Edexcel

Bearings and the cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- $\quad a$ is the side opposite angle A . b is the side opposite angle B . c is the side opposite angle C .

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

Example 1 Work out the length of side w.
Give your answer correct to 3 significant figures.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& w^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \times \cos 45^{\circ} \\
& w=\sqrt{33.80404051} \\
& w=5.81 \mathrm{~cm}
\end{aligned}
$$

1 Always start by labelling the angles and sides.

2 Write the cosine rule to find the side.

3 Substitute the values a, b and A into the formula.
4 Use a calculator to find w^{2} and then w.
5 Round your final answer to 3 significant figures and write the units in your answer.

Example 2 Work out the size of angle θ.
Give your answer correct to 1 decimal place.

Practice question

Diagram NOT
accurately drawn

There is a coastguard station at point A and at point B.
B is due East of A.
The distance from A to B is 12 km .
There is a rowing boat at point R.
R is on a bearing of 160° from A.
R is on a bearing of 220° from B.
There is a speedboat at point T.
T is 5 km due South of A.
Work out the shortest distance from T to R.
Give your answer correct to 1 decimal place.
You must show all your working.

The diagram above shows 3 yachts A, B and C which are assumed to be in the same horizontal plane. Yacht B is 500 m due north of yacht A and yacht C is 700 m from A. The bearing of C from A is 015°.
(a) Calculate the distance between yacht B and yacht C, in metres to 3 significant figures.

The bearing of yacht C from yacht B is θ°, as shown in the diagram.
(b) Calculate the value of θ.

Answers

1. 6.2 km
2. $B C=253, \theta=45.8$
