication by a Scalar Property

More properties:
e Ifuocv=20and u#0 and v # 0, thenuand v are orthogonal (perpendicular).

e If thereis a scalar m such that mu = v, then u and v are parallel.

UovV
e If B isthe angle betweenuand v, then cosf = —— M
lall [[v]] v
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Vector Cross Product

Cross Product

In three dimensions,

let: u=uyi + uyj + uzk and v=vji + v,j + v3k ){i",/"’)
v

Then, the Cross Product is given by:

i jJ Kk
u; U, Uj
Vi V2 V3

uxv = = (u2V3 — U3V2) i+ (U3V1 - U1V3) ] + (u1V2 - u2Vl) k

uxv = |lul|||v]] sinf n

The cross product of two nonzero vectors in three dimensions produces a third vector that is
orthogonal to each of the first two. This resulting vector ux v is, therefore, normal to the
plane containing the first two vectors (assuming u and v are not parallel). In the second
formula above, n is the unit vector normal to the plane containing the first two vectors. Its
orientation (direction) is determined using the right hand rule.

Right Hand Rule

Using your right hand: * uxv
e Point your forefinger in the direction of u, and
e Point your middle finger in the direction of v.
Then:
e Your thumb will point in the direction of u x v.

In two dimensions,

Let: u =uyi + uyj and v=wvi + v,j

U

U —_ . . .
vy V2| = (u;v, —u,v,) whichis a scalar (in two dimensions).

Then, uxv = |

The cross product of two nonzero vectors in two dimensions is zero if the vectors are parallel.
That is, vectors u and v are parallel if uxv = 0.

The area of a parallelogram having u and v as adjacent sides and angle 6 between them:

Area =uxv = ||luf| ||v|| sin®6.
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Properties of the Cross Product

Let m be a scalar, and let u, vand w be vectors. Then,

e Oxu=ux0=0 Zero Property

e ixj=k jxk=i kxi=j i,j and k are orthogonal to each other

e jxi=-k kxj=-i ixk=-j Reverse orientation orthogonality

e uxu=20 Every non-zero vector is parallel to itself
® UXV=-vxu Anti-commutative Property

e ux(v+w)=((uxv)+ (uxw) Distributive Property

e (u+v)xw=@uxw)+ (vxw) Distributive Property

e (mu)xv =ux(mv) = m(uxv) Scalar Multiplication

More properties:

e If uxv =0, thenuandv are parallel.
e [f B isthe angle between u and v, then
0 |luxv|l = [ull|lv]l sin®

luxvl|

O sinf =7———-
llall llvll
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Vector Triple Products

Scalar Triple Product

Let: u = uyi + u,j + uzk. Then the triple product u o (vx w) gives a scalar representing
the volume of a parallelepiped with u, v, and w as edges:

u; U Us
uo(vxw) = |[Vi Vy V3
wW; W, Wg
uo(vxw) = (UXV) o W
Other Triple Products
uo (uxv)=vo(uxv)=0 Duplicating a vector results in a product of 0

ux(vxw) = (wew)v-—(uev)w
(uxv)xw=(uow)v—(vewu
uo(vxw)=vo(WxX)= wo (XxV)

Note: vectors u, v, and w are coplanar if and only ifu o (vxw) = 0.

No Associative Property
The associative property of real numbers does not translate to triple products. In particular,
(uev) *w #u- (vow) No associative property of dot products/multiplication

ux(vxw) # (Uxv)xw No associative property of cross products

Version 5.6 Page 134 of 242 April 8, 2023



Chapter 11 Vector Calculus

Kinematics (Particle Motion) - Vectors

This page is an extension of the Kinematics pages in Chapter 3, adapted to 3-dimensional space.
The corresponding application to 2-dimensional space would remove the third (i.e., z)
component of each vector presented. On this page, ( ) notation is used for the vectors rather
than 1i,j, Kk notation.

Position

Position is the location of a particle at a point in time. It may be represented by the vector

s = (x(1), y(t), z(1))-

Velocity

Velocity measures the rate of change in position. Instantaneous velocity is the vector of first
derivatives of the position vector v = (x'(t),y'(t),z'(t)). Velocity vector components may be
either positive or negative.

Speed

Speed is the magnitude of the velocity vector; it is always positive. The formula for speed is:

IVl = VIx' (O + [y' (D12 + [2/ ()]

Acceleration

Acceleration measures the rate of change in velocity. Instantaneous acceleration is the vector
of second derivatives of the position vector a = (x"'(t),y" (t),z" (t)).

Moving Among Vectors

The following diagram describes how to move back and forth among the position, velocity and
acceleration vectors.

Dif ferentiate Dif ferentiate
_ -
Position Velocity Acceleration
— B —
Integrate Integrate

Displacement

Displacement is a measure of the distance between a particle’s starting position and its ending
position. The displacement vector from t = a to t = b may be calculated as:

As = <fbx’(t)dt,fby’(t)dt,sz’(t)dw
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Gradient

Scalar Fields and Vector Fields

A Scalar Field in three dimensions provides a value at each point in space. For example, we can
measure the temperature at each point within an object. The temperature can be expressed as
T = ¢(x,y,z). (note: ¢ is the Greek letter phi, corresponding to the English letter “f”.)

A Vector Field in three dimensions provides a vector at each point in space. For example, we
can measure a magnetic field (magnitude and direction of the magnetic force) at each point in

space around a charged particle. The magnetic field can be expressed as M= l7(x, v,Z). Note
that the half-arrows over the letters M and V indicate that the function generates a vector
field.

Del Operator

When looking a scalar field it is often useful to know the rates of change (i.e., slopes) at each
point in the x-, y- and z-directions. To obtain this information, we use the Del Operator:

veil il 4 k2
o "%y T G2

Gradient

The Gradient of a scalar field ¢ describes the rates of change in the x, y and z directions at
each point in the field in vector form. Therefore, the gradient generates a vector field from the
points in the scalar field. The gradient is obtained by applying the del operator to ¢.

_ _ .0 09 d¢
grad¢ = V¢ = 'E“@* k—

¢ 0 0
—¢, 99 and %0 are called directional derivatives of the scalar field ¢.
dx’ 0y 0z

Example 11.2:

z

Suppose: ¢(x,y,z) =sinx +Iny +e”

. .1 _ - . . S . .
So, V¢p = icosx + ]; — ke™7; providing all three directional derivatives in a single vector.
Over a set of points in space, this results in a vector field.

At point P = (2,0.5,—-1), V¢ = (cos2)i + 2j — ek ~ —0416i + 2j — 2.718k
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Divergence

Divergence

The Divergence of a vector field describes the flow of material, like water or electrical charge,
away from (if positive) or into (if negative) each point in space. The divergence maps the vector
at each point in the material to a scalar at that same point (i.e., the dot product of the vector in
V and its associated rates of change in the x, y and z directions), thereby producing a scalar
field.

Let V=iV, + jV, + KV, where V,,V,,V, are each functionsin x, y and z. Then,

) .0 d . )
divV = VoV = (1—x g+ kE) o (iVy + jV, + KkV,)

Points of positive divergence are referred to as sources, while points of negative divergence are
referred to as sinks. The divergence at each point is the net outflow of material at that point,
so that if there is both inflow and outflow at a point, these flows are netted in determining the
divergence (net outflow) at the point.

Example 11.3:

Let’s start with the vector field created by taking the gradient of ¢ on the prior page. Let:

V=icosx + j— — ke™*

In this expression, notice that: V, = cosx, V, = %, and V, = —e™%. Then:
_ av, av, av, _ 1 B
divV = VoV = + + = —sinx——+e7 %

dx ay 0z y?

Let’s find the value of the divergence at a couple of points, and see what it tells us.

At P, = (—1,1,0), we have: divv = —sin(—1) — %2 +e7% = 0.841. This value is greater

than zero, indicating that P, is a “source”, and that the vector v at P; produces an outflow.

At P, = (3,—1,2), we have: divv = —sin(3) — ﬁ +e7? = —1.006. This value is less

than zero, indicating that P, is a “sink”, and that the vector v at P, produces an inflow.

Version 5.6 Page 137 of 242 April 8, 2023



Chapter 11 Vector Calculus

Curl

Curl

The Curl of a vector field describes the circulation of material, like water or electrical charge,
about each point in the material. The curl maps the vector at each point in the original vector
field to another vector (i.e., the cross product of the original vector and its associated rates of
change in the x, y and z directions) at that same point, thereby producing a new vector field.

.0 .0 d . .
curlV = VxV = <1a + i3y + k&) x (iV, + jV, + kV,)
i j k
o o a| _[av, aV,\ .0V, @V, oV, av,
=lox 3 o =‘<ay‘ﬁ)+ (32~ 3) k(a‘w>
v, V, V,

Curl

The curl gives the direction of the axis of circulation of material at a point P. o
il

The magnitude of the curl gives the strength of the circulation. If the curl at a
point is equal to the zero vector (i.e., 0), its magnitude is zero and the material Circulation
is said to be irrotational at that point. ABouER

Example 11.4:
We need to use a more complex vector field for the curl to produce meaningful results. Let:
. (XY -
V=i(yzcosx) + ](—) — k(e™*Y%)
VA

xy

In this expression, notice that: V, = yzcosx, V, = 7 and V, = —e Y%, Then:
av, 0V. ov, oV, av,, aV.
IV =VxV = i ——y+'(—"— Z) k|(=—=2--=
cur X ! (6)/ 0z ) dz  0Ox dx  dy

=i (xze‘xyz + 926_32/) + j(ycosx —yze %) + k (g — Zcos x)
Let’s find the value of the curl at a point, and see what it tells us. Let P = (—1,1,2). Then,
curl v = (—2e? —0.25) i + (cos[—1] — 2e?) j + (0.5 — 2 cos[-1]) k ~ — 15.0i — 14.2j — 0.6k
The circulation, then, at Point P is around an axis in the direction of: —15.0i — 14.2j — 0.6k

The strength of the circulation is given by the magnitude of the curl:

lcurl v|| = /(—15.0)2 + (—14.2)2 + (—0.6)2 = 20.7
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Laplacian

Laplacian

The Laplacian Operator is similar to the Del Operator, but involves second partial derivatives.
62 aZ 62

2 _ i i -
v ‘axz +]6y2 +k622

The Laplacian of a scalar field ¢ is the divergence of the gradient of the field. It is used
extensively in the sciences.

2 2 2
6¢+6¢+6¢

Vig =V = o5 9yz © 972

Example 11.5:

For the scalar field ¢(x,y,z) = sinx + Iny + e~ “, we already calculated the Laplacian in the
example for divergence above (but we did not call it that). It is repeated here with Laplacian
notation for ease of reference.

Gradient:
dp .09 d¢
Vo = i L% 2
¢ lax * lay * 0z
0 a
For the scalar field defined above: % _ CoS X, _1 and 9 _ -z
0x oy y 0z

So, V¢p = icosx + j% — ke™*

Laplacian (Divergence of the Gradient):

92¢ 3% 9% 1

92 3y 577 = —sinx ——+e™”*

VZp = VoVop

Let’s then find the value of the Laplacian at a couple of points.

At P, = (—=1,1,0), we have: V2¢ = —sin(—1) —%+ e 0 = 0.841.

1

(—W +e7 2= —1.006.

At P, = (3,—1,2), we have: V?¢p = —sin(3) —
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Sequences

Definitions

e ASequence is an ordered set of numbers.

e ATerm is an element in the ordered set of numbers.

e An Infinite Sequence has no end. A Finite Sequence has a final term.

e An Explicit Sequence is one that defines the terms of the sequence based on the number of
the term. By convention, the number of the term is usually expressed in terms of the
variables n or k. We talk of the n" term or the kt" term of the sequence or series.

e A Recursive Sequence is one that defines its terms based on one or more previous terms.

Types of Sequences

A term of a sequence is denoted a,, and an entire sequence of terms {a,, }. Generally (unless
otherwise specified), n = 1 for the first term of a sequence, n = 2 for the second term, etc.

Explicit Sequence: terms of the sequence {a,} are defined by an Explicit Formula.

: o121 {Zn} {2 4 6 8 }
Xxampie L YyT— = - Ty Ty aas
P 14+n 2’3’4’5’

3

E le12.2 {1} {11 :
xample 12.2: 1—¢ = -,
p n )213)

1

4

1\ 3

Example 12.3: {3 . (—) } = {—,
2 2

Example 12.4: {(-1)"} = {-1,+1,—-1,+1, ...}

Example 12.5: {B,} = {1,—%,%,0,—%,0,%,...}

Note: this is the sequence of Bernoulli Numbers; it begins with Bj,.
Recursive Sequence: Usually, one or more initial terms are defined with values in a
recursive sequence. Each subsequent term is defined in terms of previous terms.
Example 12.6: {f,52 = fae1 + fr-2 1= f, =1} = {1,1,2,3,5,8,13, ...}

Examp|e 12.7: {fn>2 = fn_z _fn—l' fl — 3,f2 =S 1} = {3, 1,2,_1, 3, _4, 7, ...}
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More Definitions for Sequences

Monotonic Sequence: A sequence is monotonic if its terms are:
e Non-increasing (i.e., a,41 < a, Vn), or
e Non-decreasing (i.e., a,41 = a, VY n).

e Note that successive terms may be equal, as long as they do not turn around and head
back in the direction from whence they came.

e Often, you can determine whether a sequence is monotonic by graphing its terms.

Bounded Sequence: A sequence is bounded if it is bounded from above and below.

e Asequence is bounded from above if there is a number M such that a, <M Vn. The
least upper bound is called the Supremum.

e Asequence is bounded from below if there is a number N such that a, = N V n. The
greatest lower bound is called the Infimum.

Theorems about Sequences

Consider the sequences {a, }, {b,,} and {c,;}. The following theorems apply:

Squeeze Theorem:

If a,<b,<c, V n>someN and lima, = limc, =1L, then lim b, = L.
n—->oo

n—->0oo n—oo

Absolute Value Theorem:

If lim|a,| =0, then lim a, = 0.
n-oo n-oo

Bounded Monotonic Sequence Theorem:

If a sequence is bounded and monotonic, then it converges.
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Limit of a Sequence

e Limit: lim a, = L. The limit L exists if we can make a,, as close to L as we like by

n—-oo

making n sufficiently large.

e Convergence: If the limit of the terms {a,,} exists, the sequence is said to be
convergent.

e Divergence: If the limit of the terms {a,, } does not exist, the sequence is said to be
divergent.

e Limits are determined in the usual manner.

e Usual properties of limits are preserved in sequences (e. g., addition, scalar
multiplication, multiplication, division of limits).

Much more about limits is presented in Chapter 1.
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Basic Recursive Sequence Theory

Operators and Annihilators

An operator, applied to a sequence, results in a new sequence. The operator, E™, shifts a
sequence n terms to the left. Sequences can also be added or subtracted, as well as multiplied
or divided by a scalar (a number).

An annihilator of a sequence is an operator that converts a sequence into the zero sequence,
i.e., {0}. The typical example of this is the operator (E — 2) operating on the sequence
{21} ={2,48,16,..}.

Examples of the algebra of operators and annihilators:

Example 12.8:  E{2'} = E{2,4,8,16,..} = {4,8,16,32, ..} = {2!*}
Example 12.9:  2-{21} =2-{2,4,8,16,..} = {4,8,16,32, ...} = (21*1)
Example 12.10: (E — 2){2'} = E{2!} — 2{2%}

=)~ 2=

Annihilators - Summary

The following table summarizes some sequence forms that are annihilated by elementary

operators:
Form of Sequence Sample Sequence (starting with a;) Annihilator
{A} {3,3,3,3,...} = {3} E-1
{An + B} {4,9,14,19,..} = {6n— 1} (E —1)?
{An? + Bn + C} {6,9,16,27,..} = {2n? — 3n + 7} (E—1)3
{A-r"} {6,12,24,48,..} = {3-2"} E—-r
{(An+B)-r"} {8,28,80,208,..} = {(3n+ 1) - 2"} (E —1)?
{A-r"+B-s"}, r#s {12,30,78,210,..} ={3-2" 4+ 2-3"} (E—r)(E—Y5)
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Example 12.11: Fibonacci Sequence

The Fibonacci Sequence is defined by the initial conditions, F;, = 0 and F; = 1, and the
Recursive Formula: E, = F,_; + F,,_, forn > 1. Itlooks like this, starting with Fy:

{0,1,1,2,3,5,8,13,21, 34,55, 89, 144,233,377, ... }

Let’s find the Explicit Formula (i.e., closed form) for the nt"* term of the Fibonacci sequence.
That is, we will use annihilators to convert:

- gon_ wn
= —\/E .

