

Bearings and the cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$.

Example 1Work out the length of side w.Give your answer correct to 3 significant figures.

Example 2Work out the size of angle θ .
Give your answer correct to 1 decimal place.

7 cm^{c} a b A Q 10 cm C	1 Always start by labelling the angles and sides.
$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ $\cos \theta = \frac{10^2 + 7^2 - 15^2}{2 \times 10 \times 7}$ $\cos \theta = \frac{-76}{140}$ $\theta = 122.878 \ 349$ $\theta = 122.9^{\circ}$	 Write the cosine rule to find the angle. Substitute the values <i>a</i>, <i>b</i> and <i>c</i> into the formula. Use cos⁻¹ to find the angle. Use your calculator to work out cos⁻¹(-76 ÷ 140). Round your answer to 1 decimal place and write the units in your answer.

Practice question

1

There is a coastguard station at point A and at point B. B is due East of A. The distance from A to B is 12 km.

There is a rowing boat at point *R*. *R* is on a bearing of 160° from A. *R* is on a bearing of 220° from B.

There is a speedboat at point T. T is 5 km due South of A.

Work out the shortest distance from T to R. Give your answer correct to 1 decimal place. You must show all your working.

2

The diagram above shows 3 yachts A, B and C which are assumed to be in the same horizontal plane. Yacht B is 500 m due north of yacht A and yacht C is 700 m from A. The bearing of C from A is 015°.

(a) Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

The bearing of yacht C from yacht B is θ° , as shown in the diagram.

(b) Calculate the value of θ .

Answers

- 1. 6.2 km
- 2. $BC = 253, \theta = 45.8$