F,=F,_1+F,_, into F,

1+/5 1-/5

where, ¢ = 5 and ¢ = 5 given the initial conditions: F; = 0 and F; = 1.
Begin with the Fibonacci Recursive Formula:
F,=F,_1 +F,_,, orequivalently, Foio =Fpy + E,
Convert the equation to operator form in order to identify the annihilator:
Foy2 = Fpy + By
Foyo =Fpy1 —F, =0
E*(F) —E(F) —F,=0
(E?—E—-1)E, =0
The resulting operator, (E? — E — 1), is the annihilator.
Set this equal to zero, and solve it using the quadratic formula:
E2—-E-1=0

1-V5
=1i2—£. Let: (pzﬂ, and Y =———

E > >

Because ¢ and 1 are roots of the equation, the annihilator can be expressed in factored form
as:

E?—E-1=(E-@)E-¥) =0
Using the annihilator table on the previous page, we see that:

(E — ) annihilates {A- 9"}
(E — ) annihilates {B-y"}
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Also from the annihilator table, (E — ¢@)(E — ) annihilates sequences of the form:
{A-9"+B-y"}.

It remains to calculate the values of the coefficients A and B. We do this using the initial (i.e.,
seed) conditions of the Fibonacci Sequence: F, = 0 and F; = 1, as follows:

Fpb=0=A4-¢°+B-y° = A+B
FF=1=A-9'+B-yY! = A-¢o+B-¢
From the expression for F,,, we get:
B =-A
Substituting this into the expression for F;, we get:
1=A9p-Ay =A4(p—9)

_ A_(1+x/§_1—x/§>

2 2
= A-V5
This results in the following values for the coefficients:
1 1
ﬁ ) 'Jgf
and, finally, the Explicit Formula for the nt" term of the Fibonacci Sequence:
n_ .,n
R k. &
V5
1-v5
where, ¢ = 1+2\/§ ,and Y =——
2
6_ /6 9_ .19
Test Values: Fy = % =8 Vv Fy = % =34 v
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Process for Finding an Explicit Formula

In summary, the following steps are used to convert a sequence from recursive to explicit form.

Step 1: Identify the Recursive Formula (Example 12.12)
a, =3a,_1 +4a,_, —12a,_; with seed values: a, =0, a1 =1, a, =2

So, {a,} ={0,1,2,10,26,94, 266,862, ...}

Step 2: Shift the recursive formula so that its lowest subscript is “n”

E3(a,) = aniz =304 +4ans, — 120,

Step 3: Use Algebra to get all of the “a” terms on one side of the equation

Atz — 3Anz — 4anyq +12a, =0

Step 4: Express the equation in Operator Form
E3(a,) — 3E%(a,) —4E(a,) + 12a,, =0
(E3—3E?—-4E+12)a, =0

Step 5: Factor the Operator Expression

(E—2)(E+2)(E—-3)a,=0

Step 6: Use the Annihilator Table to develop a general expression for the Explicit Formula
a,=A-2"+B-(-2)"+C-3"
Step 7: Use the seed values of the sequence and the formula in Step 6 to create a set of
simultaneous equations for the coefficients (e.g., 4, B, C)
n=0 = 0=A+4+B+C
n=1 = 1=24A-2B+3C
n=2 = 2=4A+4+4B+9C

Step 8: Solve the simultaneous equations for the coefficients
A= _L__2> _ 3 _2_8
4 20 20 5 20
Step 9: Write the Explicit Formula for the sequence
“ _—5-2" — 3-(—-2)" + 8-3™
" 20

Step 10: Test the Explicit Formula for a couple of values in the sequence

_—5-2%—3-(-2)*+8-3*

—5.25_3-(=2)5 4835
G = 20 -

=26v as = 50 =94 v
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Series

Introduction

A Series is an ordered summation of a sequence. If {a;} is an infinite sequence, then the
associated infinite series (or simply series) is:

(0]
S = ar =a; +a, +az+ -
k=1
The Partial Sum containing the first n terms of {a;} is:
n
Spn= ) ap=a;t+a,+az+-+a,
k=1

A sequence of partial sums can be formed as follows:

{Sn} = {SlrSs'S3rS4' }

Note the following about these formulas:

e The symbol S isthe capital Greek letter sigma, which translates into English as S,
appropriate for the operation of Summation.

e The letter k is used as an index variable in both formulas. The initial (minimum) value of k
is shown below the summation sign and the terminal (maximum) value of k is shown
above the summation sign. Letters other than k may be used; i, j, and n are common.

e When evaluating a series, make sure you review the initial and terminal values of the index
variable. Many mistakes are made by assuming values for these instead of using the actual
values in the problem.

e The subscript nin §,, (in the partial sum formula) indicates that the summation is
performed only through term a,,. This is true whether the formula startsat k =0, k =1,
or some other value of k, though alternative notations may be used if properly identified.

Convergence and Divergence

e If the sequence of partial sums {S, } converges to S, the series converges. Not surprisingly,
S is called the sum of the series.

e |If the sequence of partial sums {S, } diverges, the series diverges.
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Key Properties of Series (these also hold for partial sums)

Scalar multiplication

Z(ak+bk) :Zak+zbk

k=1 k=1 k=1

E(ak_bk) =zak_zbk

k=1 k=1 k=1
Multiplication

In order to multiply series, you must multiply every term in one series by every term in the other
series. Although this may seem daunting, there are times when the products of only certain terms
are of interest and we find that multiplication of series can be very useful.

n-th Term Convergence Theorems

If Z a, converges, then Ilim a, =0.
—00
k=1

[ee]

If ’lim a, # 0,then z a, diverges.
k=1

Power Series

A Power Series is an infinite series in which each term is expressed as the product of a constant
and a power of a binomial term. Generally, a power series is centered about a particular value of
x, which we will call x, in the following expression:

[0¢]

f(x) = z cp(x—a)"=cp+ci(x—a)+c(x—a)® + c3(x—a)d + -
k=0

Examples of power series are the Taylor and Maclaurin series covered in Chapter 14.
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Telescoping Series

A Telescoping Series is one whose terms partially cancel, leaving only a limited number of terms in

Series

the partial sums. The general form of a telescoping series, and its sum are is:

[ee]

Z(ak —Qg-1) = a; — lim a,
n—>oo

k=1

Convergence: A telescoping series will converge if and only if the limiting term of the series,

lim a,, is a finite value.

n—-oo

Caution: Telescoping series may be deceptive. Always take care with them and make sure you
perform the appropriate convergence tests before concluding that the series sums to a particular

value.

Example 13.1:

i : i(l 1 >
k2+k k k+1
k=1 k=1

The Partial Sums for this example are:

=(1-3

s:=(1-3)+(3-3) = (1-3)
2= 2 2 3] 3
c —(1 1 N 1 1 N 1 1
3‘( 2) (2 3) (3 4)
si=(1-3)+(3-3)+(G-3)
no 2 2 3 3 4
Then,
S=1- lim =1
n-oon + 1
Version 5.6

Notice the usefulness of the
telescoping approach in the case
of a rational function that can be
expressed as partial fractions.
This approach will not work for
some rational functions, but not
all of them.

Page 149 of 242 April 8, 2023



Chapter 13

Geometric Series

A Geometric Series has the form:

o)

S = ar*=a+ar+ar®*+ar3+--
k=0

If |r] <1, then the series converges to:

S=Zark=

k=0

If || = 1, then the series diverges.

Partial Sums

Partial sums have the form:

So=a S;=a+ar S, =a+ar + ar?

n
a 1_rn+1
=Zark=a+ar+ar2+ar3+---+arn=—( )

(1-7)

k=0

Example 13.2:
i 09 _09 09 09 09 o
£ 10 "0 " 100 " 1000 -

Series

. . . 1 .
In this geometric series, we have a = 0.9 and r = o Therefore the series converges to:

5—5:09 (1)"_ 09 _ .
_ 9-(s5) = - =
k=0

1-15

This proves, therefore, that 0.9999 = 1.
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Estimating the Value of a Series with Positive Terms

Let the following be true:
e f(x)is a positive, decreasing, continuous function for all values of x > m, m > 0.

e f(k) = a; forallinteger values of k > m.

oo n

o S= Z Ay is a convergent series with partial sums S, = Z ay.
k=1 k=1

e The Remainder Term of the sum, after the n-th term, is defined as: R, = 5 —5,,.

Then,
f f(x)dx < R, < ff(x)dx
n+1 n

And so,

Sn+foof(x)dx < S < Sn+foof(x)dx
n+1 n
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Riemann Zeta Functions (p-Series)
Definition

The Riemann Zeta Function is defined by the equivalent integral and summation forms:

1 (2! 1 1
((x)zr(x)L et—ldt ((x)—zkx— +—+§+E+

The summation form of the function is often called a p-series (and p replaces x in the formula).

Zeta functions are generally difficult to evaluate from basic principles. An example of how one of
the world’s greatest mathematicians evaluated {(2) in 1735 is provided later in this chapter.
Positive Even Integers

Values of {(x) for positive even integer values of x in closed form (as rational expressions
involving i) have been calculated by mathematicians. The formula for these is:

|Bx|(2m)*

(x)=—""—"— where B, is the x-th Bernoulli Number. By=1
2(x!) T 1
The decimal approximations below were developed from up to 14 million terms B, = — 2
of the p-series using the Algebra App available at www.mathguy.us. N 1
, ==
6
Some values of {(x) for positive even integer values of x are: B;=0
1
_ B, =——
((2) = o= 1.644933966 ... {((8) = 5150 = 1.004077356 ... 4 30
Bs =0
nt 10
{(4) = — = 1.082323233 ... ((10) = = 1.000994575 ... 1
90 93555 By = —
42
_m® _egm'? B, =0
{(6) = oiE = 1.017343061 .. ((12) = P 1.000246086 ... 1
B —_
8 30
Positive Odd Integers By =0 :
B -
Values of {(x) for positive odd integer values of x do not have a general 766
formula, but can be approximated. B11 =0 o1
B, = ———
¢(1) diverges ¢(7) = 1.008349277 ... 12 2730
{(3) = 1.202056903 ... {(9) = 1.002008392...
{(5) = 1.036927755 ... {(11) = 1.000494188...
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Series

Analytic Continuation

Consider the following development:

lett: P=1-1+1-1+41—--

P = 1—-14+1—-1+4+--
2P = 1
P_1

2

Next,

let: Q=1-2+3—-4+5—--
Q= 1—-2+4+3—-4+--

20=1-1+1-14+1—--

2 —P—1
e=Fr=3
1
Q_4
Then,
Let: S= 1+2+3+4+5+6+-
—Q=-14+2-34+4—-546—--
S-Q= 44 8+ 124
S—Q = 4§
—Q = 3§
¢ 1 11 1
B 3Q_ 34 12
1
1+24+3+44+5+6+-- = -

And the Riemann Zeta Function value?

This result is consistent with the following

value of the Riemann Zeta Function:

1

(-1 = -

How is this possible? See the column to
the right for an explanation.
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Analytic Continuation

The results in the left-hand column are an
example of a concept introduced in Complex
Analysis (i.e., Calculus of Complex Variables)
called Analytic Continuation. Although the
results are correct for the value of the

function {(—1), we cannot conclude that:
1

12
Why? Because the series does not converge;

14243444546+ =

therefore, it does not have a value. What
does have a value is the function that
overlaps the series where the series
converges.

For values of p > 1, the Zeta Function and
the convergent p-series are equal:

Z(p):;k_p:;"_l”

The function also exists (i.e., continues) for
values of p for which the series diverges.
This is Analytic Continuation.

For another example, consider the following
function and series:
1
——=1+x+x2+x34+--
1—x
This series converges only for —1 < x < 1.
Yet, we can calculate the function value for
x = 2.
1
-2 !
This does not imply that:

1+2+22+23+..=-1

Again, the function continues where the
series does not.
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Euler’s Development of the Value of {(2)

Definition

(2)—2 _1eii i
¢ K2 17916

This is also a p-series with p = 2. A p-Series is defined as:

- 1
Z P p-series converge for p > 1 and diverge for p < 1.
k=1

Euler’s development gives us a glimpse of the extent of his genius. See if you agree.

Euler’s Development

1. Begin with the Maclaurin Expansion for: sin x.

x3 5 7 9

_ +x x+x
Sinx =x =gt e =7t g

2. We know that we can fit a curve of degree n through any set of n + 1 points. Euler proposed
that we consider the sine function to be a polynomial of infinite degree that goes through the
infinite number of points of the function.

Further, he noted that the zeros of the polynomial are the zeros of the sine function, i.e.,
0,+m, +2m, +3m, +4m .... So, the polynomial for sinx is an infinite product that looks like
the following, where c is some constant:

sinx =c x (x? —m?)(x? — 4n?)(x? — 9n?) (x? — 167?) ...

3. Divide each term on the right by a factor that results in 1’s before the x’s in each term.
Change the lead constant to reflect this. Let’s call the new lead constant k.

(x? —m?) (x? —4n?) (x? —9m?) (x? —16m?)
—? —472 —972 —16m?

x? x? x? x?
=k- 1-——){1l-——{1—-——]11-
x ( 7'[2) ( 4n2> ( 97r2> ( 16n2>

sinx =k-x
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4. Determine the value of k by dividing each side by x and evaluating the result at x = 0.

. sinx_k . x? . x? ) x? L x?
= x 2 412 Orr2 16m2 )™

Use L'Hospital’s Rule on the left side to determine that lirr&% = lirré
X— X—

CosXx

= 1. Then,
1=k(1)(1)(1).. so, k=1.
5. Rewrite the polynomial in Step 3 with k = 1.

x? x? x? x?
Sinx = X (1-;)(1—4—7_[2> <1 _W><1_ 167‘[2>

6. Let’s examine the coefficient of x3 in the equation in Step 5.

The coefficient of the x3 term in this product is obtained by multiplying x by the x* part of one
of the other terms and 1’s in the rest of the other terms. We sum the result of this across all of
the multiplied terms to get the following x3 term for the equation in Step 5:

< 1 1 1 1 ) 3
— — — — — [R—————— x
w2 4m? 9x?2  16m?

7. The x3 term in Step 1 must be equal to the x3 term in Step 6, since both represent the x3 term
in an expansion for sinx. Equating the two coefficients of x3 gives:

1 1 1 1 1

T3 Tn2 4m? 9z 16m?

8. Multiply both sides of the result in Step 7 by —m? to get:

G
6 1 4 9 16 =<
So,

(2)_001_112

¢2)= k2 6
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Bernoulli Numbers and the Riemann Zeta Function

Summation Formulas for Powers of Positive Integers

S
[u

So(n—1) = 1=14+1+-4+1=n =n
k=0
n-1
nn—-1 1 1
Si(n—1) = k=1+2+~-~+(n—1)=¥ =-n?—--n
2 2 2
k=0
= (n—1)2n—1) 1. 1. 1
n(n — n-—
Ss(n—1)= ) k*=12+22+-+(n—1)%2= =-nd—=-n?+-n
6 3 2 6
k=0
n-1 5 5
n“(n—1) 1 1 1
— = 3 —-13 3 — 3~ 7 —_nd__53 2
S;(n—1) k 1°+2°+-+ (-1 2 2 T +4n
k=0
= (n-1DC2n-1DG@n*-3n-1) 1 . 1 1 1
nmn— n— n-—osn-—
Sstn—1D= ) k*=1"+2"+-+(n-1*= =-n"—-nt+-n*——n
30 5 2 3 30

=
o

The coefficients of the “n” terms are called Bernoulli Numbers. A recursive formula for the
Bernoulli numbers is:

n
Bu= ) ()8 = =y ()8t () Bt (2 ) B+ (1) Bua 8
k=0

0=Bo+(7)Bi+(5) B+, n 5) Bu—z + MBu_y
n-—2

s == () () ()] == )

Then, we can calculate successive Bernoulli Numbers, starting with B, = 1 as:
BO = 1

1 1
1 2( 0) 2

S RSTTIES TS

B3=—%(1-BO+4-Bl+6-BZ)=—%[1-(1)+4-<—%)+6-(§)]=0

1 1 1 1 1
B,=—-(1-By+5'B,+10-B, +10-B,)=—=|1- (1) +5-(—==)+10-(=)+10-0[ = ——
4 5( ot 1t 2t 3) 5[ D+ < 2)+ <6)+ O] 30
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The blue numbers in the above formulas are the values from Pascal’s Triangle, excluding the last
two diagonal columns:

1
e
& 71
& T
1 5
1 6 1
1 7 21 1
1 8 28 8 1

B, =0 foreveryoddn > 1.

2n+1/2
Below are values of B,, for even values of n < 24. Note: |B,,| ~ 4m/e (%) as n— oo

5 1 B _ 1 5 - 7 5 _ 174611
276 87 30 e 20— 330

5 1 5 5 5 3617 o — 854513
T30 107 66 ™ 510 227 138

5 1 5 — 691 5 43867 5 _ 236364091
6742 1272730 187 798 24— 2730

Bernoulli Numbers relate to the Riemann Zeta Functions as follows:

111 |Bol (27)%"
k=1
(2)_21 1,11, (6)_21 t,1,1,
¢ k2127 22 32 6 ¢ ke~ 16" 26 36 945
k=1 k=1
(4)—511—1+1+1+ ot (8)_511 1,11 8
¢ Lkt 1F T 2R 90 ¢ Lk~ 18728738 9450

The function expands using Bernoulli Numbers as follows:

in PR S S
VN T e¥ T30 T
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Series Convergence Tests

Integral Test

Let ). a; be a positive series, and

let f(x) be a continuous, positive, decreasing function on [m, +o), m > 0, such that f(k) = a;
for every k = m. Then,

[oe)

a, converges if and only if f f(x) dx converges.
m

k=m
[+ ¢]

o
If the series converges, Z ay + J’ f(x)dx. Thatis, the sum of the series and the integral will
have different values. x=m m

Comparison Test

Let Y a, and ), b, be positive series. If there is an index m, beyond which a; < b, for every
k > m, then:
e If ) b, converges, so does ) ay.

e If ) a; diverges, so does ) by.

Limit Comparison Test

Let ) a, and ), b, be positive series such that 0 < lim Z—" < oo, Then:
n—-oo bp

e Y a; converges if and only if ), by, converges.

e ) a; diverges if and only if ) b, diverges.

Absolute and Conditional Convergence

e Y ay is absolutely convergent if Y.|a;| is convergent.

e Y ay is conditionally convergent if it is convergent but not absolutely convergent.

Term Rearrangement

e If aninfinite series is absolutely convergent, the terms can be rearranged without affecting
the resulting sum.

e If aninfinite series is conditionally convergent, a rearrangement of the terms may affect
the resulting sum.
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Ratio Test

Series

Let ), a, be a series. Then consider the n-th and (n + 1)-th terms:

Apy1

If lim

n—->oo

If lim

n—-oo

If lim

n—-oo

Example 13.3:

Determine whether the following series converges or diverges:

> 1, then: z a; is divergent.

(n+ 1)+t
Ratio = |t DU| _ Hmt onl
B n" - (n+ 1! nn
nl
_ (m+D™ (n+1)” B (1
— — = - =
Then,

Version 5.6

<1, then: Z a; is absolutely convergent.

= 1, then no conclusion about convergence or divergence can be drawn.

o0 kk
k!
k=1

_ (n+1)-(n+1)”.n!
B (n+1)-n! nn

nn

Since e > 1, the series diverges.
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Series

Root Test

Let ) a; be a series. Then consider the n-th term:
If lim Y/|a,| <1, then: z a, is absolutely convergent.
n—-oo

If lim %/|a,| > 1, then: Z a,, is divergent.
n—->oo

If lim 3/|a,| = 1, then no conclusion about convergence or divergence can be drawn.
n—oo

Example 13.4:

o)

2k + 3\*
Determine whether the following series converges or diverges: Z (3k n 2)

k=1

3
nf2n+3\"  2n+3 24y
Root = = < > = =
3n+2 3n+2 34 2
n
Then,
3
lim <3+72‘> = % <1 Since §< 1, the series converges.
n—oo =
n
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Dirichlet’s Convergence Test

Dirichlet’s Test
If Z a; has bounded partial sums and {v, } is a decreasing positive sequence with llm v, =0,

then the series Z(ak *1,) converges.
k=1
cosk
k

[ee]
Example 13.5: Prove that the series Z converges using Dirichlet’s Convergence Test.

k=1

. . . 1 .
Using the notation shown above, we will let a, = cosk, and v, = = We require only that

[oe]

E . .1
cos k be bounded since Illm - clearly decreases to 0.
—0C0
k=1

Start by proving the following Trigonometric identity:

sin (k +%) —sin (k — %)

cosk =

2 sin%
(sin k coss 1 + cos k sin ) (sm k cos — cos k sin 1) 2cosk sinl
= 2 I 2/ = T 2 = cosk v
2 smz 2 smi

Next, let’s look at the n-th Partial Sum in light of the above identity. Note that it telescopes:

n

ZCOSkzz":sin(k+%)—sin(k—%)

.1
k=1 k=1 2 sin
in (18 —sin (YY) sin(21) —sin(11 i DN _sin(n-1
_ sin (1 2) 1sm (2) N sin (2 2) 511n (1 2) o sin (n + 2) slm (n 2)
ZSil’li ZSinz ZSini
_ sin (n + %) — sin (%)
2 sin (%)
n
Note that sin (n + %) is bounded in the range [—1,1]. Therefore, Z cosk is bounded in the
—1—sin(%) 1—sin(%) =
range: , T~ |, and so the original series converges.
2 sin(z) 2 sin(z)
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Abel’s Convergence Test

Abel’s Test

Series

If z aj converges and {v; } is a monotonic bounded sequence, then the series Z(ak * V)

k=1
converges.

>, cos (%)

Example 13.6: Prove that the series Z 2
k=1

k=1

converges using Abel’s Convergence Test.

Using the notation shown above, we will let a;, = klz' and v, = cos <k1 ) We need to show that

a) Z — converges and b) cos <k12> is both monotonic and bounded.

First, identify Z 2 asap- series, with p = 2, so it converges.
k=1

1Y) .
Second, let’s look at some values of cos (?) in the table to the

right. The sequence is clearly monotonic and is bounded by the
value of cos0 = 1.

li ! 1
()

We have met both requirements of Abel’s Convergence Test, and
we can conclude that the given series converges.

Note: the series in this example could also have been determined
to be convergent (using the comparison test) by comparing it to a
p-series withp = 2.
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e
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Alternating Series

The general form for an Alternating Series that includes an error term is:

f(x) = z(_l)k_l Ay = a1 — Ayt az —ay +
k=1

Theorem: If the sequence, (a,,), is positive and non-increasing, and lim a,, = 0,

n—-oo
Then: Y (—1)*"1a, converges, and

If R, isthe n™"error term, then: |R,| < a, 4+

Error Term

The maximum error in a converging alternating series after n terms is term (—1)"a,,,,. Using
this, we can estimate the value of a series to a desired level of accuracy.

had -1 k-1
Example 13.7: Approximate the following sum to 4 decimal places: %
k=1
. . : . : G
We need to find term n + 1 to estimate the error. For the series provided, this term is prrER
The (—1)™ term simply indicates the direction of the error. The magnitude of the error is the
1
balance of the error term, i.e., Py

In order to find an approximation of the series to 4 decimal places, we need an error less than
0.00005. So, we want:

< 0.00005

6n+1

We can solve this using logarithms or by taking successive powers of p Either way, we find:

%~ 0.0001286 > 0.00005 and 6—16~ 0.0000214 < 0.00005, so n+1 =6, andn = 5.

Using 5 terms of the alternating series, we find that the value of the sum to 4 decimal places is:

5

Z(_l)k_l _ 1 1.1 ! 1 01428755
6k 6 36 216 1296 7776

k=1

The actual value of the series is % ~ 0.1428571, so we can see that the desired level of accuracy

has been achieved.
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Absolute and Conditional Convergence

e ) ay is absolutely convergent if Y.|a,| is convergent.

e Y ay is conditionally convergent if it is convergent but not absolutely convergent.

Term Rearrangement

e If aninfinite series is absolutely convergent, the terms can be rearranged without affecting
the resulting sum.

e [f aninfinite series is conditionally convergent, a rearrangement of the terms may affect
the resulting sum.

More Theorems about Absolutely Convergent Series

The following theorems apply to absolutely convergent series (i.e., absolutely convergent
alternating series and convergent series of decreasing positive terms):

e The commutative law applies to terms in an absolutely convergent series; i.e., terms can be
rearranged without affecting the value of the series.

e Every sub-series of an absolutely convergent series is absolutely convergent; i.e., terms can
be omitted and the result is an absolutely convergent series.

e The sum, difference and product of absolutely convergent series are absolutely
convergent. Furthermore, if ) a; and ) b, are two absolutely convergent series such
that A=) a, and B =) by, then:

(0] Zak+2bk:A+B
(0] Zak_Zbk:A_B.
o ZakZbk=AB
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Radius and Interval of Convergence of Power Series

Consider the Power Series:

(ee]

f(x) = Z cp(x—a)"=cpt+ci(x—a)+c(x—a)® + c3(x—a)d + -

k=0

Definitions:

Center: The value a is called the center of the power series. Many power series have a
center of a = 0.

Coefficients: The values ¢, are called the coefficients of the power series.

Radius of Convergence: The series may converge for certain values of x and diverge for
other values of x. If the series converges for all values of x within a certain distance, R,
from q, i.e., for x on the interval (a — R, a + R), we call R the radius of convergence of the
series.

Interval of Convergence: The set of all values of x for which the power series converges is
called the interval of convergence of the series. The interval of convergence is closely
related to the radius of convergence; it includes the open interval (a — R,a + R), and may
also include one or both endpoints of that interval.

Finding the Radius and Interval of Convergence

The radius of convergence is found using the Ratio Test or the Root Test. To find the interval of
convergence, the series defined at each endpoint of the interval must be tested separately.

1 .
Example 13.8: Consider the power series: —— =1 — x + x? — x% + - = T[ —1)"x*
1+x £

Using the Ratio Test, we find:

. a
lim

n—-oo

(_1)n+1xn+1
————| =lim|x| <1 .. intheopeninterval:x € (—1,1).

n—-oo

= lim
n—oo (—1)nxn

an

So, this series has a radius of convergence: R = 1 about a center of x = 0.

To find the interval of convergence of the series, we must test the endpoints, i.e., x = +1.

1 . .
When x = 1, we get T 1—1+1%—1%+ -, which diverges.

1 i .
When x = —1, we get P 1+ 1+ 1%+ 1%+ -, which also diverges.

The interval of convergence, then, is (—1,1). It does not include either endpoint.
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Differentiating or Integrating Power Series

When differentiating or integrating a Power Series, we differentiate or integrate term-by-term.

1
Example 13.9: Integrate the power series: P 1—x+x2—x3+--

f ! dx=f(1—x+x2—x3+---)dx
1+x

1 1 1
=x—§x2+§x3—1x4+---+6

The result of the integration turns out to be the power series for In(1 + x), plus a constant,
which we would expect to be the case because:

1
j1+xdx—ln(1+x)+C.

Theorem: Differentiation of a Power Series
If a function f is defined by a power series with radius of convergence R, then:

e f is differentiable on the open interval defined by R.

e f'(x)is found by term-by-term differentiation of the power series for f.

e The resulting power series for f’ also has radius of convergence R.

e The interval of convergence of f” may be the same as that for f, or it may lose either or
both endpoints.

Theorem: Integration of a Power Series
If a function f is defined by a power series with radius of convergence R, then:

e F(x) = [ f(x)dxisfound by term-by-term integration of the power series for f.

e The resulting power series for F also has radius of convergence R.

e The interval of convergence of F may be the same as that for f, or it may gain either or
both endpoints.

Differentiation: f'(x) 7 ™ Integration: F(x) = [ f(x)dx
Term-by-term differentiation. . Term-by-term integration.
Relative
Has same Ratio of Convergence. ™ to f(x) ) Has same Ratio of Convergence.
Interval of Convergence may lose Interval of Convergence may gain
one or both endpoints. - one or both endpoints.
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Chapter 13 Series

Example 13.10: The Maclaurin Series for —— is:
1+x

1
——=1—-x+x2—-x34+--
1+x

As shown on a previous page, its interval of convergence is (—1,1).

Integrating term-by-term we get:

1
fl_l_xdx=f(1—x+x2—x3+--~)dx
_ 12,13 1 4 _ no1 X"
In(I+x)+C=x—sx"+x° = x"++C =C+ (-1) o

n=1

For the new series, In(1 + x) + C, note that “+C” has no impact on whether the series converges
or diverges at any point. Then,

Using the Ratio Test, we find:

An+1
an

=lim|

n—-oo

7ll_r)glo % = Tlll_)rrgo |x% = Ai_{golxl <1 .. intheopen
interval: x € (—1,1).

So, this series also has a radius of convergence R = 1 about a center of x = 0.

To find the interval of convergence of the series, we must test the endpoints, i.e.,, x = +1.
Whenx =1,weget In2=1— % + % — i + ---, which converges by the alternating series

test.

Whenx = —-1,weget In0=-1—-—-— i — ---, which diverges (it is the negative

harmonic series, and In 0 is undefined).

The interval of convergence, then, is (—1, 1]. It includes the right endpoint.

Conclusion: In the case of this example, the interval of convergence of the integrated series picks
up the endpoint at x = 1.
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Series

McCartin Table: Summary of Basic Tests for Series

Conditions for

Conditions for

Test Series Form . Comments
Convergence Divergence
n-th term (tests for i lim a, = This test should
— 00 .
divergence only) E a, reo?uired, but not 111_1;{)10 a, #0 always be
n=1 sufficient performed first.

Telescoping ©
Series E(an — Qp1) 111_1)130 ay is finite 1%1_}1’210 a, not finite S=a;— rlll—>r£10 a,
17,) n=1
R
E Geometric d a
T | Series (a #0) Z ar™ 1 rl <1 Ir| > 1 S = —
8 n=1
& o
p-Series 21 1
_ ™
_ < — =
an’ p>1 p=1 Zn?’ <@
n=1 n=1
Alternating Series © Remainder:
(0 < per < an) DD ey | lmay=0 [ im0
n=1
continuous, and 2 a f f(x)dx f f(x)dx o0
) n 1 1
decreasin 0<R,< J- f(x)dx
g) n=1 converges (2) diverges "k

Comparison
(ap, > 0,b, > 0)

[M1s
2

Comparison of a,
and b,, need only
exist for n beyond

n=1 .
~ by some index m.
. . . a
Limit Comparison " 0 < lim =2 < oo lim b_n >0 Could use lim 2=
(a, > 0,b, > 0) a - n—-0 bp Oon_’oo n n—oo Zn
n instead of lim =
n=1 Z b, converges Z b, diverges n=ee
- - in the conditions.
n=1 n=1
Ratio o lim %] < 1 Test inconclusive if:
a . a
~ (absolute noel A n-o | ay
convergence) Use another test.
Root - lim W <1 Test inconclusive if:
00 . n .
2 ap " lim {/|a,| >1 lim Y|a,| = 1.
— (absolute noe n-co
n= convergence) Use another test.

Notes: (1) Riemann zeta function.
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Chapter 14 Taylor and Maclaurin Series

Taylor and Maclaurin Series

Taylor Series

A Taylor series is an expansion of a function around a given value of x. Generally, it has the
following form around the point x = a:

(00

()
fa =YD 6 ay = pay +

k!
k=0

Maclaurin Series

A Maclaurin series is a Taylor Series around the value x = 0. Generally, it has the following
form:

= £(0) +1 1(,0) w20 2 7O

3
21 3 Ot

2 (0
fay =0

k=0

Find the Maclaurin expansion for f(x) = e*:

f=e*  fO)=e=1
fo=ex  fO)=e"=1
fr@=e* [0 =e" =1

fMx)=e* fM™M0O)=e=1

Substituting these values into the Maclaurin expansion formula (and recalling that 0! = 1) we
get:

© - x?>  x3 x* B xk
e = +X+E+§+E+“'—ZE
k=0
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Find the Maclaurin expansion for f(x) = In(1 + x):

f(x) = In(1 +x) £(0) = In(140) = 0
1
f(x)=r f(0)=m=1
1 1
f(x)=—m f(0)=—m=—1=—1!
2
" =T 1O =g =2 =2
P(x) = © v) = = = —3!
f (X)__m f ()——m—— = =3
(n—1)!

O = DM e

fMO) = (D" (n—1)!

Taylor and Maclaurin Series

Substituting these values into the Maclaurin expansion formula, we get:

- -1 2! 3 -3,
ln(1+x)—x+7x +3 +Tx 4ot

B x2+x3 x4+x —I—

- 3 45

Taylor Series Convergence Theorem

(=D (n - 1!

n!

Z( 1)71 1

xn

A Taylor Series for a function f(x) that has derivatives of all orders on an open interval
centered at x = a converges if and only if:

f(n+1)( )

llm R (X) = hm W

(x —

n+1:0

The term R,,(x) is called the Lagrange Remainder; x* is the value of x that produces the
greatest value off("“) (x) between a and x. See more on the Lagrange Remainder on the

next page.
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Chapter 14 Taylor and Maclaurin Series

LaGrange Remainder

The form for a Taylor Series about x = a that includes an error term is:

= F )
Fo0 =YD Gyt ry0

k!
k=0
" (n)
=f(a)+ f'(a)(x —a) + ! 2(!a) (x—a)?+ -+ f(n§!a) (x—a)™+ R, (x)
The term R,,(x) is called the Lagrange Remainder, and has the form:
f(n+1) (x*) -
Rn(x) = m(x —a)"*!

where x* produces the greatest value off(”“) (x) between a and x.

This form is typically used to approximate the value of a series to a desired level of accuracy.

Approximate Ve using five terms of the Maclaurin Series (i.e., the Taylor Series
about x = 0) for e* and estimate the maximum error in the estimate.

. . 1
Using five terms and letting x = - we get:

X2 3 4
X — - J— JR—
e —1+x+2!+3!+4!+R4(x)
N2 N VG
61/2~1+l+(7) +(§) +(§) = 1+l+l+i+i= 1.6484375
2 2! 3! 4! 2 8 48 384

To find the maximum potential error in this estimate, calculate:

ASCD

Ry(x) = — x5 for x = % and x* between 0 and %

Since f(x) = e¥, the fifth derivative of f is: f(5)(x) = e*. The maximum value of this

1 1
between x =0 and x = > occurs at x = > Then,

%) (1) = e'/2 < 1.65 based on our estimate of 1.6484375 above (we will check this
2

after completing our estimate of the maximum error). Combining all of this,
1
R (1) = ” (7) (1)5 < 1.65 (1)5 = 0.0004297
*\2) 7 5 \2 50 \2)
Note that the maximum value of Ve, then, is 1.6484375 + 0.0004297 = 1.6488672, which is

less than the 1.65 used in calculating R, G), so our estimate is good. The actual value of Ve is
1.6487212 ....
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Chapter 15 Cool Stuff

What is “e”’?

e Euler's number, e is the base of the natural logarithms.
e eisatranscendental number, meaning that it is not the root of any polynomial with
integer coefficients.

What Makes “e” so Special?

e shows up over and over in mathematics, especially in regard to limits, derivatives, and
integrals. In particular, it is noteworthy that:

— tim (1 1\" . n d . edx_l

e=lim (1+;) e—nzﬁz(ﬁ) o =e fl7—
1 an a

lim(1+—) =e'/p

n-oo bn

Perhaps, most interestingly, the following equation, called Euler’s Equation, relates five
seemingly unrelated mathematical constants to each other.

e"4+1=0

Some Series Representations of e
There are many more series involving e.

A sampling of these is provided at:

1 11 1 1
e=zﬁ=1+1+—+—+—+—+---
k=0

2 6 24 120 http://mathworld.wolfram.com/e.html.
0 -1
[Z (_”k] :
e = =
k! 1 1 1 1
k=0 1-1+5-g+zz- 120+

Decimal Expansion

e =2.7 1828 1828 4590 4523 5360 2874 7135 2662 4977 5724 7093 6999 5957 4966 ...

The web site http://antwrp.gsfc.nasa.gov/htmltest/gifcity/e.2mil shows the decimal expansion
of e to over 2 million digits.
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Derivation of Euler’s Formula by Integration

Start with: y = cosx +isinx [note that (0, 1) is a point on this function]

Then: dy = (—sinx +icosx) dx

dy = (icosx — sinx) dx

dy =iy dx
L~ idx
y

Integrate: fdyy = [idx
Iny=ix+C [note that C = 0 since (0, 1) is a point on this function]

y=e¢

Final Result: e* = cosx +isinx

Very Cool Sub-Case
When x = m, Euler’s equation becomes:
e™ = cosmw+isinm

or, el™ = —1 Note that this will allow us to calculate
logarithms of negative numbers.

Rewriting this provides an equation that relates five of the most important mathematical
constants to each other:

emT+1=10

Version 5.6 Page 173 of 242 April 8, 2023



Chapter 15 Cool Stuff

Derivation of Euler’s Formula Using Power Series

A Power Series about zero is an infinite series of the form:

flx) = Z apx™ = ay + a;x + ax® + azxd + -

n=0

Many mathematical functions can be expressed as power series. Of particular interest in
deriving Euler’s Identity are the following:

. - © (—1)nx2n+1 - x3 +x5 x7 )
A= , " (Zn+ 1)) IR TRLTRNT
n=
B «© (_1)nx2n . xZ N x4 x6 N
cosx = e T TR TR
n=
* ix 1+ +x2+x3+x4+x5+x6+x7+
= —_— = X J— J— R J— R
! 20731 4 s el T
Then, we have:
| - ( ) . 1) (_1)nx2n+1 . i-x3+i-x5 i-x7+
1-SIn(x) =1- _— =X — —
L (2n+1)! 3 51 71
~ had (—=1)"x2" _. 2 +x4 X6 )
cosx = T eml 2 A
n=
. = (0" x? i-x3 x* Qx> x® i-x7
¢ —ZO T TR TR TR I TR TR
n=
X2 x4— 6 3 xS 7
X — _ —_— .o — JE—
e —(1 TR >+L(x 3'+5! Tt )
This implies:
ei* — cos x + isinx and,substitutingx=7‘ryiel(:s: ™1 1= 0
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Logarithms of Negative Real Numbers and Complex Numbers

Natural Logarithm of a Negative Real Number

From Euler’s Formula, we have:
el™ = —1
Taking the natural logarithm of both sides gives:

Ine™ = In(—1)  whichimpliesthat i = In(—1)
Next, let x be a positive real number. Then:

In(—x) =In(—=1-x) =In(—-1) + Inx

In(—x) =imr+Inx

Logarithm (Any Base) of a Negative Real Number

To calculate log,(—x), use the change of base formula: log,(m) = 11(;?1;'
In(—x)
Let the new base be e to get: log,(—x) = nb
1 _im+Inx
0gy(—x) = ——

Logarithm of a Complex Number (Principal Value)

Define z = x + iy in polar formas: z = re'®, where r = \/x2 + y2 is the modulus (i.e.,

magnitude) of zand # = tan™! (%) is the argument (i.e., angle), in radians, of complex number

z. Then,
Inr+i0

Inz=In(re) =Inr+i0 and log,z=———
nz=In(re?)=Inr +i an 08,z -

where, {—7 < 6 < 1}
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What Is i’ (i to the power of i)

Start with: e+ 1=0 (Euler’s Formula — special case)

Then: el™ = —1
Ve = 7T
!
(™) 2 _
ein/z —
. i ]
(eln/Z) = il
eizﬂ/z — ii

e_n/Z = ii

Calculate e /2 to obtain:

o 1
ii=e /2 ~ 0.20788 ~ =

So we see that it is possible to take an imaginary number to an imaginary power and return to the realm
of real numbers.
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Derivative of e to a Complex Power (e?)

Start with: z=x+1y

e = cosy +isiny

Then: e? = e*™ = e*e" = e*(cosy + isiny)

Cauchy-Riemann Equations

A complex function, f(z) = u(x,y) +i-v(x,y), is differentiable at point z = z, if and only if
the functions u and v are differentiable and:

du(z,)  0v(zo) d du(zo)  0v(2)
ox 0y an dy 0x

These are called the Cauchy-Riemann Equations for the functions u and v:

ou _ v d ou _ v ' Cartesian f

e % an 3y =~ in Cartesian form
u _ ov q ou _ ov 1 Polar f

rar—ae an 50 = rar in Polar form

Derivative of e”
For a differentiable complex function, f(z) = u(x,y) +i-v(x,y):

df_(au _017):(017 _6u>

E— a‘*‘la E—l@

Then, let f(z) = e* = e*(cosy + isiny):

u=e*-cosy and v=-e* siny

d 0 0
E(ez) =a(ex-cosy)+ia(ex-siny) =e*-cosy+i-e*-siny=e?

d
So, — (e#) = e?. Cool, huh?
dz
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Derivatives of a Circle

The general equation of a circle centered at the Origin is: x? + y? = r?, where r is the radius

of the circle.
First Derivative
x?+y? =

Note that 72 is a constant, so its derivative is zero. Using Implicit Differentiation (with respect
to x), we get:

dy
2 2y —=0
x+ 2y dx
dy «x
dx vy

Second Derivative

We have a couple of options at this point. We could do implicit differentiation on

d a
2x + 2y - 2= 0, but given the simplicity of 2= f, let’s work from there.
dx dx y
dy  x
dx vy
Use the Quotient Rule, simplify and substitute in z_y = —= |n the expression.
- x —— v +
d?y (x) y [P+
dx?2 yz y3

Notice that the numerator is equal to the left hand side of the equation of the circle. We can
simplify the expression for the second derivative by substituting 72 for x2 + y? to get:

d’y r
dx2 y3
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Derivatives of an Ellipse

x2 2
The general equation of an ellipse centered at the Origin is: pr + Z—z = 1, where a is the

radius of the ellipse in the x-direction and b is the radius of the ellipse in the y-direction.

First Derivative

x2 2
= + % =1 which can also be written b?x? + a’y? = a®b?

Note that a?b? is a constant, so its derivative is zero. Using Implicit Differentiation (with
respect to x), we get:

dy
2b%x + 2a’y-—=0
y dx
dy  b*x
dx a2y
Second Derivative
: L dy b’x d’y
Given the simplicity of — = — ——, let’s work from there to calculate —.
dx a2y dx?
dy  b’x  b? (x)
dx  a?y a’\y
. . L. dy b’x . .
Use the Quotient Rule, simplify and substitute in x = — E in the expression.

d d o (_bx a’y? | b’x?
d’y  b* y-ﬁ(x)—x-% _b? y x( azy) _ b a2y+a2y

dx2 a2 y2 T az y?2 a2 y2

b2 a2y2+b2x2
= _E —

azy?

Notice that the numerator inside the brackets is equal to the left hand side of the equation of

the ellipse. We can simplify this expression by substituting a?b? for a?y? + b%x? to get:
d’y  b*
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Derivatives of a Hyperbola

The general equation of a hyperbola with a vertical transverse axis, centered at the Origin is:

2 2
% — % = 1, where (£a, 0) are the vertices of the hyperbola.

First Derivative

———=1 which can also be written b%y? — a*x? = a®b?

Note that a?b? is a constant, so its derivative is zero. Using Implicit Differentiation (with
respect to x), we get:

d
2b2y-d—Z— 2a’x =0
d a’x
dy _ a*x
dx b2y

Second Derivative

d d?
Given the simplicity of 2= f, let’s work from there to calculate —y.
dx y dx?
dy a’x a’ (x)
dx b2y  b2\y
. . L. dy _ afx. .
Use the Quotient Rule, simplify and substitute in x = E in the expression.
2 2,,2 2,2
d dy _ (u) b’y? _a’x
dz_y:a_ZY'ﬁ(x)_x'a _a_Zy x bZy :a_Z b2y ~ b2y
dx2 b2 y2 b2 y2 b2 y2

a? [b2y? — a?x?
B ﬁl b?y3

Notice that the numerator inside the brackets is equal to the left hand side of the equation of
the hyperbola. We can simplify this expression by substituting a?b? for b%?y? — a?x? to get:

d’y a*

dx? ~ b%y3
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Derivative of: (x + y)3 = x3 + y3

Starting expression: (x+y)3=x3+y3

Expand the cubic of the binomial: x3+3x2y+3xy?+y3 =x3+y3
Subtract (x3 + y3) from both sides: 3x%y +3xy? =0

Divide both sides by 3: x?y+xy?2 =0

Investigate this expression:

(xty)y'=x"t+y

Factor it: xy(x+y)=0
Solutions are the three lines: x=0 y=0, y=—x
Note the slopes of these lines: undefined, 0, —1

Obtain the derivative:

Start with: x2y+xy?2 =0

icit di iation: 2. Y v 2 =
Implicit differentiation: (x —+ ny) 4+ (x 2y oty ) =0
Rearrange terms: (x2 + ny)z_i’ +(2xy +y3) =0

d d —(2xy+y?
Solve for 2. LA Z(2xy4y7)
dx dx x2+42xy

d —-y(2x+
Factored form: & M
dx x(x+2y)

Consider each solution separately:

d -vy(2-0
x = 0: & Zy(20+y) = undefined
dx 0(0+2y)

—0o: dy _ Z0@x+0) _
y==u dx  x(x+2:0)
__ dy _ x@x—%) _
y==x dx x(x—2x) N
Conclusion:

dy _ —yQ@x+y)
dx x(x+2y)
expression (x + y)3 = x3 + y3 (which is not a function). However, it is noteworthy, that

is an elegant way to describe the derivative of y with respect to x for the

this derivative can only take on three possible values (if we allow “undefined” to count as a
value) — undefined, 0 and —1.

Version 5.6 Page 181 of 242 April 8, 2023



Chapter 15 Cool Stuff

Inflection Points of the PDF of the Normal Distribution

The equation for the Probability Density Function (PDF) of the Normal Distribution is:

_ (-
e 202

1
P = o\V2m

where i and o are the mean and standard deviation of the distribution.

(1 e\ d o (x—p)?
P(")‘<ame i >ﬁ<_ 202 >

2(x — u))

202

P'(x) =P(x)- <—

1
P'(x) = ——- [P(0) - (x — ]

17 d d
P() = —— [P =W+ (=) (PG
1 1
P(x) = == |PGx) + (x—u)-(—;-P(x) - (x—u)>l
1 [ _ 2 P _ 2
P'(x) = == |P(x) = P(x) (xa—z“)l - g) I1 _@ 02")

Setting P''(x) = 0, and noting that P(x) # 0 for all values of x, we get:

2
x_

1 ¢ g)
o

=0 Sothat: x =pu+o.

Further, noting that the value of the second derivative changes signs at each of these values,
we conclude that inflection points existat x = u + o.

In English, the inflection points of the Probability Density Function of the Normal Distribution
exist at points one standard deviation above or below the mean.
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Key Definitions in Calculus

Absolute Maximum

See entry on Global Maximum. May also simply be called the “maximum.”

Absolute Minimum

See entry on Global Minimum. May also simply be called the “minimum.”

Antiderivative

Also called the indefinite integral of a function, f(x), an antiderivative of f(x) is a function
F(x), such that F'(x) = f(x) onaninterval of x.

The general antiderivative of f(x) is the antiderivative expressed as a function which includes
the addition of a constant C, which is called the constant of integration.

Example: F(x) = 2x3 is an antiderivative of f(x) = 6x? because F'(x) = f(x).

F(x) = 2x3 + C is the general antiderivative of f(x) = 6x? because F'(x) =
f (x) for all values of C.

Notation: the antiderivative of a function, f(x), is expressed as: F(x) = ff(x) dx.
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Ault Table

Key Definitions

Named for A’Laina Ault, the Math Department Chair at Damonte Ranch High School in Reno,

Nevada, an Ault Table is a chart that shows the signs and the behavior of a function and its

derivatives over key intervals of the independent variable (usually x or t). It is very useful in

curve sketching because it makes the process of finding extrema and inflection points relatively

easy.

1.

The steps to building an Ault Table are:

Calculate the first and second derivatives of the
function being considered. Additional derivatives may
be taken if needed.

Find the zeros of each derivative; these form the
interval endpoints for the table. Note that the zeros of
the first derivative are critical values, representing
potential maxima and minima, and the zeros of the
second derivative are potential inflection points.

Arrange the zeros of the first two derivatives in
numerical order, and create mutually exclusive open
intervals with the zeros as endpoints. If appropriate,
include intervals extending to —oo and/or oo,

Create a set of rows as shown in the table on the next
page. At this point the boxes in the table will be empty.

Determine the sign of each derivative in each interval
and record that information in the appropriate box
usinga “+” ora “—"“.

Use the signs determined in Step 5 to identify for each
interval a) whether the function is increasing or
decreasing (green lines in the table), b) whether the
first derivative is increasing or decreasing (red lines in
the table), c) whether the function is concave up or
down (bottom red line in the table), and d) the shape of
the curve on the interval.

f:s(t) position
s'(t) velocity

—3

s"(t) acceleration
-4

An Ault table facilitates the graphing
of a function like the one above:

s(t) =2t3-9t? + 12t- 4

From the information in the table, you can determine the location of all extrema and inflection

points of the curve. You can also determine where the speed is positive; the signs of both the

first and second derivatives are the same.

An example is provided on the next page:
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Example: develop an Ault Table for the function: s(t) = 2t> - 9t*> + 12t — 4

First find the key functions:

s(t) =2t3-9t? + 12t- 4

s'(t) = 6t? — 18t + 12

|s'(t)| = |6t? — 18t + 12|

s"(t) =12t — 18

Position function

Velocity function

Speed function

Acceleration function

Key Definitions

Next, find the function’s critical values, inflection points, and maybe a couple more points.

s(t) =2t3-9¢t% + 12t- 4

s'(t) =6(t—1)(t—2)

s"(t) = 6(2t — 3)

s(t) =2t3-9t? + 12t- 4

s(0) = —4

s'(t) =0 = Critical Values of t are: t = {1, 2}
Critical Points are: {(1,1),(2,0)}

s"”(t) =0 = Inflection Pointat: t = 1.5

Then, build an Ault Table with intervals separated by the key values:

Key values of t that define the intervals in the table are t = {1, 1.5, 2}

s(3) =5, just to get another point to plot

Note: Identify the signs (i.e., “+, “—*) first. The word descriptors are based on the signs.

s(t) =2t3 - 9t? + 12t- 4
(0,1) (1,1.5) (1.5,2) (2, )
s(t) increasing decreasing decreasing increasing
70 << | > — |
and is: decreasing decreasing increasing increasing
s"(®) - S > ¥
so s(t) is: concave down concave down concave up concave up
Curve
Shape

Results. This function has:

e Amaximumat t = 1.

e Aminimumat t = 2.
e Aninflection pointat t = 1.5.
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Concavity T

A function, f, is concave upward on an interval if f’(x) is increasing T | Concve
on the interval, i.e., if f''(x) > 0. Downard

A function, f, is concave downward on an interval if f’(c) is
decreasing on the interval, i.e., if f''(x) < 0.

7

Discontinugus
-2+—atHoles

c. limf(x)=f(c)

d. If x = a is an endpoint, then the limit

4

T Inflection
Concavity changes at inflection points, from upward to downward or poirt St
from downward to upward.
Continuity ,
A function, f, is continuous at x = c iff: Discontinuous : >T
at vertical
a. f(c)is defined, asymptote T\ : I I =
b. lim f(x) exists, and T I S
xX—=C |
|
|
|
|

need only exist from the left or the right.
The curve shown is continuous everywhere

Basically, the function value and limit at a point  cycept at the holes and the vertical asymptote.
must both exist and be equal to each other.

Critical Numbers or Critical Values (and Critical Points)

If a function, f, is defined at c, then the critical
numbers (also called critical values) of f are x-
values where f’(c) = 0 and where f’(c) does not
exist (i.e., f is not differentiable at c). This includes
x-values where the slope of the curve is horizontal,
and where cusps and discontinuities exist in an
interval.

o Relative Maximum;

| I'(x) does not exist
Relative Maximum
r(x)=0

The points where the critical numbers exist are
called critical points. Note: endpoints are excluded
from this definition, but must also be tested in cases
where the student seeks an absolute (i.e., global) maximum or minimum of an interval.
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Decreasing Function

A function, f, is decreasing on an interval if for any two values in the interval, a and b, with a <
b, itis true that f(a) > f(b).

Function is
Increasing

} } } } } f } } } i } } } } } }
2 N 2 1 &
Functionis /| \_/
Increasing Function is

- Decreasing

Degree of a Differential Equation

The degree of a differential equation is the power of the highest derivative term in the
equation. Contrast this with the order of a differential equation.

Examples:
d%y (dy) B B
> ozt 4 1) T4y =0 Degree = 1

2.2 3
> (ﬂ) + (ﬂ) =y + ax(x* + y?) Degree = 2

dx? dx
5 2
d* d3
> 3 (d—xil) + (d_x);) — 2y =2cosx Degree = 5
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Derivative

The measure of the slope of a curve at each point along the curve. The derivative of a function
I . d . .

f(x) is itself a function, generally denoted f'(x) or d—z. The derivative provides the

instantaneous rate of change of a function at the point at which it is measured.

The derivative function is given by either of the two following limits, which are equivalent:

i fx+h)—f(x) _ f)=f()
im lim—————

h—0 h x=c xX—cC

In the figure below, the derivative of the curve f(x) = V25 — x? at (—3,4) is the slope of the
tangent line at (=3, 4), which is %.

Differentiable

A function is differentiable at a point, if a T
derivative can be taken at that point. A
function is not differentiable at any x-value
that is not in its domain, at discontinuities, at
sharp turns and where the curve is vertical.

To find where a function is not differentiable

by inspection, look for points of discontinuity,

sharp turns, and vertical slopes in the curve.
In the curve shown at right, the curve is not
differentiable at the points of discontinuity 2T
(x = 5) nor at the cusp (x = 2).
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Differential

Consider a function f(x), that is differentiable on an open interval around x. Ax and Ay
represent small changes in the variables x and y around x on f. Then,

® The differential of x is denoted as dx, and dx = Ax.
® The differential of y is denoted as dy, and dy = f'(x) - dx

e Ay isthe actual change is y resulting from a change in x of Ax. dy is an approximation
of Ay.

(x+Ax, y+Ay)

Differential Equation
An equation which includes variables and one or more of their derivatives.

An ordinary differential equation (ODE) is a differential equation that includes an independent
variable (e.g., x), a dependent variable (e. g., ¥), and one or more derivatives of the dependent
dy d?y d3y

varaiable, (e.g., Tt el

etc.).

If the differential equation includes partial derivatives, it is a partial differential equation (PDE),
and not an ordinary differential equation. See Chapter 10 for more definitions.

Examples:
dy x « dy 2 2
— = »p — =
O e i y + ax(x* + y*)
>1(ﬂ)+xﬂ+1—o >\>3(@)+ﬂ 2y =2
4 \dx? dx a dx? dx y = acosx
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Displacement

Displacement is a measure of the shortest path between two points. So if you start at Point A and end
at Point B, the length of the line segment connecting them is the displacement.

To get displacement from velocity:

» Integrate velocity over the entire interval, without any breaks.

Distance =
length of green path

Distance

Distance is a measure of the length of the path taken to get from one point to another. So, traveling
backward adds to distance and reduces displacement.

To get distance from velocity, over an interval [a, b]:

» Integrate velocity over the [a, b] in pieces, breaking it up at each point where velocity
changes sign from "+ " to "-" orfrom "-" to "+ ".

» Take the absolute value of each separate definite integral to get the distance for that
interval.

» Add the distances over each interval to get the total distance.
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e

Key Definitions

e is the base of the natural logarithms. Itis a transcendental number, meaning that it is not the

root of any polynomial with integer coefficients.

_ 1\" _ n d
e=hm(1+;) e=11m< ) —(e*) =e*

n—oo n—oo n nl dx

—il—1+1+1+1+1+1+
T Lk T 2767 24" 120

o) -1
(D" 1
\Z k!] ] LR

1
I=1+g-g+tm—120t "

N

Euler’s Equation:

e'™ + 1 = 0 shows the interconnection of five seemingly unrelated mathematical constants.

Decimal Expansion of e:

e =2.7 1828 1828 4590 4523 5360 2874 7135 2662 4977 5724 7093 6999 5957 4966 ...

The web site http://antwrp.gsfc.nasa.gov/htmltest/gifcity/e.2mil shows the decimal

expansion of e to over 2 million digits.
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Global Maximum

A global maximum is the function value at point ¢ on an interval if f(x) < f(c) forall x in the
interval. Thatis, f(c) is a global maximum if there is an interval containing ¢ where f(¢) is the
greatest value in the interval. Note that the interval may contain multiple relative maxima but
only one global maximum.

Global Maximum

2L

Global Minimum

A global minimum is the function value at point ¢ on an interval if f(x) > f(c) for all x in the
interval. Thatis, f(c) is a global minimum if there is an interval containing ¢ where f(c) is the
least value in the interval. Note that the interval may contain multiple relative minima but only
one global minimum.

Horizontal Asymptote T

If: horizontal asymptote

lim f(x) =L, or
X—00

lim f(x) =1L,
X——00

thentheline y =1L isa Lo
horizontal asymptote of f. 1
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Hyperbolic Functions

Key Definitions

The set of hyperbolic functions relate to the unit hyperbola in much the same way that
trigonometric functions relate to the unit circle. Hyperbolic functions have the same shorthand
names as their corresponding trigonometric functions, but with an “h” at the end of the name
to indicate that the function is hyperbolic. The names are read “hyperbolic sine,” “hyperbolic

cosine,” etc.

e —e™*
sinh x =
2
h e*+e™*
coshx =
2

X _ o™X
tanhx = ———
e*+e™*
e*+e™*

cothx =
X e—x

sechx =

cschx =
e

f(x) = cosh(x)

h(x) = tanh(x)

f(x) = sech(x)

h(x) = coth(x)

g(x) = sinh(x)

2 g(x) = csch(x)

Increasing Function

A function, f, is increasing on an

Function is

interval if for any two values in the ————

interval, a and b, with a < b, it is

true that f(a) < f(b).
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Inflection Point

An inflection point is a location on a curve
where concavity changes from upward to
downward or from downward to upward.

At an inflection point, the curve has a tangent
line and f"(x) = 0 or f”"(x) does not exist.

However, it is not necessarily true that if
f"(x) = 0, then there is an inflection point at
X = c.

Inverse Function

Two functions f(x) and g(x) are inverses if and only if:
e f(g(x)) = x forevery x inthe domain of g, and
e g(f(x)) =x forevery x inthe domain of f.

Important points about inverse functions:

e Each function is a reflection of the other over the

line y = x.

e The domain of each function is the range of the
other. Sometimes a domain restriction is needed

to make this happen.

e Iff(a) =b,then f71(b) = a.

Key Definitions

Inflection
Point

:7:2::/:

e The slopes of inverse functions at a given value of x are reciprocals.

Local Maximum

See entry on Relative Maximum.

Local Minimum

See entry on Relative Minimum.
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Monotonic Function

Key Definitions

A function f is monotonic if it is either entirely non-increasing or entirely non-decreasing. The

derivative of a monotonic function never changes sign.

A strictly monotonic function is either entirely increasing or entirely decreasing. The derivative
of a strictly monotonic function is either always positive or always negative. Strictly monotonic

functions are also one-to-one.

Monotonic
Function

/

=1

Natural Exponential Function

Strictly
Monotonic
Function

The natural exponential function is defined as:
f(x) =e”*.

It is the inverse of the natural logarithmic function.

Natural Logarithmic Function

The natural logarithmic function is defined as:

*1
lnx=J —dt, x>0.
1 t

The base of the natural logarithm is e. So,

Inx =log, x
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One-to-One Function
A function f is one-to-one if:
e for every x in the domain of f, there is exactly one y such that f(x) = y, and

e for every yin the range of f, there is exactly one x such that f(x) = y.

A function has an inverse if and only if it is one-to-one. One-to-one functions are also
monotonic. Monotonic functions are not necessarily one-to-one, but strictly monotonic
functions are necessarily one-to-one.

Order of a Differential Equation

The order of a differential equation is the highest derivative that occurs in the equation.
Contrast this with the degree of a differential equation.

Examples:
d*y (dzy) B N
> o +4 z) T4y =0 Order = 4
dy _ 2 2
>E—y+ax(x + y%) Order =1

2
> 3(%)+%—2y=2cosx Order = 2
X

Ordinary Differential Equation (ODE)

An ordinary differential equation is one that involves a single independent variable.

Examples of ODEs: Not ODEs (Partial Differential Equations):
d*y d?y 9z 9%z 9’z
> —+4 (—) 4y = z_22,%22_
dx* t dx? +4y =0 > at  ox? + ay? z
d
> T=y+ax(x®+y?) PRIV g o
X ox dy ox ady
2
>3(d—}2]>+ﬂ—2y=2cosx >6_u_62_u
dx”/ ~ dx ot ox2
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Partial Differential Equation (PDE)
A partial differential equation is one that involves more than one independent variable.
Examples of PDEs:

« 0z %z 9%z
> — = —4 —=

= + —Z

at  9xZ  9y?
« ou ov v Ju
»p —=— and — = ——

dx ay dx ay
« Ou 9%u
ryo—=—

at  ox?

Position Function

A position function is a function that provides the location (i.e., position) of a point moving in a
straight line, in a plane or in space. The position function is often denoted s(t), where t is time,
the independent variable. When position is identified along a straight line, we have:

s(t) Position function

s'(t) Velocity function (rate of change in position; may be positive, negative, or zero)
|s'(t)]  Speed function (absolute value of velocity; it is zero or positive by definition)
s"'(t) Acceleration function (rate of change in velocity)

s""(t)  Jerk function (rate of change in acceleration)

Note that the inverse relationships hold for the functions as well. For example, consider the position
function s(t) and the velocity funtion v(t):

v(t) =s'(t) and s(t) = f v(t) dt

General Case of Integrating the Position Function in Problems Involving Gravity
Given intial position s(0), and intial velocity v(0), the position function is given as:
s(t) = —16t? + v(0)t + s(0) where all functions involve the units feet and seconds.

Note: The force of gravity is —32 ft/sec? or —9.8 m/sec?.
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Relative Maximum

A relative maximum is the function value at
point ¢ in an open interval if f(c —3§) <
f(c) and f(c+6) < f(c) for arbitrarily
small §. Thatis, f(c) is a relative maximum
if there is an open interval containing ¢
where f(c) is the greatest value in the
interval.

Relative Minimum

Key Definitions

8

Relative Maximum

fE)=0

Relative Maximum;
f'(x) does not exist

A relative minimum is the function value at point ¢ in an open interval if f(c —&) > f(c) and
f(c+8) > f(c) forarbitrarily small §. Thatiis, f(c) is a relative minimum if there is an open

interval containing ¢ where f(c) is the least value in the interval.

Riemann Integral

If Y7, f(x;) - Ax; is a Riemann Sum (see the entry on “Riemann Sum” below), then the

corresponding definite integral, f;f(x)dx is called the Riemann Integral of f(x) on the

interval [a, b]. Riemann Integrals in one, two and three dimensions are:

max Ax; -0

jbf(x) dx = lim zn:f(xlf*) - Ax;

[[ranaa=_jm > reiyn-oa
i=1

max AA; -

max AV; -0

n
([ revarar=_gim > ez an
i=1
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Riemann Sum

A Riemann Sum is the sum of the areas of a set of rectangles that can be used to approximate
the area under a curve over a closed interval.

Consider a closed interval [a, b] on x that is partitioned into n sub-intervals of lengths
Axy, Ax,, Axs;, ... Ax,. Let x; be any value of x on the i-th sub-interval. Then, the Riemann
Sum is given by:

5= if(x;‘) - Ax,

A graphical representation of a Riemann sum
on the interval [2, 5] is provided at right.

Note that the area under a curve from x = a
to x =0b is:

max Ax; -0

lim if(x{“) cAx; = fbf(x)dx
i=1 a

The largest Ax; is called the mesh size of the partition. A typical Riemann Sum is developed
with all Ax; the same (i.e., constant mesh size), but this is not required. The resulting definite

integral, f: f(x)dx is called the Riemann Integral of f(x) on the interval [a, b].

Scalar Field

A Scalar Field in three dimensions provides a value at each point in space. For example, we can
measure the temperature at each point within an object. The temperature can be expressed as
T=p(x,y,z). (note: @ is the Greek letter phi, corresponding to the English letter “f”.)
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Separation of Variables

Separation of Variables is a technique used to assist in the solution of differential equations.
The process involves using algebra to collect all terms involving one variable on one side of an
equation and all terms involving the other variable on the other side of an equation.

Example:
dy Yy
Original differential equation: —_— = —
° E dx  2vx
dy dx
Revised form with variables separated: —_— =
y 24/x
Singularity

A singularity is a point at which a mathematical expression or other object is not defined or fails
to be well-behaved. Typically, singularities exist at discontinuities.

Example:

: o : 1 .
In evaluating the following integral, we notice that e /x does not exist at x = 0. We say,

1 . . . .
then, that e /% has a singularity at x = 0. Special techniques must often be employed to
solve integrals with singularities.

! 1
f e'/x dx

-1
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Slope Field

A slope field (also called a direction field) is a graphical representation of the slopes of a curve at
various points that are defined by a differential equation. Each position in the graph (i.e., each
point (x,y)) is represented by a line segment indicating the slope of the curve at that point.

dy ; .
Examples: —=e*"*cosx + sinx

d
—y =X 2 2
dx dx

- | ———
| —————
W] ———

A R T

R
. AN
=~ AR LR LN et SNENENENE LN

If you know a point on a curve and if you have its corresponding slope field diagram, you can
plot your point and then follow the slope lines to determine the curve. Slope field plotters are
available online at:

» http://www.mathscoop.com/calculus/differential-equations/slope-field-generator.php

» http://www.geogebratube.org/student/m42741

Vector Field

A Vector Field in three dimensions provides a vector at each point in space. For example, we
can measure a magnetic field (magnitude and direction of the magnetic force) at each pointin

space around a charged particle. The magnetic field can be expressed as M= l7(x, y,Z). Note
that the half-arrow over the letters M and V indicate that the function generates a vector field.
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Vertical Asymptote

Key Definitions

If lim f(x) = +oo or lim, f(x) = too, then the line x = ¢ is a vertical asymptote of f.
X—=C X—C

horizontal asymptote

| vertical
| asymptote
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Key Theorems in Calculus

Functions and Limits

Inverse Function Theorem

A function has an inverse function if and only if it is one-to-one.

Intermediate Value Theorem (IVT)

If
e afunction, f, is continuous on the closed interval [a, b], and
e disavalue between f(a) and f(b),

Then
e thereisavaluecin[a,b]suchthat f(c) =d.

Extreme Value Theorem (EVT)
If

e afunction, f, is continuous on the closed interval [a, b],
Then

e f has both an absolute maximum and an absolute minimum on [a, b].

Squeeze Theorem (Limits):

e g(x)<f(x)<h(x),and
. Li_l}}g(x) =L= }Ci_r}gh(x)

o Li_l}}f(x) =L

Version 5.6 Page 203 of 242

April 8, 2023



Appendix B Key Theorems

Differentiation

Rolle's Theorem

If
e afunction, f, is continuous on the closed interval [a, b], and
e fis differentiable on the open interval (a, b), and
o f(a) = f(b),

Then

e thereis at least one value c in (a, b) where f '(¢) = 0.

Mean Value Theorem (MVT)

If
e afunction, f, is continuous on the closed interval [a, b], and
e fis differentiable on the open interval (a, b),
Then
b)-f(a
e There is at least one value c in (a, b) where f'(c) = %

Increasing and Decreasing Interval Theorem

If
e afunction, f, is continuous on the closed interval [a, b], and
e fisdifferentiable on the open interval (a, b),

e If f'(x) > 0foreveryx € (a,b), then f is increasing on [a, b].
e If f'(x) <O0foreveryx € (a,b), then f is decreasing on [a, b].
o |If f'(x) = 0foreveryx € (a,b), then f is constant on [a, b].

Concave Interval Theorem
If
e afunction, f, is continuous on the closed interval [a, b], and
e f'(x) exists on the open interval (a, b),
Then
o If f'""(x) > 0foreveryx € (a,b), then f is concave upward on [a, b].
e If f""(x) < 0foreveryx € (a,b), then f is concave downward on [a, b].
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First Derivative Test (for finding extrema)

a function, f, is continuous on the open interval (a, b), and
c is a critical number € (a, b),
f is differentiable on the open interval (a, b), except possibly at c,

If £'(x) changes from positive to negative at ¢, then f(c) is a relative maximum.
If f'(x) changes from negative to positive at c, then f(c) is a relative minimum.

Second Derivative Test (for finding extrema)

a function, f, is continuous on the open interval (a, b), and
c € (a,b), and
f'(c) = 0and f"(c) exists,

If f'"(c) <0, then f(c) is a relative maximum.
If f'"(c) > 0, then f(c) is a relative minimum.

Inflection Point Theorem

a function, f, is continuous on the open interval (a, b), and
c € (a,b), and
f""(c) =0 or f"(c) does not exist,

(c, f(c)) may be an inflection point of f.

Inverse Function Continuity and Differentiability

a function, f, has an inverse,

If f is continuous on its domain, then so is f ~1 on its domain.

If f is increasing on its domain, then so is f~1 on its domain.

If f is decreasing on its domain, then so is f ~1 on its domain.

If f is differentiable on its domain, then so is f ! on its domain (wherever f'(x) # 0).
Note: this exception exists because the derivatives of f and f' are inverses.

Version 5.6 Page 205 of 242 April 8, 2023



Appendix B

Derivative of an Inverse Function

If
e afunction, f, is differentiable at x = a, and
e f hasaninverse function g, and

e f@=b,
Then
1
f'(a) = m (i.e., the derivatives of inverse functions are reciprocals).
Integration

First Fundamental Theorem of Calculus

If
e f(x)is acontinuous function on [a, b],
e F(x) is any antiderivative of f(x), then
Then

b
. f f()dx = F(b) - F(a)

Second Fundamental Theorem of Calculus

If
e f(x) is a continuous function on [a, b],
Then

d X
oFmewwxEMﬁLE;Lfﬁﬂﬁ=f@)

Mean Value Theorem for Integrals (MVT)

If

e f(x) isa continuous function on [a, b],
Then

e thereisavalue c € [a, b], such that

b
[ reax=w-af@
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Summary of Key Derivatives and Integrals
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Key Derivatives and Integrals

Derivatives of Special Functions

Common

Power Rule

d
= (x™) =n-x"1

Exponential and Logarithmic Functions (a
d X — X
ae = e
d X X
aa =a* - Ina
ilnx = 1
dx X
ilog = !
d @ x Ina

Trigonometric Functions

d .
—sinx =cosx
dx
d .
—cCcosx = —sinx
dx
d 2
—tanx = sec“x
dx
d
_ _ _ 2
cotx = — cscex
dx
d
—secx = secx tanx
dx
d
—CSCX = — cSCx cotx
dx
Version 5.6
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>0,a#1)

a , , du

ax® T % dx

d " du
aa =a"- lna Ix
T L

dx u dx

I B

d 4 ulna dx

d du

T Sinu =cosu - —

d ] du
§cosu=—smu e

d 5 du
atanu = secu * —

d du
gcotu = — csc?u - o

d du
asecu = secu tanu - Ix
d du
ﬁcscuz—cscucotu T
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Derivatives of Special Functions
Common Functions

Inverse Trigonometric Functions

d in-1y =t d ., __ 1 du Angle in
—sin™tx = —sin"tu = S

dx V1 —x? dx V1—u2 dx QlorQIv
icos‘1 i icos—l __—1 du Angle in
dx V1—x? dx VI—u? dx QlorQII
d tan~1 x = 1 d can=1y — 1 du Angle in
d =1y = —1 d N -1 du Angle in
dxco x_1+x2 dxco u_1+u2 dx QlorQIl
d 1y = ! d -1, — 1 du Angle in
—sec tx = ——— —sec lu = e

dx x| Va2 — 1 dx lu| Vuz —1 dx QIorQII
4 oemt -1 d 1 —1 du Angle in
—CSC "X = —/—— —CSC Tu = - —

d X 1 d u 1 du ;
—sin™! (—) = —sin™! (—) e — Angle in
dx a a2 — x2 d a a2 —y2 dx QlorQIv
—cos™! (—) SR ~ cos~1 (_) — ,au Angle in
d X a d u a du .
—tan™? (—) =— —tan™? (—) - .= Angle in
dx a’  a?+ x? d a/ a?+4+u? dx QlorQIv
d X —a d u —a du .
—cot™? (—) = — cot~! (_) — . au Angle in
dx a’  a?+ x? d a/ a?+u? dx QlorQIl
—sec™? (—) = —— —sec™? (—) = g Angle in
dx a |x| Vx2 — a? d a lu| Vuz — a2 dx QIorQII
d X —a d u —a du .
—csc™? (—) = —csc? (—) = s Angle in
dx a’ x| Vx? —a? d a/  |ulvuZ—a?Z dx  QlorQIV
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Appendix C Key Derivatives and Integrals

Indefinite Integrals

Note: the rules presented in this section omit the “ + C” term that must be added to all
indefinite integrals in order to save space and avoid clutter. Please remember to add the “ + C”
term on all work you perform with indefinite integrals.

Basic Rules

chu =cu

[eraau =cra

[ 1w +g@du = [ faodu + [ g du

Integration by Parts
Judv=uv—Jvdu

Power Rule

n — .+l l —
(u™) du u n+1) ” du = In|u|

n+1

Exponential and Logarithmic Functions (a > 0,a # 1)

fe”duz el flnudxzulnu—u

1 1
u — — u —
fa du g a fulnudu In(Inu)
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Key Derivatives and Integrals

Indefinite Integrals of Trigonometric Functions

Trigonometric Functions

fsinudu = —Ccosu

fcosudu = sinu

ftanudu = In [secu| = —In |cos u|
fcotu du = —In |cscu| = In |sin u|
J-secudu = In |secu + tan u|

fcscudu = —In|cscu + cotu|

sec’udu = tanu

csc’udu = —cotu

secutanudu = secu

cscucotudu = —cscu

—_— —
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Appendix C Key Derivatives and Integrals

Indefinite Integrals of Inverse Trigonometric Functions

Inverse Trigonometric Functions

fsin‘luduzu sin"tu+ 1 —u?

cos tudu=ucostu— /1—u?

1
cot'7ludu=u cot™tu+ 7 In(u? + 1)

1
ftan‘1 udu =u tan"tu — > In(u? + 1)

sec’ludu=usec’tu— ln(u+\/u2 -1

fcsc‘ludu=u csclu+ In(u++u? —1) csclu e

( {
=ucesclu—In(u+vuz—1)  esctue{(-5,0)}

Involving Inverse Trigonometric Functions

f ! du=sin"tu J‘;duzsin‘1 (E)
V1 —u? va? —u? a
1 ) 1 1 .
J T um | =z ()
1 1 1 u
J-— du = sec™ | u| f— du = = sec? (H)
uvu? -1 uvu? —a? a a
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Key Derivatives and Integrals

Integrals of Special Functions
Selecting the Right Function for an Integral

Appendix C
Form Function
1 P )
\/ﬁ u Sin u
1 -1
m du tan u
1
——— dx sec lu
uvu? — a2
[ -
——— dau sinh™u
u? + a?
1 P .
\/ﬁ u cosh™u
f LI | h-1
— u -
a? —u? a>u tan u
f LI | h-1
F— u -
u? —a? u>a coth~u

1
- du -1
fu R sech™ u

csch™lu

1
——du
quaz + u?

Integral
1 u
_— =sin 1 (=
j e — du = sin (a)

1 1
- — -1(Z
,faz + u? du = a tan (a)
1 1 u
f— dx = — sec”! <u>
uvu? — a? a a

1
| o @ =

j\/% du=ln(u+ uz—az)
u:—a

j ! d —11
B a? —u? u_Zan

a+u|
a—u

1 1 a+va? —u?
j—duz——ln _
uva? —u? a lul
1 1 a+vVa? +u?
f—duz——ln _—
uva? + u? a lul

* This is an inverse hyperbolic function. For more information, see Chapter 6. Note that you do
not need to know about inverse hyperbolic functions to use the formulas on this page.
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Appendix D Functions and Their Derivatives
Functions and Their Derivatives
. X 1 —x (x) = —x?
Function fx) =x f(x) = p) fx)=e fx)=e
Description | The function is always concave | The graph of the function has | The function is always The function has one absolute
up and the limit of f(x) as x the x- and y-axes as decreasing and has the x-axis maximum and the x-axis is an
approaches 0 is 1. horizontal and vertical as an asymptote. asymptote.
asymptotes.
Function
Graph "=k
fix)=e"%
First
Derivative rw- | ] £1(x) = -6
Graph x*(1+Inx) f'(x)=-2xe™™
Second
Derivative
Graph | ()= (4 -2) e ¥
)= S .
x* (i +(1+In x)’) |
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Functions and Their Derivatives

Functions and Their Derivatives
Function flx) = 02205 fx) = |xZ — 2x| f(x) = In|x]| f(x) =sinx
Description | The logistic curve. Itis always | The function has two relative | The function is always The function is periodic with
increasing and has one point minima and one relative increasing on the right and domain R and range [—1, 1].
of inflection. maximum. always decreasing on the left.
The y-axis as an asymptote.
Function
Graph ; f(x) =In|x f(x) =sinx
%) 1 :\\_// :\\/
gL .
0.2 + 2™ | 100 =} - 2x
First £1(x) =2x -2, | x<0, x>2
. . I(x)=2-2x, |0<x<2 |
Derivative 1 f'(x) =cosx _
h 24 :._':\ el f'(x] = \ 24
Gra . :
P P = oo 0 ) e N \\//\\//
1 2z \
| 0= o2 iy y A
Second
Derivative 1 f"(x) =-sinx .--
h 0 T =S
r , |
G ap - '(x) =2, x<0,x>2 /\ /-\
f'(x)=-2, O<x<2 o LT ol
I:'.:[x} =(In,/2) (2-°%)» R :
z (2 -0.5):) 1
(0.2+2°%) 7 (0.2 +2*‘-5*]1)
Version 5.6 Page 216 of 242 April 8, 2023




Appendix D

Functions and Their Derivatives

Functions and Their Derivatives

. 1 1 1
Function f(x) = x? f(x) =5 (x+3)2x - 5)(x — 5) f) =3 @ -1 +2)(x-3) f(0) = 2x(x* —16)(x + 1)(x - 3)
Description | The function has one absolute | The graph has three zeros, The function has one relative The function has two relative
minimum and no points of one relative minimum, one maximum, two relative maxima, two relative minima,
inflection. relative maximum, and one minima, and two points of and three points of inflection.
point of inflection. inflection.
Function
Graph
fi{x) =x* 5
.4 Bx
First
Derivative
Graph
f'(x)=2x I 3 1
sl wr T x) =2t =TT+
5 '(x) = 3x%- 9% - 10 : 2 2
Second
Derivative
Graph
"x)=2 b r"(x) = 6x*-3x-7
- | 1 10 "] 32
l"'(x]_:= 3 x4t - 19x + 3
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Appendix E Geometry and Trigonometry Formulas
Geometry
Summary of Perimeter and Area Formulas — 2D Shapes
Shape Figure Perimeter Area
i 1
ﬂ P=2b+2c A==(dd,)
Kite ' = b,c = sides 2
\Jd - T d,,d, = diagonals
By 1
P:b1+b2+c+d A:E(b1+b2)h
Trapezoid VAR by, b, = bases b b, =b
o 1, b, = bases
— ¢, d = sides h = height
b —
. P =2b+ 2c A =bh
Parallelogram h , b = base
- b, c = sides h = height
L A = bh
P =2b+ 2c N
Rectangle o |n=e _ b = base
: b,c = sides h = height
1
P=4s A = bh = 5 (dd,)
Rhombus _ 2
s = side d,,d, = diagonals
, 1
a P=4s A =s"=5(dd;)
Square s . 2
d s = side d,,d, = diagonals
1
P =ns A= 2 a-P

Regular Polygon

n = number of sides

a = apothem

s = side g
P = perimeter
C=2nr=mnd
. A =mr?
Circle r = radius — radi
d = diameter r = radius
,1 _
P =21 —(1"12 + 1'22) A - T[rlrz
Ellipse ’ S
P r, = major axis radius r, = major axis radius
r, = minor axis radius | T, = minor axis radius
Version 5.6 Page 219 of 242 April 8, 2023




Appendix E

Geometry and Trigonometry Formulas

Geometry

Summary of Surface Area and Volume Formulas — 3D Shapes

Version 5.6

Page 220 of 242

Shape Figure Surface Area Volume
SA = 4mr? V=
Sphere 3
r = radius ;
r = radius
) SA = 2nrh + 2nr? V =nr’h
Right
. h = height h = height
Cylinder r = radius of base r = radius of base
2 1 2
SA =mnrl+nr V=§Tl'1'h
Cone - ;
ettt
r = radius of base
SA = 25l + s v=1gn
Square 3
Pyramid s = base side length _ ,
| = slant height s = base Sld.e length
h = height
Rectangular SA=2:-(lw+ lh+wh) V =lwh
Prism l = length l =length
w = width w = width
h = height h = height
SA = 6s? V=s3
Cube
s = side length (all sides) s = side length (all sides)
SA=Ph+ 2B V = Bh
G.eneral- P = Perimeter of Base B = area of Base
Right Prism h = height (or length) h = height
B = area of Base
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Geometry and Trigonometry Formulas

Trigonometry

Function Relationships

Opposite Angle Formulas

Cofunction Formulas (in Quadrant I)

] 1 1
sm6=CSCe csc6=ﬁ

1 1
c056=@ sec6=coSe

1 1
tanb = ot0 cotO = p—
sin 6 cos B

tanb = cotf = —

cos sin 6

sin (—0) = —sin (0)
cos (—0) = cos (8)
tan (—6) = —tan (0)
cot (—6) = —cot (0)
sec (—60) = sec ()
csc (—8) = —csc ()

sin @ = cos (g—e) cosf =sin(§—9)
tan 8 = cot (g - 0) cotf = tan (g - 0)
secl = csc (g— 0) cscO = sec (g— 0)

Angle Addition Formulas

Pythagorean Identities
sin?@ + cos?0 =1
tan’8 + 1 = sec?6

cot’6 + 1 = csc?6

Double Angle Formulas

sin20 = 2 sinf cos
cos 26 = cos? 6 — sin? 6
= 1-—2sin%6
= 2co0s%0 -1
2 tan@

tan 20 =———
an 1 — tan%48

Half Angle Formulas

. 9_+ 1 — cos#@
51n2—_ >

9_ + 1 + cos@
cosz— + >
) 9_ + 1 — cos@
anz— ~. 1+ cosB

_ 1 — cos@

B sin @

_ sin 8

" 1+ cosf

sin (A+ B) =sinAcosB + cosAsinB
sin (A—B) =sinAcosB — cosAsinB
cos (A+ B) =cosAcosB — sinAsinB
cos (A—B) =cosAcosB + sinAsinB

tan (A + B) = tanA + tanB
an " 1- tanA tanB

tan4d — tanB

A-B)=————
tan ( ) 1 + tanA tanB

Triple Angle Formulas

Power Reducing Formulas

Product-to-Sum Formulas

1

sind-sinB = > [cos(A—B) —cos(A+ B) ]
1

cosA-cosB = > [cos(A—B) +cos(A+ B)]
1

sinA-cosB = 3 [sin(A + B) + sin(A — B) ]
1

cosA-sinB = 3 [sin(A + B) —sin(A — B) |

; — 2cinfA — A cin3 1 — cos26
sin360 =3 sinf — 4sin° 0 sin2 9 = :
cos36 = 4cos* 6 — 3 cosO , 1 + cos20
cos“ 6 ZT
. 39_3tan9—tan36’ )
ansv = 1 —3tan20 tan29=ﬂ
1 + cos26
b
Arc Length Law of Sines .a = — = _C
S =10 sin A sin B sin C

Sum-to-Product Formulas

A+ B A—B
sinA + sinB=2-sin( > >-cos< > )

A— B) (A + B)
2 COoS 2

A+ B A—B
cosA + cosB=2-cos< > )-cos( > )

sinA — sinB = 2-sin(

: . (A+B\ . (A-B
Law of Cosines Law of Tangents cosA — cosB = —2-sin ( 2 ) * sin ( > )
a’? = b%? 4+ ¢? — 2bc cosA 1
2 2y 2 g 5 a—>b tan[z(A—B)]
=a c¢* — 2ac cos = .
a+b 1 Mollweide’s Formulas
c? = a® + b? — 2ab cosC tan [? (4 + B)] mathguy.us 1
a+b COS[E(A—B)]
Euler’s Formula Polar Multiplication and Division c sin (l C)
i . . . 2
e® = cosf +isin6 = cis 6 let: a= rcisf b= r,cis¢@ T
- a—b_Sln[j(A—B)]
DeMoivre’s Formula a-b=mrr,cis (60 + @) =2 cis (6 — ¢) c 1
7 cos (7 C)
(r cis )™ = r" cis (n8)
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Geometry and Trigonometry Formulas

Trigonometry
sin B Period = 21 cos B Period = 21 tan® Period = y=A-f(Bx—C)+D
| 7 1
e Amplitude: |A]|
. parent "f" period
Period:
0 . ' 0 0 B
0 w2 an/2 i 0 bt /2 m 0 2 n 32 on I
Phase Shift: 3 —>
4 4 Vertical Shift: D
csc@ Period = 21 secB Period = 21 cot B Period =1 Harmonic Motion
U J L d =acoswt or
: ~ d = asin wt
tg n}’z 7 an/2 2 oo ni2 ‘ a2 o 0o /2 E any/! 2 f — 1 — ﬂ
2 i period 21
\ w=2nf, w>0

Trig Functions of Special Angles (Unit Circle) Signs of Trig Functions Locations of Principal Values
by Quadrant of Inverse Trig Functions
0 Rad 6° sin @ cosf@ tan @ y y
° sin@ + sin@ + sin” 0 +
0 0 0 ! 0 cos0 — cos O + coxt g — cos' 0 +
/o 30° 1/2 V3/2 V3/3 tan 0 — tan 0 + tan' 0 +
Tla | 45° | V272 | v2/2 1 X X
sin@ - sin@ - sin’ 0 -
7T/3 60° \/§/2 1/2 V3 cos 0 - cos O +
p - tan 0 + tan @ — tan’ 0 -
/2 90° 1 0 undefined

Rectangular/Polar Conversion

Rectangular Polar
_________ Coy) | ®O)
X =rcosf r=4/x%+y?

y =7sinf 0 = tan-1 (X)
x
4+ bi r (cosf + i'sin 0)
or Trcisf
a=rcosf r =+a%+b?
i b
b=rsind 0 = tan-1 <_)
a
________ aitbi | Ivllet
a = ||v|l cos 8 vl = Va2 + b?
_ ; b
b =lv|sin® 6 = tan-1 <E)

Triangle Area

A—lbh
2

A=\/s(s—a)(s—b)(s—c)
s=1P=%(a+b+c)

2
A= 1/a?sinBsinC
) sin A
A = —absinC
> ab sin
1 x ¥y, 1
A== X2 yz 1
2
x3 ¥y, 1
1 .
A=5 |lall |[v]| sin®

Vector Properties
Otu=u+0=u
u+(-u)=(-uw)+u=0
u+v=v+u
u+v+w)=(u+v)+w
m(nu) = (mn)u

m(u + v) = mu + myv

(m +n)u = mu+nu

1(v) =v
lmv]l = [m| [|vl|
. \'4
Unit Vector: —
(vl

Vector Dot Product

uov=(u v+ (u; v,)

uo(v+w)=_ov)+ (uow)

Vector Cross Product
uxv

ux(v+w)=(Quxv)+ (uxw)

u; Uz
| \%]

= v | = UV — UpVy

Angle between Vectors

g — uov _uxvll
[la]l Ivl| [la]l [|vl|
liffuov=0 liff uxv=20
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Appendix F Polar and Parametric Equations

Polar Graphs

Typically, Polar Graphs will be plotted on polar graph paper such as that
illustrated at right. On this graph, a point (r, 8) can be considered to be the
intersection of the circle of radius r and the terminal side of the angle 8 (see
the illustration below). Note: a free PC app that can be used to design and
print your own polar graph paper is available at www.mathguy.us.

Parts of the Polar Graph

The illustration below shows the key parts of a polar graph, along with a point, (4, g)

/
it T point: / The Pole is the point (0, 0) (i.e., the origin).
2 T x 7/
7-aAXI1S (4, _) /
(e y-axi) I e i Sl The Polar Axis is the positive x-axis.
/ rd 1 r=4
/ 2} ki The Line: 8 = = is the positive y-axis.
¥4 (pos x-axis) 2
/ i J
¢ [ [ ) v, | | Many equations that contain the cosine
‘\ /’ |} function are symmetric about the x-axis.
Pole /
\ imgm) // Many equations that contain the sine
Se /| o < function are symmetric about the y-axis.

Polar Equations — Symmetry

Following are the three main types of symmetry exhibited in many polar equation graphs:

Symmetry about: Quadrants Containing Symmetry Symmetry Test(?)

Pole Opposite (I and III or Il and IV) Replace r with - in the equation

Left hemisphere (Il and III) or

x-axis right hemisphere (I and [V)

Replace € with - 6 in the equation

y-axis Upper hemisphere (I and II) or Replace (7, 8) with (—r, —8) in the
lower hemisphere (III and 1V) equation

T performing the indicated replacement results in an equivalent equation, the equation passes
the symmetry test and the indicated symmetry exists. If the equation fails the symmetry test,
symmetry may or may not exist.
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Graphs of Polar Equations

Graphing Methods

Method 1: Point plotting

Create a two-column chart that calculates values of r for selected values of 8. This is akin to a
two-column chart that calculates values of y for selected values of x that can be used to plot a
rectangular coordinates equation (e.g., vy = x? — 4x + 3).

The B-values you select for purposes of point plotting should vary depending on the equation
you are working with (in particular, the coefficient of 8 in the equation). However, a safe bet
is to start with multiples of 7T/6 (including 8 = 0). Plot each point on the polar graph and
see what shape emerges. If you need more or fewer points to see what curve is emerging,
adjust as you go.

If you know anything about the curve (typical shape, symmetry, etc.), use it to facilitate
plotting points.

Connect the points with a smooth curve. Admire the result; many of these curves are
aesthetically pleasing.

Method 2: Calculator

Using a TI-84 Plus Calculator or its equivalent, do the following:

Make sure your calculator is set to radians and polar functions. Hit the MODE
key; select RADIANS in row 4 and POLAR in row 5. After you do this, hitting
CLEAR will get you back to the main screen.

Hit Y= and enter the equation in the form r = f(8). Use the X,T,0,n key to
enter 0 into the equation. If your equation is of the form 72 = f(8), you may

need to enter two functions, r = ,/f(6) and r = —,/f(8), and plot both.

Hit GRAPH to plot the function or functions you entered in the previous step.

If necessary, hit WINDOW to adjust the parameters of the plot.

0 If you cannot see the whole function, adjust the X- and Y- variables (or use ZOOM).

0 If the curve is not smooth, reduce the value of the Ostep variable. This will plot more
points on the screen. Note that smaller values of BOstep require more time to plot the
curve, so choose a value that plots the curve well in a reasonable amount of time.

0 If the entire curve is not plotted, adjust the values of the @min and @max variables until
you see what appears to be the entire plot.

Note: You can view the table of points used to graph the polar function by hitting 2ND — TABLE.

Version 5.6 Page 225 of 242 April 8, 2023



Appendix F

Circle

2

Equation: r = asinf

Location:
above x-axisif a > 0
below x-axisif a < 0

Radius: a/2

Symmetry: y-axis

Rose

Polar and Parametric Equations

Graph of Polar Equations

Equation: r = acosf Equation: r = a
Location: Location:
right of y-axisif a >0 Centered on the Pole
left of y-axis if a <0
Radius: a/2 Radius: a
Symmetry: x-axis Symmetry: Pole, x-axis,

y-axis

r=4/sin20

r=4sin50

Characteristics of roses:

e Equation: r = asinnd

0 Symmetric about the y-axis

e Equation: r = acosné

0 Symmetric about the x-axis

e Contained within a circle of radius r = a

e Ifnisodd, the rose has n petals.

e Ifniseven the rose has 2n petals.

e Note that a circle is a rose with one petal (i.e, n = 1).
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Polar and Parametric Equations

Graphs of Polar Equations

Limagon of Pascal

Equation: r =a + bsin @

Location: bulb above x-axisif b > 0
bulb below x-axisif b < 0

Symmetry: y-axis

Four Limagon Shapes

Equation: r =a + bcos 6

Location: bulb right of y-axis if b > 0

bulb left of y-axis if b <0

Symmetry: x-axis

a<b a=>hb b<a<?2b a=>2b
Inner loop “Cardioid” Dimple No dimple

Four Limagon Orientations (using the Cardioid as an example)

r=2-2sind

2

sine function
b>0

Version 5.6

sine function
b<O

cosine function
b>0
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Graph of Polar Equations

Lemniscate of Bernoulli

12 = 16.cos 20

The lemniscate is the set of all points

i for which the product of the
distances from two points (i.e., foci)

which are “2¢” apart is c2.

r’ =16 sin 20

Characteristics of lemniscates:
e Equation: 7% = a?sin 20
O Symmetric about the line y = x
e Equation: r? = a? cos 26
O Symmetric about the x-axis

e Contained within a circle of radius r = a

Spirals

a

r==

0

Archimedes’ Spiral Fermat’s Spiral AR ™ or
r=af r?2 = a2

aZ
Lituus: r: =—
Characteristics of spirals: 6

e Equation: v’ =a”8, b >0
O Distance from the Pole increases with 8
ab
. b _
e Equation: r =5 b>0

0 Hyperbolic Spiral (b = 1): asymptotic to the line a units from the x-axis

O Lituus (b = 2): asymptotic to the x-axis

¢ Not contained within any circle
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Graphing Polar Equations — The Rose
Example F.1: r = 4sin 20

This function is a rose. Consider the forms r = asin b8 and r = a cos b6.

The number of petals on the rose depends on the value of b.
e If bis an even integer, the rose will have 2b petals.
e If bisan odd integer, it will have b petals.

Let’s create a table of values and graph the equation:

. Because this function involves an
r =4sin20
argument of 268, we want to start by
0 r 0 r looking at values of 0 in [0, 21| =+
0 0 2 = [0, m]. You could plot more
/12 7 71/12 > points, b},lt this interval is sufficient
to establish the nature of the curve;
/6 3.464 2m/3 —3.464 so you can graph the rest easily.
/4 4 3n/4 -4
7T/3 3.464 577.'/6 —3.464 Once symmetry is
5m/12 2 11m/12 -2 established, these values
are easily determined.
/2 0 I8 0
The values in the table Tr=4sin2e0

generate the points in the Blue points on the graph
correspond to blue values

in the table.

two petals right of the y-axis.

Knowing that the curve is a

rose allows us to graph the Orange points on the

other two petals without graph correspond to

calculating more points. orange values in the table.

The four Rose forms:

r=4/5in 20
s

r=4sin50
r=4cos 20

/ r=4cos50

/'/

et =l
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Polar and Parametric Equations

Graphing Polar Equations — The Cardioid

Example F.2: r=2 4 2sin0

This cardioid is also a limagon of form r = a + b sin 8 with a = b. The use of the sine function

indicates that the large loop will be symmetric about the y-axis. The + sign indicates that the large

loop will be above the x-axis. Let’s create a table of values and graph the equation:

Generally, you want to look at

values of 8 in [0, 2m]. However,

some functions require larger
intervals. The size of the interval

depends largely on the nature of the

function and the coefficient of 6.

Once symmetry is

established, these values

r=2+2sinf

0 r 0 T

0 2
/6 3 7m/6 1
/3 3.732 41t/3 0.268
/2 4 3n/2 0
2r/3 3.732 5m/3 0.268
5nt/6 3 11r/6 1

s 2 21 2

are easily determined.

The portion of the graph
above the x-axis results
from 6 in Q1 and Q2,
where the sine function is

positive.

Similarly, the portion of
the graph below the x-axis
results from 6 in Q3 and

Q4, where the sine

function is negative.

The four Cardioid forms:

Blue points on the graph
correspond to blue values

in the table.

Orange points on the
graph correspond to

orange values in the table.

r=2+2cos /
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Appendix F

Polar and Parametric Equations

Converting Between Polar and Rectangular Forms of Equations

Rectangular to Polar

To convert an equation from Rectangular Form to Polar Form, use the following equivalences:

Substitute r cos@ for x

Substitute rsin@ for y

x =rcosf
y =rsinf
x2+y?=r? Substitute 72 for x2 + y?

Example F.3: Convert 8x — 3y + 10 = 0 to a polar equation of the form r = f(6).

Starting Equation:

Substitute x =rcosf and y = rsin6:

Factor out 7:

Divide by (8 cos 8 — 3sin 8):

Polar to Rectangular

8x—-3y+10=0
8:rcosf —3-rsinfd+10=0
r (8cosf —3sinf) = —-10

-10
r_8c056—35in6

To convert an equation from Polar Form to Rectangular Form, use the following equivalences:

X X
cosf =— Substitute — for cos@

r r
sinf = 4 Substitute 4 for sin@

r r
r? =x?+y? Substitute x? + y? for 72

Example F.4: Convert r=8cos 8 + 9 sin 8 to arectangular equation.

Starting Equation:

Substitute cos @ = ; sinfg = %:
Multiply by r:

Substitute 72 = x2 + y?2:
Subtract 8x + 9y:

Complete the square:

Simplify to standard form for a circle:
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r=8cosf@ +9sinf
_aof* y
r=8(7)+9()
r? =8x + 9y
x?+y? =8x+9y
x% — 8x

+y% -9y =0
(x2—8x+16)+(y2—9y+— =16+2

-7+ (y-3) =17
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Appendix F Polar and Parametric Equations

Parametric Equations

One way to define a curve is by making x and y (or r and @) functions of a third variable, often t (for
time). The third variable is called the Parameter, and functions defined in this manner are said to be
in Parametric Form. The equations that define the desired function are called Parametric Equations.

In Parametric Equations, the parameter is the independent variable. Each of the other two (or more)
variables is dependent on the value of the parameter. As the parameter changes, the other variables
change, generating the points of the function.

Example F.5: A relatively simple example is a circle, which we can define as follows:

Circle: x =rcost y=rsint

As the variable t progresses from 0 to 2, a circle of radius r is born.

The circle in the illustration at right can be defined in several ways:

Cartesian form: x?+y? =16
Polar form: r=4
Parametric form: x =4cost y =4sint

Familiar Curves

Many curves with which the student may be familiar have parametric forms. Among those are the

following:
Curve Cartesian Form Polar Form Parametric Form
P.arabo_Ia with horizontal y=a(x—h)?+k .= P. x =2pt
directrix 1+£sin6 y = pt?
ep
Ellipse with horizontal (x — h)? N (v — k)? _q r= Tte cosd X =acost
major axis a? b? O<e<1) y = bsint
i i 2 2 = P = t
J::zx\:l:i: :::(Iitsh horizontal | (x ;zh) _ (v ;Zk) _, r= TTe cosd X : asec
(e > 1) y = btant

As can be seen from this chart, sometimes the parametric form of a function is its simplest. In fact,
parametric equations often allow us to graph curves that would be very difficult to graph in either
Polar form or Cartesian form. Some of these are illustrated on the next page.
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Appendix F Polar and Parametric Equations

Some Functions Defined by Parametric Equations

(Star Wars fans: are these the “oids” you are looking for?)

The graphs below are examples of functions defined by parametric equations. The equations and a
brief description of the curve are provided for each function.

Deltoid Nephroid Astroid

Parametric equations: Parametric equations: Parametric equations:
X = 2acost + acos2t x = a(3cost — cos 3t) x=acos3t
y = 2asint — asin 2t y = a(3sint — sin 3t) y =asindt
The deltoid is the path of a The nephroid is the path of a The astroid is the path of a
point on the circumference point on the circumference point on the circumference
of a circle as it makes three of a circle as it makes two of a circle as it makes four
complete revolutions on the complete revolutions on the complete revolutions on the
inside of a larger circle. outside of a larger circle. inside of a larger circle.
Cycloid
2 L
| n | o ' I ' 4 |

Parametric equations: The cycloid is the path of a point on the circumference of a circle as the

x = a(t —sint) circle rolls along a flat surface (think: the path of a point on the outside
y=a(l—-cost) of a bicycle tire as you ride on the sidewalk). The cycloid is both a
brachistochrone and a tautochrone (look these up if you are interested).
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Appendix G

Interesting Series and Summation Formulas

n
Z(C):nc c+c+---+c=nc
k=1
C (n+1) 1
= nn +
ZUQ:T 1+2+---+n=¥
k=1 >
n
(k) :n(n+1)(2n+1) 12492 4o 2 =n(n+1)(2n+1)
6 6
k=1
1 nn+1
Z(k3) = n(n ) 134234+ ...4 18 :<(—)>
k=1 2 2
) = 1 2 3 4 1
(x*) =—— for{-1<x<1} T4 xda®tadtab o=
k=0 1- -
i ﬁ =e* 2 x3  xt e
= k' 1+x+7+§+$+ e
i—l<X—1)k - lnx forx>_ (x—1)+1(x_1>2 1(X—1)3+ _
k=1 k x B X 2 X 3 X =Inx
i—("l)(ml)(x—k) =1In (1+x) X2 % xt
= “ x—S o=+
for{-1<x<1}
o I x(2K) B . x2  x* 6 B
z (-1 )| = cosx — St gt = cosx
k=o &
i—(—l)k x 2k+1) - X3+x5 x7+ .
el 2k + 1) - s TRl =sinx
) -( Dk S = tan”! x3+x5 X = tand
k=0 " (2k+1) —an X X 3 5 7 =1tan ~Xx
for{-1<x<1}
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164
32
135
35
163
153
56
110
101
117
103
105
111
233
184
93
93
156
76
227
177
53
18
226
158
33
164
110
142
158
10

Calculus Handbook
Index

Subject

Abel's Convergence Test (Series)
Absolute Convergence of a Series
Absolute Extrema - see also Integration
Acceleration

Alauria Diagram

Alternating Series

Analytic Continuation

Antiderivatives

Arc Length

Area by Integration

Area Cross Section Method - Volume of a Solid
Area in Polar Form

Area of a Limacon

Area of a Surface of Revolution

Astroid

Ault Table

Average Rate of Change

Average Value of a Function

Bernoulli Numbers

Beta Function

Cardioid

Cauchy-Riemann Equations

Center of Curvature

Chain Rule

Circle (Polar Form)

Comparison Test for Series Convergence
Concavity

Conditional Convergence of a Series

Conversion among Rectangular, Polar, Parametric Forms

Convergence Tests - Sequences
Convergence Tests - Series
Continuity Examples

Continuity Rules
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78
132
138

53

39
233
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92

87
92
94
87
92
95
98
96

183
136
233
177
181

178
179
180
39
120
52

17
18
23
27
25
25

Calculus Handbook
Index

Subject

Cosine Integral - Ci(x)
Cross Product
Curl
Curvature
Curve Sketching
Cycloid
Cylindrical Shell Methods - Volume of a Solid of Revolution
Definite Integration
Definite Integrals
Fundamental Theorem of Calculus
Properties of Definite Integrals
Riemann Sums
Rules of Definite Integration
Solving Definite Integrals with Directed Line Segments
Special Techniques
u -Substitution
Definitions - Alphabetically
Del Operator
Deltoid
Derivative of e to a Complex Power (&)
Derivative of: (x+y)3=x3+y3
Derivatives - see Differentiation
Derivatives of a Circle
Derivatives of a Ellipse
Derivatives of a Hyperbola
DIACIDE (curve sketching)
Differential Equations
Differentials
Differentiation
Basic Rules
Exponential and Trigonometric Functions
Generalized Product Rule
Implicit Differentiation

Inverse Function Rule
Inverse Function Diagram
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19
208
30
110
26
37

161
9

112, 113
49, 135
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49
137
131
172

9
173
125

18,57

78
31
34
31
8
234
92
74
46
219
136
229

79
84
83
80

Calculus Handbook
Index

Subject

Inverse Trigonometric Functions

List of Key Derivatives

Logarithmic Differentiation

Parametric Derivatives

Partial Differentiation

What Does the Graph of f'(x) Tell Us about f(x) ?

Dirichlet’s Convergence Test (Series)
Discontinuities

Disk Method - Volume of a Solid of Revolution
Displacement

Distance

Divergence

Dot Product

e

Essential Discontinuity

Euler's Formula

Euler's Methods (Differential Equations)
Exponential Functions

Exponential Integral - Ei(x)

Exterema

Exterema of Polynomials

First Derivative Test

Functions

Functions and Their Derivatives (Summary)
Fundamental Theorems of Calculus
Gamma Function

General-Specific Method (for Related Rates Problems)
Geometry Formulas (Area and Volume)
Gradient

Graphing Polar Equations

Hyperbolic Functions
Definitions
Derivatives
Graphs of Hyperbolic Functions and Their Inverses
Identities
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85
82
81
228
176
27
78
118
158
85
56
14

33
34

76
57
74
78
56
60
210
57
65
68
71
62
57
72
63

165
25

60
19, 22
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Calculus Handbook
Index

Subject

Integrals
Inverse Hyperbolic Functions
Relationship to Trigonometric Functions

Hyperbolic Spiral

. i
1

Implicit Differentiation
Impossible Integrals
Improper Integrals
Integral Test for Series Convergence
Integrals
Indefinite Integration
Indeterminate Forms
Infinite Discontinuity
Inflection Points
Inflection Points of Polynomials
Integration
Beta Function
Exponential Functions
Gamma Function
Impossible Integrals
Indefinite Integration (Antiderivatives)
Inverse Trigonometric Functions
List of Key Integrals
Logarithmic Functions
Partial Fractions
Parts
Parts - Tabular Method
Selecting the Right Function for an Intergral
Trigonometric Functions
Trigonometric Substitution
u -Substitution
Interval of Convergence
Inverse Function Diagram (for derivatives)
Inverse Trigonometric Functions

About Inverse Trig Functions
Derivatives
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21
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9
35
49

135
13

171

139
88

228
68

105, 227
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12
11
11
16
228
30
18, 57
78
175
175
124
169
31
45
87
88
38
233
54

Calculus Handbook
Index

Subject

Development of Derivatives
Graphs
Integrals

Jump Discontinuity

Key Points on f(x), f'(x) and f"(x)
Kinematics (Particle Motion)
Kinematics (Particle Motion) - Vectors
L'Hospital's Rule

Lagrange Remainder of a Taylor Series
Laplacian

Left Endpoint Method (Riemann Sum)
Lemniscate of Bernoulli

LIATE

Limacon

Limit-Finding Techniques

Limit Rules

Limits

Limits: Failure to Exist

Lituus

Logarithmic Differentiation
Logarithmic Functions

Logarithmic Integral - li(x)

Logarithms of Complex Numbers
Logarithms of Negative Real Numbers
Logistic Function

Maclaurin Series

Maxima and Minima

Mean Value Theorem

Mesh Size (of a Riemann Sum)
Midpoint Method (Riemann Sum)
Natalie Chart - relationship among f(x), f'(x), f''(x)
Nephroid

Newton's Method
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126

16

53

152
110

26

65

49

110
224
49,135
18

148
17,23
18

165

53

159
110
140, 143-145
46

31

9

111, 112
87

152

88

132

45

160
226
127
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Calculus Handbook
Index

Subject

Normal Distribution PDF Inflection Points
Order of a Numerical Method (Differential Equations)
Oscillating Behavior of Limits
Osculating Circle

p -Series

Parametric Forms - Summary
Partial Differentiation

Partial Fractions

Particle Motion

Polar Forms - Summary

Polar Graphs

Position Function

Power Rule (differentiation)
Power Series

Product Rule (differentiation)
Quotient Rule (differentiation)
Radius of Convergence

Radius of Curvature

Ratio Test for Series Convergence
Rectangular Forms

Recursive Sequences

Related Rates

Relative Extrema

Removable Discontinuity
Revolution - Volume, Surface Area
Riemann Sums

Riemann Zeta Function (p -Series)
Right Endpoint Method (Riemann Sum)
Right Hand Rule

Rolle's Theorem

Root Test for Series Convergence
Rose

Runge-Kutta Method (Differential Equations)
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141
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14
143
142
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141
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162
164
163
158
164
147
158
147
161
151
150
158
148
169
148
152
147
148
159
160
168
169
149
164

Calculus Handbook
Index

Subject

Scalar Field

Second Derivative Test
Sequences

Absolute Value Theorem
Bounded Monotonic Sequence Theorem
Bounded Sequence
Convergence and Divergence
Explicit Sequence
Indeterminate Forms

Limit of a Sequence
Monotonic Sequence
Recursive Sequences
Squeeze Theorem

Types of Sequences

Series

Abel's Convergence Test

Absolute Convergence

Alternating Series

Comparison Test

Conditional Convergence
Convergence and Divergence
Convergence Tests

Definition

Dirichlet’s Convergence Test
Estimating the Value of Series with Positive Terms
Geometric Series

Integral Test

Key Properties

Maclaurin Series

n -th Term Convergence Theorems
p -Series

Partial Sums

Power Series

Ratio Test

Root Test

Summary of Convergence/Divergence Tests
Taylor Series

Telescoping Series

Term Rearrangement

Page 241 of 242

April 8, 2023



Page

44

112, 115
78

123

112

50, 110, 135
228

111
#REF!
169

203

88

19, 57
72

221

134
63,96
16

136

129
129
132
138
137
131
136
139
130
129
134

49, 135
112

112, 113
152
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Calculus Handbook
Index

Subject

Shape of a Curve

Shell Methods - Volume of a Solid of Revolution
Sine Integral - Si(x)

Slope Fields

Solids of Revolution

Speed

Spiral

Surface of Revolution

Tabular Method of Integration by Parts
Taylor Series

Theorems - Summary

Trapezoid Method (Riemann Sum)
Trigonometric Functions

Trigonometric Substitution (Integration)
Trigonometry Formulas

Triple Products of Vectors

u -Substitution

Unbounded Behavior of Limits

Vector Field

Vectors
Components
Cross Product
Curl
Divergence
Dot Product
Gradient
Laplacian
Properties
Special Unit Vectors
Triple Products

Velocity
Volumes of Solids

Washer Method - Volume of a Solid of Revolution

Zeta Function
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